WANG Lei, LIU Xiaocao, DONG Yu, et al. Expression, Purification and Biological Characteristics Prediction of Protein HmpA of Salmonella paratyphi A[J]. Science and Technology of Food Industry, 2023, 44(24): 131−138. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023010136.
Citation: WANG Lei, LIU Xiaocao, DONG Yu, et al. Expression, Purification and Biological Characteristics Prediction of Protein HmpA of Salmonella paratyphi A[J]. Science and Technology of Food Industry, 2023, 44(24): 131−138. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023010136.

Expression, Purification and Biological Characteristics Prediction of Protein HmpA of Salmonella paratyphi A

More Information
  • Received Date: January 31, 2023
  • Available Online: October 10, 2023
  • Objective: To express the protein HmpA of Salmonella paratyphi A in prokaryotes, and perform bioinformatics analysis on it to provide a theoretical reference for studying the effect of this protein on the nitric oxide (NO) signaling pathway in the host. Methods: The hmpA gene was amplified by PCR and subcloned into the T-vector. Then the expression vector pNdeI-hmpA was constructed and transformed into BL21 (DE3). After induced by IPTG, the recombinant protein expression form was assessed by SDS-PAGE. HmpA was purified using Histrap preload column and identified by Western blot. Bioinformatics technology was used to analyze the characteristics of HmpA. Results: The prokaryotic expression vector pNdeI-hmpA was successfully constructed. HmpA coexisted in the inclusion body and soluble forms under low temperatures after being induced with IPTG. The purified HmpA protein could be detected by the anti-His antibody. Bioinformatics analysis suggested that HmpA was a hydrophilic protein with no transmembrane structural domain or signal peptide. The secondary structure of this protein was mainly composed of α-helix with irregular convolutions, and the tertiary structure model was similar to a ring. The protein structural domain analysis showed that HmpA contains one functional structural domain belonging to the PRK13289 superfamily. There were 32 phosphorylation sites in HmpA. Associated with multiple Salmonella proteases or transcription factors that degrade nitrates and killer NO. Conclusion: This study successfully obtained Salmonella paratyphi A HmpA protein by genetic engineering technology and predicted part of its biological characteristics by bioinformatics methods, which would provide theoretical support for the subsequent uncovering of the influence of HmpA of Salmonella paratyphi A on the nitric oxide signaling pathway in the host.
  • [1]
    MOGASALE V V, RAMANI E, MOGASALE V, et al. Estimating typhoid fever risk associated with lack of access to safe water:A systematic literature review[J]. Journal of Environmental and Public Health,2018,2018:9589208.
    [2]
    FEASEY N A, DOUGAN G, KINGSLEY R A, et al. Invasive non-typhoidal salmonella disease:An emerging and neglected tropical disease in africa[J]. Lancet,2012,379(9835):2489−2499. doi: 10.1016/S0140-6736(11)61752-2
    [3]
    BROCKETT S, WOLFE M K, HAMOT A, et al. Associations among water, sanitation, and hygiene, and food exposures and typhoid fever in case-control studies:A systematic review and meta-analysis[J]. The American Journal of Tropical Medicine and Hygiene,2020,103(3):1020−1031. doi: 10.4269/ajtmh.19-0479
    [4]
    AMANO F. Interaction of Salmonella with macrophages-critical roles of Salmonella sep22, a pathogenicity-related protein, and macrophage reactive-oxygen intermediate species (rois) on the infection and survival of Salmonella[J]. Yakugaku Zasshi:Journal of the Pharmaceutical Society of Japan,2019,139(4):617−627.
    [5]
    PETERSEN E, MILLER S I. The cellular microbiology of Salmonellae interactions with macrophages[J]. Cellular Microbiology,2019,21(11):e13116.
    [6]
    阳波, 张静, 刘凤凤, 等. 2015-2016年全国和高发省份伤寒、副伤寒流行病学分析[J]. 疾病监测,2018,33(5):407−412. [YANG Bo, ZHANG Jing, LIU Fengfeng, et al. Epidemiological analysis of typhoid and paratyphoid in national and high-prene provinces from 2015-2016[J]. Disease Surveillance,2018,33(5):407−412.]

    YANG Bo, ZHANG Jing, LIU Fengfeng, et al. Epidemiological analysis of typhoid and paratyphoid in national and high-prene provinces from 2015-2016[J]. Disease Surveillance, 2018, 33(5): 407−412.
    [7]
    伏晓庆, 古文鹏, 尹建雯, 等. 云南省2003-2012年伤寒副伤寒流行特征分析[J]. 现代预防医学,2014,41(14):2497−2499,2502. [FU Xiaoqing, GU Wenpeng, YIN Jianwen, et al. Analysis of the epidemic characteristics of typhoid and paratyphoid fever in Yunnan Province from 2003-2012[J]. Modern Preventive Medicine,2014,41(14):2497−2499,2502.]

    FU Xiaoqing, GU Wenpeng, YIN Jianwen, et al. Analysis of the epidemic characteristics of typhoid and paratyphoid fever in Yunnan Province from 2003-2012[J]. Modern Preventive Medicine, 2014, 41(14): 2497−2499,2502.
    [8]
    孟银平, 姜黎黎, 周永明, 等. 云南省2010-2020年伤寒副伤寒流行特征分析[J]. 现代预防医学,2021,48(15):2689−2691,2715. [MENG Yinping, JIANG Lili, ZHOU Yongming, et al. Analysis of the epidemic characteristics of typhoid and paratyphoid fever in Yunnan Province from 2010-2020[J]. Modern Preventive Medicine,2021,48(15):2689−2691,2715.]

    MENG Yinping, JIANG Lili, ZHOU Yongming, et al. Analysis of the epidemic characteristics of typhoid and paratyphoid fever in Yunnan Province from 2010-2020[J]. Modern Preventive Medicine, 2021, 48(15): 2689−2691,2715.
    [9]
    GBD 2017 Typhoid and Paratyphoid Collaborators. The global burden of typhoid and paratyphoid fevers:A systematic analysis for the global burden of disease study 2017[J]. The Lancet Infectious Diseases, 2019, 19(4):369-381.
    [10]
    JOHNSON R, MYLONA E, FRANKEL G. Typhoidal Sal monella:Distinctive virulence factors and pathogenesis[J]. Cellular Microbiology,2018,20(9):e12939. doi: 10.1111/cmi.12939
    [11]
    RAFFATELLU M, WILSON R P, WINTER S E, et al. Clinical pathogenesis of typhoid fever[J]. Journal of Infection in Developing Countries,2008,2(4):260−266.
    [12]
    CHONG A, LEE S, YANG Y A, et al. The role of typhoid toxin in Salmonella typhi virulence[J]. The Yale Journal of Biology and Medicine,2017,90(2):283−290.
    [13]
    LANCASTER J R. Nitroxidative, nitrosative, and nitrative stress:Kinetic predictions of reactive nitrogen species chemistry under biological conditions[J]. Chemical Research in Toxicology,2006,19(9):1160−1174. doi: 10.1021/tx060061w
    [14]
    FORRESTER M T, FOSTER M W. Protection from nitrosative stress:A central role for microbial flavohemoglobin[J]. Free Radical Biology & Medicine,2012,52(9):1620−1633.
    [15]
    FITZSIMMONS L F, LIU L, KIM J S, et al. Salmonella reprograms nucleotide metabolism in its adaptation to nitrosative stress[J]. mBio, 2018, 9(1):e00211-18.
    [16]
    李德东, 王彦, 李莹, 等. 一氧化氮对微生物生长影响作用的两面性[J]. 第二军医大学学报,2010,31(12):1356−1358. [LI Dedong, WANG Yan, LI Ying, et al. Two-sided effects of nitric oxide on microbial growth[J]. Academic Journal of Naval Medical University,2010,31(12):1356−1358.]

    LI Dedong, WANG Yan, LI Ying, et al. Two-sided effects of nitric oxide on microbial growth[J]. Academic Journal of Naval Medical University, 2010, 31(12): 1356−1358.
    [17]
    CHAN J, TANAKA K, CARROLL D, et al. Effects of nitric oxide synthase inhibitors on murine infection with Mycobacterium tuberculosis[J]. Infection and Immunity,1995,63(2):736−740. doi: 10.1128/iai.63.2.736-740.1995
    [18]
    PARK Y M, LEE H J, JEONG J H, et al. Branched-chain amino acid supplementation promotes aerobic growth of Salmonella Typhimurium under nitrosative stress conditions[J]. Archives of Microbiology,2015,197(10):1117−1127. doi: 10.1007/s00203-015-1151-y
    [19]
    孙聪, 陈鑫, 上官春雨, 等. 钝齿棒杆菌黄素血红蛋白Hmp在L-精氨酸合成中的作用[J]. 应用与环境生物学报,2022,28(3):561−568. [SUN Cong, CHEN Xin, SHANGGUAN Chunyu, et al. The role of bacillus lutein hemoglobin Hmp in L-arginine synthesis[J]. Chinese Journal of Applied and Environmental Biology,2022,28(3):561−568.]

    SUN Cong, CHEN Xin, SHANGGUAN Chunyu, et al. The role of bacillus lutein hemoglobin Hmp in L-arginine synthesis[J]. Chinese Journal of Applied and Environmental Biology, 2022, 28(3): 561−568.
    [20]
    STEVANIN T M, READ R C, POOLE R K. The hmp gene encoding the NO-inducible flavohaemoglobin in Escherichia coli confers a protective advantage in resisting killing within macrophages, but not in vitro:Links with swarming motility[J]. Gene,2007,398(1-2):62−68. doi: 10.1016/j.gene.2007.03.021
    [21]
    CHO Y, PARK Y M, BARATE A K, et al. The role of rpoS, hmp, and ssrAB in Salmonella enterica Gallinarum and evaluation of a triple-deletion mutant as a live vaccine candidate in Lohmann layer chickens[J]. Journal of Veterinary Science,2015,16(2):187−194. doi: 10.4142/jvs.2015.16.2.187
    [22]
    POOLE R K. Flavohaemoglobin:The pre-eminent nitric oxide-detoxifying machine of microorganisms[J]. F1000 Research, 2020, 9:7.
    [23]
    MILLS P C, ROWLEY G, SPIRO S, et al. A combination of cytochrome c nitrite reductase (NrfA) and flavorubredoxin (NorV) protects Salmonella enterica serovar Typhimurium against killing by NO in anoxic environments[J]. Microbiology (Reading, England), 2008, 154:1218-1228.
    [24]
    吴嫚, 李森, 陈国薇, 等. 单增李斯特菌nox基因的克隆、表达以及功能[J]. 食品科学,2017,38(2):46−51. [WU Man, LI Sen, CHEN Guowui, et al. Cloning, expression and function of the Listeria nox gene[J]. Food Science,2017,38(2):46−51.]

    WU Man, LI Sen, CHEN Guowui, et al. Cloning, expression and function of the Listeria nox gene[J]. Food Science, 2017, 38(2): 46−51.
    [25]
    杨亚军, 何金科, 宋胜男, 等. 奶牛妊娠相关糖蛋白BoPAG7和BoPAG8的表达及其结构与功能预测[J]. 畜牧与兽医,2020,52(8):56−63. [YANG Yajun, HE Jinke, SONG Shengnan, et al. Expression, structure and function prediction of pregnancy-related glycoprotein BoPAG7 and BoPAG8 in dairy cows[J]. Animal Husbandry & Veterinary Medicine,2020,52(8):56−63.]

    YANG Yajun, HE Jinke, SONG Shengnan, et al. Expression, structure and function prediction of pregnancy-related glycoprotein BoPAG7 and BoPAG8 in dairy cows[J]. Animal Husbandry & Veterinary Medicine, 2020, 52(8): 56−63.
    [26]
    徐丽, 邱雪梅, 骆海龙, 等. 肺炎克雷伯菌CRP蛋白表达与纯化及生物学特征分析[J]. 食品工业科技,2021,42(4):98−102,127. [XU Li, QIU Xuemei, LUO Hailong, et al. Expression and purification of CRP protein and biological characteristics of Klebsiella pneumoniae[J]. Science and Technology of Food Industry,2021,42(4):98−102,127.]

    XU Li, QIU Xuemei, LUO Hailong, et al. Expression and purification of CRP protein and biological characteristics of Klebsiella pneumoniae[J]. Science and Technology of Food Industry, 2021, 42(4): 98−102,127.
    [27]
    毛耀芳, 魏亚琴, 杨宇泽, 等. 腾冲嗜热厌氧杆菌Cmr3的生物信息学分析及原核表达[J]. 基因组学与应用生物学,2021,40(Z2):2643−2648. [MAO Yaofang, WEI Yaqin, YANG Yuze, et al. Bioinformatics analysis and prokaryotic expression of Tengchong thermophilic anaerobic bacillus Cmr3[J]. Genomics and Applied Biology,2021,40(Z2):2643−2648.]

    MAO Yaofang, WEI Yaqin, YANG Yuze, et al. Bioinformatics analysis and prokaryotic expression of Tengchong thermophilic anaerobic bacillus Cmr3[J]. Genomics and Applied Biology, 2021, 40(Z2): 2643−2648.
    [28]
    岳婷婷, 井申荣, 曾韦锟, 等. 呼吸道合胞病毒F2蛋白与结核分枝杆菌早期分泌抗原靶6蛋白的融合表达及纯化[J]. 中国生物制品学杂志,2013,26(3):324−327. [YUE Tingting, JING Shenrong, ZENG Weikun, et al. Fusion, expression and purification of early antigen target 6 protein secreted by respiratory syncytial virus F2 protein and mycobacterium tuberculosis[J]. Chinese Journal of Biologicals,2013,26(3):324−327.]

    YUE Tingting, JING Shenrong, ZENG Weikun, et al. Fusion, expression and purification of early antigen target 6 protein secreted by respiratory syncytial virus F2 protein and mycobacterium tuberculosis[J]. Chinese Journal of Biologicals, 2013, 26(3): 324−327.
    [29]
    刘威, 付玉荣, 伊正君. 结核分枝杆菌PKnG蛋白结构与功能的生物信息学分析[J]. 中国病原生物学杂志,2018,13(6):567−571. [LIU Wei, FU Yurong, YI Zhengjun. Bioinformatics analysis of the structure and function of mycobacterium tuberculos is PKnG protein[J]. Journal of Pathogen Biology,2018,13(6):567−571.]

    LIU Wei, FU Yurong, YI Zhengjun. Bioinformatics analysis of the structure and function of mycobacterium tuberculos is PKnG protein[J]. Journal of Pathogen Biology, 2018, 13(6): 567−571.
    [30]
    王建. 蛋白质相互作用数据库[J]. 中国生物化学与分子生物学报,2017,33(8):760−767. [Wang Jian. Database of protein interactions[J]. Chinese Journal of Biochemistry and Molecular Biology,2017,33(8):760−767.]

    Wang Jian. Database of protein interactions[J]. Chinese Journal of Biochemistry and Molecular Biology, 2017, 33(8): 760−767.
    [31]
    CORKER H, POOLE R K. Nitric oxide formation by Escherichia coli. Dependence on nitrite reductase, the NO-sensing regulator Fnr, and flavohemoglobin Hmp[J]. The Journal of Biological Chemistry,2003,278(34):31584−31592. doi: 10.1074/jbc.M303282200
    [32]
    TTUCKER N P, D'AUTRÉAUX B, SPIRO S, et al. Mechanism of transcriptional regulation by the Escherichia coli nitric oxide sensor NorR[J]. Biochemical Society Transactions, 2006, 34:191−194.
    [33]
    KARLINSEY J E, BANG I S, BECKER L A, et al. The NsrR regulon in nitrosative stress resistance of Salmonella enterica serovar Typhimurium[J]. Molecular Microbiology,2012,85(6):1179−1193. doi: 10.1111/j.1365-2958.2012.08167.x
  • Related Articles

    [1]YIN Hongmei, CHEN Haoran, YIN Ziran, TANG Zhenyi, ZENG Jinxiu, SHI Xiaodan, ZHANG Lu, TU Zongcai. Comparison of Volatile Flavor Compounds and Qualities between Traditional Fermented and Inoculated Fermented of Mei yu[J]. Science and Technology of Food Industry, 2024, 45(15): 56-65. DOI: 10.13386/j.issn1002-0306.2023070267
    [2]ZHANG Shiyao, XIAO Yue, WANG Xinyu, CHU Chuanqi, WANG Tao, HU Xiaosong, YI Junjie. Quality Characteristics of Fermented Chili Peppers Using Different Inoculated and Natural Fermentation Approaches[J]. Science and Technology of Food Industry, 2024, 45(12): 129-139. DOI: 10.13386/j.issn1002-0306.2023070254
    [3]ZHU Jiamin, MO Ziyao, LI Mengtong, XIN Yueqi, ZHU Ying'ao, WANG Hui, CHEN Qian. Study on Different Inoculation Levels of Lactobacillus sakei on the Improvement of Quality Characteristics of Low-sodium Dry Sausages[J]. Science and Technology of Food Industry, 2023, 44(7): 133-142. DOI: 10.13386/j.issn1002-0306.2022060041
    [4]TANG Kaiwei, HUANG Xiaoying, YI Yuwen, ZHU Chenglin, DENG Jing, YE Haixiao, TANG Junni. Effect of Fermentation with Single and Co-culture of Lactobacillus bulgaricus and Streptococcus thermophilus on the Quality of Yogurt[J]. Science and Technology of Food Industry, 2022, 43(23): 127-132. DOI: 10.13386/j.issn1002-0306.2022020250
    [5]LIU Chang, ZUO Changzhou, PENG Jing, CHEN Jikun, TU Kang, PAN Leiqing. Response Surface Optimization of the Fermentation Process of Tomato Juice by Lactobacillus plantarum and Its Quality Evaluation[J]. Science and Technology of Food Industry, 2022, 43(10): 246-253. DOI: 10.13386/j.issn1002-0306.2021080285
    [6]ZHOU Yingjun, XIE Chunliang, CHEN Baizhong, GONG Wenbing, ZHU Zuohua, XU Chao, YANG Qi, PENG Yuande. Effect of Different Yeast and Lactobacillus plantarum Combined Fermentation on the Quality of Xinhui Citrus Ferment[J]. Science and Technology of Food Industry, 2022, 43(6): 118-125. DOI: 10.13386/j.issn1002-0306.2021060189
    [7]ZHANG Lihua, WANG Xia, ZHA Mengmeng, TANG Peixin, SHI Xun, ZONG Wei, ZHAO Guangyuan. Effects of Lactobacillus plantarum Microcapsules Fermentation on the Quality of Carrot Chips[J]. Science and Technology of Food Industry, 2022, 43(2): 135-141. DOI: 10.13386/j.issn1002-0306.2021040234
    [8]ZHANG Li-hua, WANG Xia, ZHAO Guang-yuan, ZONG Wei. Effects of Adding Jujube Juice on Quality of Carrot Fermented by Lactobacillus plantarum[J]. Science and Technology of Food Industry, 2020, 41(15): 99-105. DOI: 10.13386/j.issn1002-0306.2020.15.016
    [9]LIU Ying-ping, CUI Li, NIU Li-ying, LI Da-jing, LIU Chun-quan, XIAO Li-xia. Study on the microwave sterilization of Lactobacillus plantarum and application of microwave on pickled lettuce[J]. Science and Technology of Food Industry, 2016, (24): 245-248. DOI: 10.13386/j.issn1002-0306.2016.24.038
    [10]JIN Le-tian, WU Shi-rong, LIU Tong-jie, HE Guo-qing. Effect of Lactobacillus plantarum inoculated fermentation on the quality of kimchi[J]. Science and Technology of Food Industry, 2014, (23): 195-198. DOI: 10.13386/j.issn1002-0306.2014.23.032
  • Cited by

    Periodical cited type(11)

    1. 吕帅,刘红微,刘帅,董毓卿. 黄芪饮料的配方优化. 食品工业. 2025(03): 4-7 .
    2. 樊月月,罗浩,李富豪,徐梦珠,郝娟,谢心. 参芪补胰方通过调节TLR4/MyD88/NF-κB信号通路治疗2型糖尿病大鼠的作用机制. 中华中医药学刊. 2023(06): 237-242+279-281 .
    3. 张国栋,张兰. 从脾肾探讨糖尿病足的病机. 实用中医内科杂志. 2023(11): 32-34 .
    4. 周敏,吴黎,谭崇赋,徐旭英. 回阳生肌膏抗小鼠骨髓内皮祖细胞功能损伤的研究. 北京中医药大学学报. 2022(01): 41-52 .
    5. 冯一帆,吴励萍,张祎盈,钱大玮,段金廒,宋孝雄,吕高虹,朱悦,许惠琴. 杞丹方对糖尿病小鼠降血糖作用及机制研究. 南京中医药大学学报. 2022(06): 504-510 .
    6. 陈紫军,霍晓乾,任越,舒展,张燕玲. 复方杜仲健骨颗粒治疗骨关节炎的抗炎潜在药效物质及作用机制研究. 中国中药杂志. 2022(15): 4156-4163 .
    7. 姜莉,王成,邢颖,徐怀德. 不同提取方法对黄芪提取液活性成分及抗氧化性的影响. 食品研究与开发. 2022(16): 119-126 .
    8. 陈东方,高慧艳,王燕,徐冰,王海玉,张聪恪. 黄芪葛根胶囊降血糖作用的人体试食效果观察. 中国卫生检验杂志. 2022(20): 2442-2445 .
    9. 王圣翔,强煜云,布培培. 内毒素致病机理及防治研究进展. 畜牧产业. 2021(11): 73-75 .
    10. 孙亚娟. 止嗽散加减治疗慢性咳嗽的疗效及对血清指标的影响. 中国民间疗法. 2021(21): 61-63 .
    11. 冉建新,许蕊蕊,王晓杰. 基于小鼠模型筛选黄芪当归治疗2型糖尿病的最佳配比及最优半仿生提取工艺. 中国医药导刊. 2021(11): 828-834 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (93) PDF downloads (11) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return