Citation: | WANG Xinghong, MA Yongchao, SUN Manli, et al. Renal-protection Effect and the Potential Mechanism of Phloretin in Mice with Type-2 Diabetic Nephropathy[J]. Science and Technology of Food Industry, 2023, 44(11): 418−426. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022120211. |
[1] |
CHEN Y, LEE K, NI Z, et al. Diabetic kidney disease: Challenges, advances, and opportunities[J]. Kidney Diseases,2020,6(4):215−225. doi: 10.1159/000506634
|
[2] |
SELBY N, TAAL M. An updated overview of diabetic nephropathy: Diagnosis, prognosis, treatment goals and latest guidelines[J]. Diabetes Obes Metab,2020,22:3−15.
|
[3] |
DU L, LI Q, YI H, et al. Gut microbiota-derived metabolites as key actors in type 2 diabetes mellitus[J]. Biomed Pharmacother,2022,149:112839. doi: 10.1016/j.biopha.2022.112839
|
[4] |
李璞泽. 根皮素缓解小鼠溃疡性结肠炎的肠道微生态机理研究[D]. 新乡: 新乡医学院, 2020.
LI P Z. The anti-inflammation effect of phloretin on ulcerative colitis mice and its intestinal micro-ecological mechanism[D]. Xinxiang: Xinxiang Medical University, 2020.
|
[5] |
杨胜楠. 根皮苷和根皮素对HepG2细胞氧化应激损伤的比较[D]. 天津: 天津科技大学, 2019
YANG S N. Comparison of oxidative stress damage of HepG2 cells between phlorizin and phloretin[D]. Tianjin: Tianjin University of Science & Technology, 2019.
|
[6] |
黎博. 根皮素对人舌癌Tca8113细胞增殖和凋亡的影响及机制研究[D]. 锦州: 锦州医科大学, 2019
LI B. Effect and mechanism of phloretin oproliferation and apoptosis of human tongue cancer Tca8113 cells[D]. Jinzhou: Jinzhou Medical University, 2019.
|
[7] |
李潭, 孙一涵, 李国峰. 根皮素对脂多糖诱导的RAW264.7细胞的体外抗炎作用机制[J]. 中国免疫学杂志,2021,37(7):812−818. [LI T, SUN Y H, LI G F. Anti inflammatory mechanism of phloretin on RAW264.7 cells induced by lipopolysaccharide in vitro[J]. Chin J Immunol,2021,37(7):812−818. doi: 10.3969/j.issn.1000-484X.2021.07.008
|
[8] |
HARDEEP S T, PRANGYA R, ABHISHEK C, et al. Phloretin, as a potent anticancer compound: From chemistry to cellular interactions[J]. Molecules,2022,27(24):8819. doi: 10.3390/molecules27248819
|
[9] |
夏琛. 根皮素纳米粒子对糖尿病大鼠的肾脏保护作用研究[D]. 杭州: 浙江大学, 2021
XIA C. Study on the renal protective effect ofphloretin nano particles on diabetic rats[D]. Hangzhou: Zhejiang University, 2021.
|
[10] |
BALAHA M, KANDEEL S, KABEL A. Phloretin either aloneor in combination with duloxetine alleviates the STZ-induced diabetic neuropathy in rats[J]. Biomed Pharmacother,2018,101:821−832. doi: 10.1016/j.biopha.2018.02.135
|
[11] |
TESCH G H. Diabetic nephropathy- is this an immune disorder?[J]. Clinical Science (London, England: 1979),2017,131:2183−2199. doi: 10.1042/CS20160636
|
[12] |
王兴红, 常陆林, 王桂叶, 等. 槲皮素对2型糖尿病大鼠肾脏肥大的影响机制[J]. 中国中医基础医学杂志,2015,21(10):1248−1250. [WANG X H, CHANG L L, WANG G Y, et al. Influencing mechanism of quercetin on kidney hypertrophy in type 2 diabetic rats[J]. Chinese Journal of Basic Medicine of Traditional Chinese Medicine,2015,21(10):1248−1250. doi: 10.19945/j.cnki.issn.1006-3250.2015.10.023
|
[13] |
王兴红, 郑亚萍, 孙缦利, 等. 槲皮素对糖尿病大鼠肾脏p38MAPK/NF-κB信号通路的影响[J]. 中药药理与临床,2016,32(1):79−82. [WANG X H, ZHENG Y P, SUN M L, et al. Effect of quercetin on renal p38MAPK/NF-κB signal path in diabetes rats[J]. Pharmacology and Clinics of Chinese Materia Medica,2016,32(1):79−82. doi: 10.13412/j.cnki.zyyl.2016.01.022
|
[14] |
王晶, 刘艳玲, 刘倩, 等. 尿β2-MG及其miRNA表达水平在慢性肾脏病肾功能评价中的价值研究[J]. 国际检验医学杂志,2020,41(4):500−503. [WANG J, LIU Y L, LIU Q, et al. The value of urine β2-MG and its miRNA expression levels in the evaluation of renal function in chronic kidney disease[J]. Int J lab Med,2020,41(4):500−503. doi: 10.3969/j.issn.1673-4130.2020.04.031
|
[15] |
AL-SAEEDI F J. Mangiferin protect oxidative stress against deoxynivalenol induced damages through Nrf2 signalling pathways in endothelial cells[J]. Clin Exp Pharmacol Physiol,2021,48(3):389−400. doi: 10.1111/1440-1681.13432
|
[16] |
LI J, JIN S Y, BARATI M T, et al. ERK and p38 MAPK inhibition controls NF-E2 degradation and profibrotic signaling in renal proximal tubule cells[J]. Life Sci,2021,287:120092. doi: 10.1016/j.lfs.2021.120092
|
[17] |
KOPEL J, PENA-HERNANDEZ C, NUGENT K. Evolving spectrum of diabetic nephropathy[J]. World Journal of Diabetes,2019,10:269−279. doi: 10.4239/wjd.v10.i5.269
|
[18] |
VEIGA G, ALVES B, PEREZ M, et al. NGAL and SMAD1 gene expression in the early detection of diabetic nephropathy by liquid biopsy[J]. Clin Pathol,2020,73:713−721. doi: 10.1136/jclinpath-2020-206494
|
[19] |
PRISCILA C, GEORGINA H. Macrophage phenotype and fibrosis in diabetic nephropathy[J]. Mol Sci,2020,21(8):2806. doi: 10.3390/ijms21082806
|
[20] |
EL-DAWLA N, SALLAM A, EL-HEFNAWY M, et al. E-cadherin and periostin in early detection and progression of diabetic nephropathy: Epithelial-to-mesenchymal transition[J]. Clin Exp Nephrol,2019,23:1050−1057. doi: 10.1007/s10157-019-01744-3
|
[21] |
SHARMA A, TATE M, MATHEW G, et al. Oxidative stress and NLRP3-inflammasome activity as significant drivers of diabetic cardiovascular complications: Thera-peutic implications[J]. Front Physiol,2018,9:114. doi: 10.3389/fphys.2018.00114
|
[22] |
MA L Y, WU F, SHAO Q Q, et al. Baicalin alleviates oxidative stress and inflammation in diabetic nephropathy via Nrf2 and MAPK signaling pathway[J]. Drug Des Devel Ther,2021,21(15):3207−3221.
|
[23] |
FANG R, HARA H, SAKAI S, et al. Type I interferon signalingregulates activation of the absent in melanoma 2 inflammasomeduring streptococcus pneumoniae infection[J]. Infection and Immunity,2014,82(6):2310−2317. doi: 10.1128/IAI.01572-14
|
[24] |
GONG W, LI J, CHEN Z, et al. Polydatin promotes Nrf2-AREanti-oxidative pathway through activating CKIP-l to resist HG-induced up-regulation of FN and ICAM-1 in GMCs and diabeticmice kidneys[J]. Free Radic Biol Med,2017,106:393−405. doi: 10.1016/j.freeradbiomed.2017.03.003
|
[25] |
HU R, WANG M Q, NI S H, et al. Salidroside ameliorates endothelial inflammation and oxidative stress by regulating the AMPK/NF-κB/NLRP3 signaling pathway in AGEs-induced HUVECs[J]. Eur J Pharmacol,2020,867:172797. doi: 10.1016/j.ejphar.2019.172797
|
[26] |
THORNTON S J, SULLIVAN J, VAN E E, et al. Lifetime benefits of early detection and treatment of diabetic kidney disease[J]. PloS One,2019,14:e0217487. doi: 10.1371/journal.pone.0217487
|
[27] |
张茹, 曲中原, 杜娟. 葡萄籽原花青素通过 Nrf2/HO-1通路减轻镉诱导的幼龄大鼠认知功能损伤[J]. 中药药理与临床,2021,37(4):32−36. [ZHANG R, QU Z Y, DU J. Proanthocyanidins in grape seeds protects against cadmium-induced cognitive impairment in young rats by regulating Nrf-2/HO-1 pathway[J]. Pharmacology and Clinics of Chinese Materia Medica,2021,37(4):32−36.
|
[28] |
UMANATH K, LEWIS J B. Update on diabetic nephropathy: Core curriculum 2018[J]. Am J Kidney Dis,2018(71):884−895.
|
[29] |
刘红艳, 乔玉峰, 薛福平. 干预氧化应激通路靶向治疗糖尿病肾病的新进展[J]. 中国免疫学杂志,2020,36(17):2174−2177. [LIU H Y, QIAO Y F, XUE F P. New progress of intervention oxidative stress pathway targeting in treatment ofdiabetic nephropathy[J]. Chin J Immunol,2020,36(17):2174−2177. doi: 10.3969/j.issn.1000-484X.2020.17.026
|
[30] |
HOU Y, LIN S, QIU J, et al. NLRP3 inflammasome negative-ly regulates podocyte autophagy in diabetic nephropathy[J]. Biochemical and Biophysical Research Communications,2020,521(3):791−798. doi: 10.1016/j.bbrc.2019.10.194
|
[31] |
WANG C, GAO Y, ZHANG Z, et al. Ursolic acid protects chondrocytes, exhibits anti-inflammatory properties via regulation of the NF-kappaB/NLRP3 inflammasome pathway andameliorates osteoarthritis[J]. Biomed Pharmacother,2020,130:110568. doi: 10.1016/j.biopha.2020.110568
|
[32] |
高丝娜, 李英, 迟雁青, 等. 白藜芦醇对糖尿病肾病小鼠肾脏氧化应激及肾组织Nrf2通路蛋白表达的影响[J]. 山东医药,2019,59(11):44−47, 52. [GAO S N, LI Y, CHI Y Q, et al. Effects of resveratrol on oxidative stress and Nrf2 signal pathway expression inkidney of mice with diabetic nephropathy[J]. Shandong Pharmaceutical,2019,59(11):44−47, 52. doi: 10.3969/j.issn.1002-266X.2019.11.011
|
[33] |
HICKEY F B, MARTIN F. Role of the immune system in diabetic kidney disease[J]. Curr Diab Rep,2018(18):20.
|
1. |
岳丹,陆颖,李梦飞,黄代涛,张锦标,种玉晴. 基于斑马鱼SLC17A8基因的表达特征验证其对黑色素转运的影响. 饲料研究. 2024(18): 81-87 .
![]() |