SONG Liran, YAN Hongdong, LI Liangyu, et al. Optimization of Preparation Process of Sorghum Resistant Dextrin and Its Structure and in Vitro Digestion Properties[J]. Science and Technology of Food Industry, 2023, 44(19): 262−271. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022120251.
Citation: SONG Liran, YAN Hongdong, LI Liangyu, et al. Optimization of Preparation Process of Sorghum Resistant Dextrin and Its Structure and in Vitro Digestion Properties[J]. Science and Technology of Food Industry, 2023, 44(19): 262−271. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022120251.

Optimization of Preparation Process of Sorghum Resistant Dextrin and Its Structure and in Vitro Digestion Properties

More Information
  • Received Date: January 02, 2023
  • Available Online: July 25, 2023
  • In order to explore the best process of acid-heat preparation on sorghum resistant dextrin, the preparation process of sorghum starch was optimized by single factor and response surface experiment as well as its structural characterization was studied. The results showed that the optimum preparation process of sorghum resistant dextrin was hydrochloric acid addition of 21%, pyrolysis temperature of 188 ℃ and pyrolysis time of 84 min. Under this condition, the content of resistant dextrin was 86.71% and the chroma was 50.58. The prepared resistant dextrin showed an undulating and lamellar irregular structure. The original diffraction peaks were completely destroyed and a recrystallization peak was formed. The chemical groups did not change significantly and the peaks of each functional group were similar to the characteristic peaks of sorghum starch. The Mw of resistant dextrin after molecular degradation was 6.1×103 g/mol. After the glycosidic bond cleavage and small molecule repolymerization reaction, the resistant dextrins have both α and β isomers, which indicated that the molecular properties was good. In addition, the results of simulated in vitro digestion experiment showed that the content of resistant starch could reach 93.61%, which indicated that it had good anti-digestion characteristics. In conclusion, the resistant dextrin prepared by acid-heat method could reduce the molecular weight of sorghum resistant dextrin and improve the digestibility. It also provides a new theoretical guidance for the efficient preparation of sorghum resistant dextrin.
  • [1]
    ZHU F. Structure, physicochemical properties, modifications, and uses of sorghum starch[J]. Comprehensive Reviews in Food Science and Food Safety,2014,13(4):597−610. doi: 10.1111/1541-4337.12070
    [2]
    申瑞玲, 陈明, 任贵兴. 高粱淀粉的研究进展[J]. 中国粮油学报,2012,27(7):123−128. [SHEN R L, CHEN M, REN G X. Research progress of the sorghum starch[J]. Journal of the Chinese Cereals and Oils Association,2012,27(7):123−128.

    SHEN R L, CHEN M, REN G X. Research progress of the sorghum starch[J]. Journal of the Chinese Cereals and Oils Association, 2012, 27(7): 123-128.
    [3]
    刘庆芳, 祁瑜婷, 杜方岭. 高粱淀粉的研究与发展[J]. 农产品加工,2016(18):54−56. [LIU Q F, QI Y T, DU F L. Research and development of sorghum starch[J]. Farm Products Processing,2016(18):54−56.

    LIU Q F, QI Y T, DU F L. Research and development of sorghum starch[J]. Farm Products Processing, 2016(18): 54-56.
    [4]
    苏会波, 林海龙. 难消化糊精的研究进展[J]. 食品与生物技术学报,2014,33(1):1−7. [SU H B, LIN H L. Research progress and market status of health food-indigestible dextrin[J]. Journal of Food Science and Biotechnology,2014,33(1):1−7.

    SU H B, LIN H L. Research progress and market status of health food-indigestible dextrin[J]. Journal of Food Science and Biotechnology, 2014, 33(1): 1-7.
    [5]
    王六强, 张新武, 马飞飞, 等. 抗性糊精的生产应用现状研究与展望[J]. 农产品加工,2020(6):76−80. [WANG L Q, ZHANG X W, MA F F, et al. Research and prospect of production and application of resistant dextrin[J]. Farm Products Processing,2020(6):76−80.

    WANG L Q, ZHANG X W, MA F F, et al. Research and prospect of production and application of resistant dextrin[J]. Farm Products Processing, 2020(6): 76-80.
    [6]
    任国宝, 任晨刚, 郇美丽, 等. 膳食纤维对小麦粉品质的影响[J]. 中国粮油学报,2020,35(2):6−11. [REN G B, REN C G, HUAN M L, et al. Effect of dietary fiber on flour quality[J]. Journal of the Chinese Cereals and Oils Association,2020,35(2):6−11.

    REN G B, REN C G, HUAN M L, et al. Effect of dietary fiber on flour quality[J]. Journal of the Chinese Cereals and Oils Association, 2020, 35(2): 6-11.
    [7]
    KAMILA K, EWA N. Enzyme-resistant dextrins from potato starch for potential application in the beverage industry[J]. Carbohydrate Polymers,2017,172(5):152−158.
    [8]
    MARCIO S, MARIA C C N M, ANDREA C D S B, et al. Dietary fiber as fat substitute in emulsified and cooked meat model system[J]. LWT-Food Science and Technology,2015,61(1):105−111. doi: 10.1016/j.lwt.2014.11.037
    [9]
    TRITHAVISUP K, KRUSONG K. In-depth study of the changes in properties and molecular structure of cassava starch during resistant dextrin preparation[J]. Food Chemistry,2019(12):49−53.
    [10]
    HOBDEN M R, AETITIAL G D, IAN R, et al. Potential anti-obesogenic properties of non-digestible carbohydrates: Specific focus on resistant dextrin[J]. Proceedings of the Nutrition Society,2015,74:1−10. doi: 10.1017/S0029665114001566
    [11]
    张松, 苏永平, 李涛, 等. 膳食纤维的功能特性及其在食品领域的研究进展[J]. 食品研究与开发,2018,39(17):214−218. [ZHANG S, SU Y P, LI T, et al. Functional characteristics of dietary fiber and research progress in food field[J]. Food Research and Development,2018,39(17):214−218.

    ZHANG S, SU Y P, LI T, et al. Functional characteristics of dietary fiber and research progress in food field[J]. Food Research andDevelopment, 2018, 39(17): 214-218.
    [12]
    黄政, 孙江文, 徐勇, 等. 抗性糊精的研究与应用进展[J]. 海南师范大学学报(自然科学版),2018,31(4):418−428. [HUANG Z, SUN J W, XU Y, et al. Advance on research and application of resistant dextrin[J]. Journal of Hainan Normal University (Natural Science Edition),2018,31(4):418−428.

    HUANG Z, SUN J W, XU Y, et al. Advance on research and application of resistant dextrin[J]. Journal of Hainan Normal University(Natural Science Edition), 2018, 31(4): 418-428.
    [13]
    BA K, BLECKER C, DANTHINE S, et al. Physicochemical characterization of dextrins prepared with amylases from sorghum malt[J]. Starch-Stärke,2013,65(11-12):962−968.
    [14]
    张婷, 李佳瑶, 安双双, 等. 高粱抗性糊精的制备工艺优化及结构表征[J]. 食品科技,2020,342(4):238−243. [ZHANG T, LI J Y, AN S S, et al. Preparation process optimization and structure characterization of sorghum resistant dextrin[J]. Food Science and Technology,2020,342(4):238−243.

    ZHANG T, LI J Y, AN S S, et al. Preparation process optimization and structure characterization of sorghum resistant dextrin[J]. Food Science and Technology, 2020, 342(4): 238-243.
    [15]
    常江涛, 刘洁, 刘亚伟. 糯性低葡萄糖当量麦芽糊精的制备及结构表征[J]. 河南工业大学学报(自然科学版),2022,43(4):70−76. [CHANG J T, LIU J, LIU Y W. Preparation and structure characterization of low dextrose equivalent maltodextrin from waxy rice starch[J]. Journal of Henan University of Technology (Natural Science Edition),2022,43(4):70−76.

    CHANG J T, LIU J, LIU Y W. Preparation and structure characterization of low dextrose equivalent maltodextrin from waxy rice starch[J]. Journal of Henan University of Technology(Natural Science Edition), 2022, 43(4): 70-76.
    [16]
    李泽润, 田延军, 黄艳红, 等. 不同制备工艺对抗性糊精构效的影响[J/OL]. 食品科学: 1−11[2022−12−27]. http://kns.cnki.net/kcms/detail/11.2206.TS.20220701.1224.003.html

    LI Z R, TIAN Y J, HUANG Y H, et al. Study on structure-activity relationship of resistant dextrin based on different preparation techniques[J/OL]. Food Science: 1−11[2022−12−27]. http://kns.cnki.net/kcms/detail/11.2206.TS.20220701.1224.003.html.
    [17]
    张吉军, 曹龙奎, 衣淑娟, 等. 微波间歇干燥对北方粳高粱蛋白质及淀粉品质的影响[J]. 食品科学,2022,43(7):52−60. [ZHANG J J, CAO L K, YI S J, et al. Effect of intermittent microwave drying on protein and starch quality of non-glutinous sorghum[J]. Food Science,2022,43(7):52−60.

    ZHANG J J, CAO L K, YI S J, et al. Effect of intermittent microwave drying on protein and starch quality of non-glutinous sorghum[J]. Food Science, 2022, 43(7): 52-60.
    [18]
    朱洁. 抗性糊精的工艺及特性研究[D]. 天津: 天津科技大学, 2010

    ZHU J. Study on technology and properties of indigestible dextrin[D]. Tianjing: Tianjin University of Science and Technology, 2010.
    [19]
    甄远航. 抗性糊精的分离纯化及其在面制品中的应用研究[D]. 无锡: 江南大学, 2021

    ZHEN Y H. Isolation and purification of resistant dextrin and its application in flour product[D]. Wuxi: Jiangnan University, 2021.
    [20]
    刘晚霞. 绿豆渣抗性糊精的模拟移动床色谱纯化及其特性研究[D]. 大庆: 黑龙江八一农垦大学, 2021

    LIU W X. Study on high efficiency purification technology and molecular characteristics of mung bean resistant dextrin[D]. Daqing: Heilongjiang Bayi Agricultural University, 2021.
    [21]
    张新武, 朱博博, 黄继红, 等. 抗性糊精的焙烤制备工艺技术研究[J]. 农产品加工,2018(22):33−36. [ZHANG X W, ZHU B B, HUANG J H, et al. Study on baking preparation technology of resistant dextrin[J]. Farm Products Processing,2018(22):33−36.

    ZHANG X W, ZHU B B, HUANG J H, et al. Study on baking preparation technology of resistant dextrin[J]. Farm Products Processing, 2018(22): 33-36.
    [22]
    BARCZYNSKA R, SLIZEWSKAB K, JOCHYMA K. The tartaric acid-modified enzyme-resistant dextrin from potato starch as potential prebiotic[J]. Journal of Functional Food,2012(4):954−962.
    [23]
    吕行, 黄继红, 纪小国, 等. “干热三步法”制备抗性糊精的工艺及其表征[J]. 食品工业,2019,40(2):95−99. [LÜ X, HUANG J H, JI X G, et al. Technology and characterization of preparation of resistant dextrin by “dry heat three-step method”[J]. The Food Industry,2019,40(2):95−99.

    LV X, HUANG J H, JI X G, et al. Technology and Characterization of Preparation of Resistant Dextrin by“Dry Heat Three-step Method”[J]. The Food Industry, 2019, 40(2): 95-99.
    [24]
    HIDALGO A, FONGARO L, BRANDOLINI A. Colour screening of whole meal flours and discrimination of seven Triticum subspecies[J]. Journal of Cereal Science,2017,77:9−16. doi: 10.1016/j.jcs.2017.07.006
    [25]
    刘德志, 王维浩, 全志刚, 等. 绿豆抗性糊精的结构表征及抗消化特性研究[J]. 食品工业科技,2022,43(11):119−125. [LIU D Z, WANG W H, QUAN Z G, et al. Study on structure characterization and anti digestion properties of mung bean resistant dextrin[J]. Science and Technology of Food Industry,2022,43(11):119−125.

    LIU D Z, WANG W H, QUAN Z G, et al. Study on structure characterization and anti digestion properties of mung bean resistant dextrin[J]. Science and Technology of Food Industry, 2022, 43(11): 119-125.
    [26]
    季瑞雪. 知母多糖理化性质及生物活性研究[D]. 大庆: 黑龙江八一农垦大学, 2021

    JI R X. Research on physicochemical properties and biological activities of polysaccharides from Anemarrhena asphodeloides rhizomes[D]. Daqing: Heilongjiang Bayi Agricultural University, 2021.
    [27]
    BAI Y J, SHI Y C. Chemical structures in pyrodextrin determined by nuclear magnetic resonance spectroscopy[J]. Carbohydrate Polymers,2016:426−433.
    [28]
    ENGLYST H N, KINGMAN S M, CUMMINGS J H. Classification and measurement of nutritionally important starch fractions[J]. European Journal of Clinical Nutrition,1992,46(2):33−50.
    [29]
    陆勇, 郭丽慧, 李学红, 等. 高粱淀粉的理化特性及其水解率的研究[J]. 食品工业,2015,36(9):29−33. [LU Y, GUO L H, LI X H. The physical and chemical properties and hydrolysis rate of sorghum starch research[J]. The Food Industry,2015,36(9):29−33.

    LU Y, GUO L H, LI X H. The physical and chemical properties and hydrolysis rate of sorghum starch research[J]. The Food Industry, 2015, 36(9): 29-33.
    [30]
    大隈一裕, 西端丰秀. 水溶性膳食纤维Fibersol-2[J]. 中国食品添加剂,2003(5):11−16. [OKUMA Y Y, XIDUAN C X. Watersoluble dietary fiber Fibersol-2[J]. China Food Additives,2003(5):11−16.

    OKUMA Y Y, XIDUAN C X. Watersoluble dietary fiber fibersol-2[J]. China Food Additives, 2003(5): 11-16.
    [31]
    HAN X, KANG J, BAI Y, et al. Structure of pyrodextrin in relation to its retrogradation properties[J]. Food Chemistry,2018,242(MAR.1):169−173.
    [32]
    张颖. 抗性糊精的纯化及应用特性研究[D]. 无锡: 江南大学, 2015

    ZHANG Y. Study on purification and application of resistant dextrin[D]. Wuxi: Jiangnan University, 2015.
    [33]
    赵姝婷, 全志刚, 王娟, 等. 硒化绿豆抗性淀粉制备工艺优化及抗氧化活性分析[J]. 中国粮油学报,2022,37(9):246−255. [ZHAO S T, QUAN Z G, WANG J, et al. Preparation process of resistant starch of selenized mung bean-resistant starch and analysis of antioxidant activity[J]. Journal of the Chinese Cereals and Oils Association,2022,37(9):246−255.

    ZHAO S T, QUAN Z G, WANG J, et al. Preparation process of resistant starch of selenized mung bean-resistant starch and analysis of antioxidant activity[J]. Journal of the Chinese Cereals and Oils Association, 2022, 37(9): 246-255.
    [34]
    竺鉴博, 李朝阳, 贾鹏禹, 等. 响应面法优化豌豆渣抗性糊精的制备工艺[J]. 食品工业,2019,40(12):65−69. [ZHU J B, LI Z Y, JIA P Y, et al. Response surface methodology optimization for resistant dextrin preparation from pea residue[J]. The Food Industry,2019,40(12):65−69.

    ZHU J B, LI Z Y, JIA P Y, et al. Response surface methodology optimization for resistant dextrin preparation from pea residue[J]. The Food Industry, 2019, 40(12): 65-69.
    [35]
    FAKOOR M, BA K M, SOLEYMANI M. Optimal design of the satellite constellation arrangement reconfiguration process[J]. Advances in Space Research,2016:372−386.
    [36]
    黄政. 水溶性抗性糊精的性质及其对面粉加工品质的影响[D]. 广州: 华南理工大学, 2019

    HUANG Z. Properties of water-soluble resistant dextrin and its effects on the processing quality of flour products[D]. Guangzhou: South China University of Technology, 2019.
    [37]
    李良玉, 刘晚霞, 李朝阳, 等. 绿豆抗性糊精的高效纯化技术及分子特性研究[J]. 中国食品学报,2020,20(10):134−141. [LI L Y, LIU W X, LI C Y, et al. High efficiency purification technology and molecular characteristics of mung bean resistant dextrin[J]. Chinese Journal of Food,2020,20(10):134−141.

    LI L Y, LIU W X, LI C Y, et al. High efficiency purification technology and molecular characteristics of mung bean resistant dextrin[J]. Chinese Journal of Food, 2020, 20(10): 134-141.
    [38]
    WANG H S, ZAINABU M, ZHENG R N. Characterization of microwave-synthesized polydextrose and its radical-scavenging activity[J]. Taylor and Francis,2018,37(1):44−56.
    [39]
    JOANNA T B, WIOLETTA B, ARTUR S, et al. Molecular and supermolecular structure of commercial pyrodextrins[J]. Journal of Food Science,2016,81(7−9):C2135.
    [40]
    徐佩琳. 酸热法和微波预处理—酶法制备山药抗性糊精及其特性研究[D]. 合肥: 合肥工业大学, 2018

    XU P L. Preparation and characterization of yam resistant dextrin by acid heating method and microwave pretreatment-enzymolysis method[D]. Hefei: Hefei University of Technology, 2018.
    [41]
    武小辉. 麦芽糊精的交联聚合技术及其特性研究[D]. 郑州: 河南工业大学, 2016

    WU X H. Study on cross-linking polymerization technology and characteristics of maltodextrin[D]. Zhengzhou: Henan University of Technology, 2016.
    [42]
    WEIL W, WEIL R C, KEAWSOMPONG S, et al. Pyrodextrins from waxy and normal tapioca starches: Molecular structure and in vitro digestibility[J]. Carbohydrate Polymers,2021,252(11):117140.
    [43]
    李梦楠, 张黎明, 郝利民, 等. 茶多酚-高直链玉米淀粉共研磨混合物的制备与结构表征[J]. 食品工业科技,2019,40(7):1−4. [LI M N, ZHANG L M, HAO L M, et al. Preparation and structure characterization of tea polyphenols-high-amylose maize starch co-grinding mixtures[J]. Science and Technology of Food Industry,2019,40(7):1−4.

    Preparation and structure characterization of tea polyphenols-high-amylose maize starch co-grinding mixtures[J]. Science and Technology of Food Industry, 2019, 40(7): 1−4, 10.
  • Related Articles

    [1]cover[J]. Science and Technology of Food Industry, 2022, 43(24).
    [2]cover[J]. Science and Technology of Food Industry, 2022, 43(22).
    [3]cover[J]. Science and Technology of Food Industry, 2022, 43(19).
    [4]cover[J]. Science and Technology of Food Industry, 2022, 43(18).
    [5]cover[J]. Science and Technology of Food Industry, 2022, 43(17).
    [6]cover[J]. Science and Technology of Food Industry, 2022, 43(13).
    [7]cover[J]. Science and Technology of Food Industry, 2022, 43(11).
    [8]Cover[J]. Science and Technology of Food Industry, 2022, 43(9).
    [9]cover[J]. Science and Technology of Food Industry, 2022, 43(8).
    [10]cover[J]. Science and Technology of Food Industry, 2022, 43(7).

Catalog

    Article Metrics

    Article views (111) PDF downloads (11) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return