Citation: | DENG Zhiyang, LIAO Qiang, SHAO Shujuan, et al. Nondestructive Near-infrared Identification of Hawthorn Fruit Cultivars Based on Natural Language Processing[J]. Science and Technology of Food Industry, 2023, 44(22): 249−256. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023010132. |
[1] |
李丽, 袁建琴, 王文斌. 山楂果肉中多酚闪式提取工艺的研究[J]. 中国酿造,2020,39(5):179−182 doi: 10.11882/j.issn.0254-5071.2020.05.034
LI L, YUAN J Q, WANG W B. Flash extraction process of polyphenols from hawthorn pulp[J]. China Brewing,2020,39(5):179−182. doi: 10.11882/j.issn.0254-5071.2020.05.034
|
[2] |
丰宝田, 赵焕谆. 中国果树志·山楂卷[M]. 北京:中国林业出版社, 1996:16−94
FENG B T, ZHAO H X. Chinese fruit tree records·Hawthorn part[M]. Beijing:China Forestry Publishing House, 1996:16−94.
|
[3] |
李长滨, 牛畅炜, 苏丽, 等. 不同产地山药的近红外鉴别和差异分析[J]. 食品研究与开发,2022,43(15):175−181
LI C B, NIU C W, SU L, et al. Identification and variance analysis of Chinese Yam from different origins by nearinfrared spectroscopy[J]. Food Research and Development,2022,43(15):175−181.
|
[4] |
POREP J U, KAMMERER D R, CARLE R. On-line application of near infrared (NIR) spectroscopy in food production[J]. Trends in Food Science & Technology,2015,46(2):211−230.
|
[5] |
YANG H L, ZANG H C, HU T, et al. Classigcation and quantigcation analysis of hawthorn from different origins with near-infrared diffuse reection spectroscopy[J]. Chinese Journal of Pharmaceutical Analysis,2014,34(3):396−401.
|
[6] |
张静, 徐阳, 姜彦武, 等. 近红外光谱技术在葡萄及其制品品质检测中的应用研究进展[J]. 光谱学与光谱分析,2021,41(12):3653−3659
ZHANG J, XU Y, JIANG Y W, et al. Recent advances in application of near-lnfrared spectroscopy for quality detections of grapes and grape products[J]. Spectroscopy and Spectral Analysis,2021,41(12):3653−3659.
|
[7] |
ZHANG C, WU W Y, ZHOU L, et al. Developing deep learning based regression approaches for determination of chemical compositions in dry black goji berries ( Lycium ruthenicum Murr.) using near-infrared hyperspectral imaging[J]. Food Chemistry,2020,319:126536. doi: 10.1016/j.foodchem.2020.126536
|
[8] |
SHAO Y N, HE Y, BAO Y D, et al. Near-infrared spectroscopy for classification of oranges and prediction of the sugar content[J]. International Journal of Food Properties,2009,12(3):644−658. doi: 10.1080/10942910801992991
|
[9] |
TIAN X, WANG Q Y, HUANG W Q, et al. Online detection of apples with moldy core using the VIS/NIR full-transmittance spectra[J]. Postharvest Biology and Technology, 2020, 168:111269.
|
[10] |
高荣强, 范世福. 现代近红外光谱分析技术的原理及应用[J]. 分析仪器,2002(3):9−12 doi: 10.3969/j.issn.1001-232X.2002.03.002
GAO R Q, FAN S F. Principles and applications of modern near infrared spectroscopic techniques[J]. Analytical Instruments,2002(3):9−12. doi: 10.3969/j.issn.1001-232X.2002.03.002
|
[11] |
LI X L, YI S L, HE S L, et al. Identification of pummelo cultivars by using VIS/NIR spectra and pattern recognition methods[J]. Precision Agriculture,2016,17(3):365−374. doi: 10.1007/s11119-015-9426-5
|
[12] |
安鹏, 曹丹平, 赵宝银, 等. 基于LSTM循环神经网络的储层物性参数预测方法研究[J]. 地球物理学进展,2019,34(5):1849−1858 doi: 10.6038/pg2019CC0366
AN P, CAO D P, ZHAO B Y, et al. Reservoir physical parameters prediction based on LSTM recurrent neural network[J]. Progress in Geophysics,2019,34(5):1849−1858. doi: 10.6038/pg2019CC0366
|
[13] |
ZHONG Z, ZHANG X, YU J X, et al. Deep neural networks for the classification of pure and impure strawberry purees[J]. Sensors, 2020, 20(4):1223.
|
[14] |
HONG Z Q, ZHANG C, KONG D D, et al. Identification of storage years of black tea using near-infrared hyperspectral imaging with deep learning methods[J]. Infrared Physics & Technology,2021,114:10366.
|
[15] |
陈勇, 吴彩娥, 熊智新. 基于衰减消去蜻蜓算法的小麦粉蛋白质近红外特征波长优选[J]. 食品科学,2022,43(14):219−225 doi: 10.7506/spkx1002-6630-20210608-102
CHEN Y, WU C E, XIONG Z X. Selection of near infrared wavelengths using attenuation elimination-binary dragonfly algorithm for wheat flour protein content prediction[J]. Food Science,2022,43(14):219−225. doi: 10.7506/spkx1002-6630-20210608-102
|
[16] |
王燕南. 基于深度学习的说话人无关单通道语音分离[D]. 合肥:中国科学技术大学, 2017
WANG Y N. Speaker independent single-channel speech separation based on deep learning[D]. Hefei:University of Science and Technology of China, 2017.
|
[17] |
李超凡, 马凯. 基于注意力机制结合CNN-BiLSTM模型的电子病历文本分类[J]. 科学技术与工程,2022,22(6):2363−2370 doi: 10.3969/j.issn.1671-1815.2022.06.028
LI C F, MA K. Electronic medical record text classification based on attention mechanism combined with CNN-BILSTM[J]. Science Technology and Engineering,2022,22(6):2363−2370. doi: 10.3969/j.issn.1671-1815.2022.06.028
|
[18] |
FAN E. Extended tanh-function method and its applications to nonlinear equations[J]. Physics Letters A,2000,277(4):212−218.
|
[19] |
YIN X Y, GOUDRIAAN J, LANTINGA E A, et al. A flexible sigmoid function of determinate growth[J]. Annals of Botany,2003,91(3):361−371. doi: 10.1093/aob/mcg029
|
[20] |
CHO K, VAN MERRIENBOER B, GULCEHRE C, et al. Learning phrase representations using rnn encoder-decoder for statis tical machine translation[C]//Doha: Conference on Empirical Methods in Natural Language Processing, 2014:1724-1734.
|
[21] |
王鹏新, 王婕, 田惠仁, 等. 基于遥感多参数和门控循环单元网络的冬小麦单产估测[J]. 农业机械学报,2022,53(9):207−216 doi: 10.6041/j.issn.1000-1298.2022.09.021
WANG P X, WANG J, TIAN H R, et al. Yield estimation of winter wheat based on multiple remotely sensed parametersand gated recurrent unit neural network[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(9):207−216. doi: 10.6041/j.issn.1000-1298.2022.09.021
|
[22] |
SPERANDEI S. Understanding logistic regression analysis[J]. Biochemia Medica,2014,24(1):12−18.
|
[23] |
菅小艳. 贝叶斯网基础及应用[M]. 武汉:武汉大学出版社, 2019:19-20
JIAN X Y. Foundation and application of bayesian networks[M]. Wuhan:Wuhan University Press, 2019:19-20.
|
[24] |
周志华. 机器学习[M]. 北京:清华大学出版社, 2016:153−174
ZHOU Z H. Machine learning[M]. Beijing:Tsinghua University Press, 2016:153−174.
|
[25] |
匡芳君. 大数据挖掘与分析在金融领域中的应用研究[M]. 哈尔滨:哈尔滨工业大学出版社, 2020:68−79
KUANG F J. Research on the application of big data mining and analysis in the financial field[M]. Harbin:Harbin Institute of Technology Press, 2020:68−79.
|
[26] |
覃礼堂, 刘树深, 肖乾芬, 等. QSAR模型内部和外部验证方法综述[J]. 环境化学,2013,32(7):1205−1211 doi: 10.7524/j.issn.0254-6108.2013.07.012
QIN L T, LIU S S, XIAO Q F, et al. Internal and external validtions of QSAR model:Review[J]. Environmental Chemistry,2013,32(7):1205−1211. doi: 10.7524/j.issn.0254-6108.2013.07.012
|
[27] |
DONG W J, NI Y N, KOKOT S. A near-infrared reflectance spectroscopy method for direct analysis of several chemical components and properties of fruit, for example, Chinese hawthorn[J]. Journal of Agricultural and Food Chemistry,2013,61(3):540−546. doi: 10.1021/jf305272s
|
[28] |
杨暑东. Emoji自然语言处理综述[J]. 计算机应用与软件,2022,39(9):11−20 doi: 10.3969/j.issn.1000-386x.2022.09.002
YANG S D. Survey on emoji-embedded natural language processing[J]. Computer Applications and Software,2022,39(9):11−20. doi: 10.3969/j.issn.1000-386x.2022.09.002
|
[29] |
李华旭. 基于RNN和Transformer模型的自然语言处理研究综述[J]. 信息记录材料,2021,22(12):7−10 doi: 10.3969/j.issn.1009-5624.2021.12.xxjlcl202112004
LI H X. A review of natural language processing based on RNN and Transformer models[J]. Information Recording Materials,2021,22(12):7−10. doi: 10.3969/j.issn.1009-5624.2021.12.xxjlcl202112004
|
[30] |
邵帅斌, 刘美含, 石宇晴, 等. 基于卷积神经网络的乳粉掺杂物拉曼光谱分类方法[J]. 食品科学,2022,43(14):296−301
SHAO S B, LIU M H, SHI Y Q, et al. Raman spectroscopic classification of adulterants in milk powder samples using convolutional neural network[J]. Food Science,2022,43(14):296−301.
|
[31] |
李思奇, 吕王勇, 邓柙, 等. 基于改进PCA的朴素贝叶斯分类算法[J]. 统计与决策,2022,38(1):34−37 doi: 10.13546/j.cnki.tjyjc.2022.01.007
LI S Q, LÜ W Y, DENG X, et al. Naive Bayes classification algorithm based on improved PCA[J]. Statistics & Decision,2022,38(1):34−37. doi: 10.13546/j.cnki.tjyjc.2022.01.007
|
[32] |
白文明, 王来兵, 成日青, 等. 近红外高光谱成像技术在药物分析中的研究进展[J]. 药物分析杂志,2018,38(10):1661−1667
BAI W M, WANG L B, CHENG R Q, et al. Research advance in pharmaceutical analysis based on near-infrared hyperspectral imaging technique[J]. Chinese Journal of Pharmaceutical Analysis,2018,38(10):1661−1667.
|
[33] |
李楚进, 付泽正. 对朴素贝叶斯分类器的改进[J]. 统计与决策,2016(21):9−11
LI C J, FU Z Z. Improvement of naive Bayes classifier[J]. Statistics & Decision,2016(21):9−11.
|
[34] |
田海清. 西瓜品质可见/近红外光谱无损检测技术研究[D]. 杭州:浙江大学, 2006
TIAN H Q. Nondestructive evaluation of watermelon internal quality byvisible and near-infrared spectroscopy[D]. Hangzhou:Zhejiang University, 2006.
|
[35] |
PENG Y F, ZHENG C, GUO S, et al. Metabolomics integrated with machine learning to discriminate the geographic origin of Rougui Wuyi rock tea[J]. NPJ Science of Food,2023,7(1):7−10. doi: 10.1038/s41538-023-00187-1
|
[36] |
WANG F Y, YANG J, WANG X X, et al.Chat with chatgpt on industry 5.0:Learning and decision-making for intelligent industries[J]. IEEE/CAA Journal of Automatica Sinica,2023,10(4):831−834. doi: 10.1109/JAS.2023.123552
|
[37] |
FLORIDI L, CHIRIATTI M. GPT-3:Its nature, scope, limits, and consequences[J]. Minds and Machines,2020,30(4):681−694. doi: 10.1007/s11023-020-09548-1
|
1. |
马琳,祁琪,李雅轩,赵昕. 甜蜜素对果蝇繁殖生长及运动能力的影响. 首都师范大学学报(自然科学版). 2024(04): 36-41 .
![]() | |
2. |
严静,薛秋艳,王旸,陈汶意,谢诗晴,江津津,黎攀,杜冰. 发酵米荞对高脂肪秀丽隐杆线虫的降脂及抗氧化作用. 食品工业科技. 2023(06): 8-15 .
![]() | |
3. |
祁少俊,唐延金,张正铎,吴虹,张佳程,秦川,刘锐,高希宝. 补充多种微量元素对高糖饮食大鼠的保护作用. 山东大学学报(医学版). 2023(07): 19-26 .
![]() | |
4. |
文明明,毕洁,贺艳萍,戴煌,张威,舒在习,肖安红. 高糖饮食抑制后代雄性果蝇寿命和育性及其作用机制. 现代食品科技. 2022(10): 9-18 .
![]() |