WANG Xinghong, MA Yongchao, SUN Manli, et al. Renal-protection Effect and the Potential Mechanism of Phloretin in Mice with Type-2 Diabetic Nephropathy[J]. Science and Technology of Food Industry, 2023, 44(11): 418−426. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022120211.
Citation: WANG Xinghong, MA Yongchao, SUN Manli, et al. Renal-protection Effect and the Potential Mechanism of Phloretin in Mice with Type-2 Diabetic Nephropathy[J]. Science and Technology of Food Industry, 2023, 44(11): 418−426. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022120211.

Renal-protection Effect and the Potential Mechanism of Phloretin in Mice with Type-2 Diabetic Nephropathy

More Information
  • Received Date: December 27, 2022
  • Available Online: April 04, 2023
  • To study the protective effect of phloretin against renal injury in mice with type-2 diabetic nephropathy and determine its potential mechanism at the molecular level, mice were randomized into a normal control group, diabetes model group, positive drug group (metformin, 500 mg/kg), and low-, medium-, and high-dose phloretin groups (100, 200, and 400 mg/kg·d, respectively). After successful modeling, mice in each group were administered the corresponding drugs via the intragastric route. Kidney hypertrophy index and renal pathomorphological changes were observed after 12 weeks. Blood urea nitrogen (BUN), serum creatinine (Scr), urine β2-microglobulin, serum interleukin (IL)-1β and IL-18 levels were determined. Malondialdehyde (MDA) level, glutathione peroxidase (GSH-Px) activity, and nuclear factor E2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1)/nucleotide binding oligomerization domain-like receptor protein 3 (NLRP3) pathway-related protein expression in renal tissues were also determined. Compared with the model group, the medium- and high-dose phloretin groups showed a significant decrease in the kidney hypertrophy index of mice (P<0.01). An obvious reduction in glomerular volume was determined using Hematoxylin and Eosin staining and Masson staining, and a significant decrease in mesangial proliferation and an apparent alleviation in glomerular and renal interstitial fibrosis were noted. Significant reductions in BUN, Scr, IL-1β, and IL-18 levels in the blood, in MDA levels in renal tissues, and in the protein expression of α-smooth muscle actin, Collagen I, NLRP3, IL-1β, and Gasdermin D were noted (P<0.05 or P<0.01). A significant increase in GSH-Px activity and in the expression of Nrf2, HO-1, and E-cadherin in renal tissues (P<0.05) was also founded. The results indicated that phloretin could protect renal function and alleviate renal fibrosis in mice with type-2 diabetic nephropathy. Its mechanism may be related to the regulation of the Nrf2/HO-1/NLRP3 pathway to improve oxidative stress and alleviate the inflammatory response.
  • [1]
    CHEN Y, LEE K, NI Z, et al. Diabetic kidney disease: Challenges, advances, and opportunities[J]. Kidney Diseases,2020,6(4):215−225. doi: 10.1159/000506634
    [2]
    SELBY N, TAAL M. An updated overview of diabetic nephropathy: Diagnosis, prognosis, treatment goals and latest guidelines[J]. Diabetes Obes Metab,2020,22:3−15.
    [3]
    DU L, LI Q, YI H, et al. Gut microbiota-derived metabolites as key actors in type 2 diabetes mellitus[J]. Biomed Pharmacother,2022,149:112839. doi: 10.1016/j.biopha.2022.112839
    [4]
    李璞泽. 根皮素缓解小鼠溃疡性结肠炎的肠道微生态机理研究[D]. 新乡: 新乡医学院, 2020.

    LI P Z. The anti-inflammation effect of phloretin on ulcerative colitis mice and its intestinal micro-ecological mechanism[D]. Xinxiang: Xinxiang Medical University, 2020.
    [5]
    杨胜楠. 根皮苷和根皮素对HepG2细胞氧化应激损伤的比较[D]. 天津: 天津科技大学, 2019

    YANG S N. Comparison of oxidative stress damage of HepG2 cells between phlorizin and phloretin[D]. Tianjin: Tianjin University of Science & Technology, 2019.
    [6]
    黎博. 根皮素对人舌癌Tca8113细胞增殖和凋亡的影响及机制研究[D]. 锦州: 锦州医科大学, 2019

    LI B. Effect and mechanism of phloretin oproliferation and apoptosis of human tongue cancer Tca8113 cells[D]. Jinzhou: Jinzhou Medical University, 2019.
    [7]
    李潭, 孙一涵, 李国峰. 根皮素对脂多糖诱导的RAW264.7细胞的体外抗炎作用机制[J]. 中国免疫学杂志,2021,37(7):812−818. [LI T, SUN Y H, LI G F. Anti inflammatory mechanism of phloretin on RAW264.7 cells induced by lipopolysaccharide in vitro[J]. Chin J Immunol,2021,37(7):812−818. doi: 10.3969/j.issn.1000-484X.2021.07.008
    [8]
    HARDEEP S T, PRANGYA R, ABHISHEK C, et al. Phloretin, as a potent anticancer compound: From chemistry to cellular interactions[J]. Molecules,2022,27(24):8819. doi: 10.3390/molecules27248819
    [9]
    夏琛. 根皮素纳米粒子对糖尿病大鼠的肾脏保护作用研究[D]. 杭州: 浙江大学, 2021

    XIA C. Study on the renal protective effect ofphloretin nano particles on diabetic rats[D]. Hangzhou: Zhejiang University, 2021.
    [10]
    BALAHA M, KANDEEL S, KABEL A. Phloretin either aloneor in combination with duloxetine alleviates the STZ-induced diabetic neuropathy in rats[J]. Biomed Pharmacother,2018,101:821−832. doi: 10.1016/j.biopha.2018.02.135
    [11]
    TESCH G H. Diabetic nephropathy- is this an immune disorder?[J]. Clinical Science (London, England: 1979),2017,131:2183−2199. doi: 10.1042/CS20160636
    [12]
    王兴红, 常陆林, 王桂叶, 等. 槲皮素对2型糖尿病大鼠肾脏肥大的影响机制[J]. 中国中医基础医学杂志,2015,21(10):1248−1250. [WANG X H, CHANG L L, WANG G Y, et al. Influencing mechanism of quercetin on kidney hypertrophy in type 2 diabetic rats[J]. Chinese Journal of Basic Medicine of Traditional Chinese Medicine,2015,21(10):1248−1250. doi: 10.19945/j.cnki.issn.1006-3250.2015.10.023
    [13]
    王兴红, 郑亚萍, 孙缦利, 等. 槲皮素对糖尿病大鼠肾脏p38MAPK/NF-κB信号通路的影响[J]. 中药药理与临床,2016,32(1):79−82. [WANG X H, ZHENG Y P, SUN M L, et al. Effect of quercetin on renal p38MAPK/NF-κB signal path in diabetes rats[J]. Pharmacology and Clinics of Chinese Materia Medica,2016,32(1):79−82. doi: 10.13412/j.cnki.zyyl.2016.01.022
    [14]
    王晶, 刘艳玲, 刘倩, 等. 尿β2-MG及其miRNA表达水平在慢性肾脏病肾功能评价中的价值研究[J]. 国际检验医学杂志,2020,41(4):500−503. [WANG J, LIU Y L, LIU Q, et al. The value of urine β2-MG and its miRNA expression levels in the evaluation of renal function in chronic kidney disease[J]. Int J lab Med,2020,41(4):500−503. doi: 10.3969/j.issn.1673-4130.2020.04.031
    [15]
    AL-SAEEDI F J. Mangiferin protect oxidative stress against deoxynivalenol induced damages through Nrf2 signalling pathways in endothelial cells[J]. Clin Exp Pharmacol Physiol,2021,48(3):389−400. doi: 10.1111/1440-1681.13432
    [16]
    LI J, JIN S Y, BARATI M T, et al. ERK and p38 MAPK inhibition controls NF-E2 degradation and profibrotic signaling in renal proximal tubule cells[J]. Life Sci,2021,287:120092. doi: 10.1016/j.lfs.2021.120092
    [17]
    KOPEL J, PENA-HERNANDEZ C, NUGENT K. Evolving spectrum of diabetic nephropathy[J]. World Journal of Diabetes,2019,10:269−279. doi: 10.4239/wjd.v10.i5.269
    [18]
    VEIGA G, ALVES B, PEREZ M, et al. NGAL and SMAD1 gene expression in the early detection of diabetic nephropathy by liquid biopsy[J]. Clin Pathol,2020,73:713−721. doi: 10.1136/jclinpath-2020-206494
    [19]
    PRISCILA C, GEORGINA H. Macrophage phenotype and fibrosis in diabetic nephropathy[J]. Mol Sci,2020,21(8):2806. doi: 10.3390/ijms21082806
    [20]
    EL-DAWLA N, SALLAM A, EL-HEFNAWY M, et al. E-cadherin and periostin in early detection and progression of diabetic nephropathy: Epithelial-to-mesenchymal transition[J]. Clin Exp Nephrol,2019,23:1050−1057. doi: 10.1007/s10157-019-01744-3
    [21]
    SHARMA A, TATE M, MATHEW G, et al. Oxidative stress and NLRP3-inflammasome activity as significant drivers of diabetic cardiovascular complications: Thera-peutic implications[J]. Front Physiol,2018,9:114. doi: 10.3389/fphys.2018.00114
    [22]
    MA L Y, WU F, SHAO Q Q, et al. Baicalin alleviates oxidative stress and inflammation in diabetic nephropathy via Nrf2 and MAPK signaling pathway[J]. Drug Des Devel Ther,2021,21(15):3207−3221.
    [23]
    FANG R, HARA H, SAKAI S, et al. Type I interferon signalingregulates activation of the absent in melanoma 2 inflammasomeduring streptococcus pneumoniae infection[J]. Infection and Immunity,2014,82(6):2310−2317. doi: 10.1128/IAI.01572-14
    [24]
    GONG W, LI J, CHEN Z, et al. Polydatin promotes Nrf2-AREanti-oxidative pathway through activating CKIP-l to resist HG-induced up-regulation of FN and ICAM-1 in GMCs and diabeticmice kidneys[J]. Free Radic Biol Med,2017,106:393−405. doi: 10.1016/j.freeradbiomed.2017.03.003
    [25]
    HU R, WANG M Q, NI S H, et al. Salidroside ameliorates endothelial inflammation and oxidative stress by regulating the AMPK/NF-κB/NLRP3 signaling pathway in AGEs-induced HUVECs[J]. Eur J Pharmacol,2020,867:172797. doi: 10.1016/j.ejphar.2019.172797
    [26]
    THORNTON S J, SULLIVAN J, VAN E E, et al. Lifetime benefits of early detection and treatment of diabetic kidney disease[J]. PloS One,2019,14:e0217487. doi: 10.1371/journal.pone.0217487
    [27]
    张茹, 曲中原, 杜娟. 葡萄籽原花青素通过 Nrf2/HO-1通路减轻镉诱导的幼龄大鼠认知功能损伤[J]. 中药药理与临床,2021,37(4):32−36. [ZHANG R, QU Z Y, DU J. Proanthocyanidins in grape seeds protects against cadmium-induced cognitive impairment in young rats by regulating Nrf-2/HO-1 pathway[J]. Pharmacology and Clinics of Chinese Materia Medica,2021,37(4):32−36.
    [28]
    UMANATH K, LEWIS J B. Update on diabetic nephropathy: Core curriculum 2018[J]. Am J Kidney Dis,2018(71):884−895.
    [29]
    刘红艳, 乔玉峰, 薛福平. 干预氧化应激通路靶向治疗糖尿病肾病的新进展[J]. 中国免疫学杂志,2020,36(17):2174−2177. [LIU H Y, QIAO Y F, XUE F P. New progress of intervention oxidative stress pathway targeting in treatment ofdiabetic nephropathy[J]. Chin J Immunol,2020,36(17):2174−2177. doi: 10.3969/j.issn.1000-484X.2020.17.026
    [30]
    HOU Y, LIN S, QIU J, et al. NLRP3 inflammasome negative-ly regulates podocyte autophagy in diabetic nephropathy[J]. Biochemical and Biophysical Research Communications,2020,521(3):791−798. doi: 10.1016/j.bbrc.2019.10.194
    [31]
    WANG C, GAO Y, ZHANG Z, et al. Ursolic acid protects chondrocytes, exhibits anti-inflammatory properties via regulation of the NF-kappaB/NLRP3 inflammasome pathway andameliorates osteoarthritis[J]. Biomed Pharmacother,2020,130:110568. doi: 10.1016/j.biopha.2020.110568
    [32]
    高丝娜, 李英, 迟雁青, 等. 白藜芦醇对糖尿病肾病小鼠肾脏氧化应激及肾组织Nrf2通路蛋白表达的影响[J]. 山东医药,2019,59(11):44−47, 52. [GAO S N, LI Y, CHI Y Q, et al. Effects of resveratrol on oxidative stress and Nrf2 signal pathway expression inkidney of mice with diabetic nephropathy[J]. Shandong Pharmaceutical,2019,59(11):44−47, 52. doi: 10.3969/j.issn.1002-266X.2019.11.011
    [33]
    HICKEY F B, MARTIN F. Role of the immune system in diabetic kidney disease[J]. Curr Diab Rep,2018(18):20.
  • Cited by

    Periodical cited type(1)

    1. 岳丹,陆颖,李梦飞,黄代涛,张锦标,种玉晴. 基于斑马鱼SLC17A8基因的表达特征验证其对黑色素转运的影响. 饲料研究. 2024(18): 81-87 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (231) PDF downloads (46) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return