ZHANG Nan, HU Tongxia, ZHU Xinli, et al. Study on the Interaction Process between Rape Bee Pollen Polyphenols and Pancreatic Lipase by Ultraviolet andFluorescence Spectroscopy[J]. Science and Technology of Food Industry, 2023, 44(22): 36−42. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022120185.
Citation: ZHANG Nan, HU Tongxia, ZHU Xinli, et al. Study on the Interaction Process between Rape Bee Pollen Polyphenols and Pancreatic Lipase by Ultraviolet andFluorescence Spectroscopy[J]. Science and Technology of Food Industry, 2023, 44(22): 36−42. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022120185.

Study on the Interaction Process between Rape Bee Pollen Polyphenols and Pancreatic Lipase by Ultraviolet andFluorescence Spectroscopy

More Information
  • Received Date: December 20, 2022
  • Available Online: September 11, 2023
  • In this study, the inhibitory effect of rape bee pollen polyphenols on pancreatic lipase was measured by enzyme kinetics method, and the interaction between pancreatic lipase and rape bee pollen polyphenol extracts was analyzed by the ultravilolet, fluorescence spectra and synchronous fluorescence spectra. The results showed that rape bee pollen polyphenols had a certain inhibitory effect on the activity of pancreatic lipase, and the half maximal inhibitory concentration (IC50) was 1.670±0.045 mg/mL. The inhibitory type was a mixed inhibition of reversible inhibition. Fluorescence spectra showed that the maximal fluorescence intensity of pancreatic lipase gradually decreased with the increasing of rape bee pollen polyphenols concentration, and the maximal fluorescence peak had a redshift from 341 nm to 349 nm. Synchronous fluorescence spectra showed that the hydrophobicity inside the enzyme decreased and the stretch of the peptide chain increased when polyphenols bind to pancreatic lipase. The fluorescence quenching mechanism showed that the quenching constant decreased from 0.1000 to 0.0743 with increasing temperature, and the binding process was static quenching with about one binding site. In conclusion, the rape bee pollen polyphenols could inhibit the pancreatic lipase activity by changing the enzyme conformation, which provided a certain theoretical basis for the mechanism of bee pollen lipid reduction.
  • [1]
    THAKUR M, NANDA V. Composition and functionality of bee pollen:A review[J]. Trends in Food Science & Technology,2020,98:82−106.
    [2]
    LI Q Q, WANG K, MARCUCCI M C, et al. Nutrient-rich bee pollen:A treasure trove of active natural metabolites[J]. Journal of Functional Foods,2018,49:472−484. doi: 10.1016/j.jff.2018.09.008
    [3]
    TUOHETI T, RASHEED H A, MENG L, et al. High hydrostatic pressure enhances the anti-prostate cancer activity of lotus bee pollen via increased metabolites[J]. Journal of Ethnopharmacology,2020,261:113057. doi: 10.1016/j.jep.2020.113057
    [4]
    郑慧, 梁倩倩, 陈希平, 等. 蜂花粉保健功能及产品开发研究进展[J]. 食品与机械,2019,35(4):230−236 doi: 10.13652/j.issn.1003-5788.2019.04.042

    ZHENG H, LIANG Q Q, CHEN X P, et al. Research progress of bee pollen health care function and product development[J]. Food & Machinery,2019,35(4):230−236. doi: 10.13652/j.issn.1003-5788.2019.04.042
    [5]
    RZEPECKA-STOJKO A, STOJKO J, KUREK-GORECK A, et al. Polyphenols from bee pollen:Structure, absorption, metabolism and biological activity[J]. Molecules,2016,21(2):21732−21749.
    [6]
    杨佳林, 孙丽萍, 徐响, 等. 油菜蜂花粉黄酮醇的测定及其抗氧化活性研究[J]. 食品科学,2010,31(3):79−82

    YANG J L, SUN L P, XU X, et al. Hydrolyzed rape bee pollen ethanol extract qualitative and quantitative analysis of flavonol and antioxidant activity evaluation[J]. Food Science,2010,31(3):79−82.
    [7]
    XU Y Y, CAO X R, ZHAO H A, et al. Impact of Camellia japonica bee pollen polyphenols on hyperuricemia and gut microbiota in potassium oxonate-induced mice[J]. Nutrients,2021,13(8):2665−2685. doi: 10.3390/nu13082665
    [8]
    RZEPECKA-STOJKO A, KABALA-DZIK A, KUBINA R, et al. Protective effect of polyphenol-rich extract from bee pollen in a high-fat diet[J]. Molecules,2018,23(4):805−823. doi: 10.3390/molecules23040805
    [9]
    LI X Z, GONG H Q, YANG S W, et al. Pectic bee pollen polysaccharide from Rosa rugosa alleviates diet-induced hepatic steatosis and insulin resistance via induction of ampk/mtor-mediated autophagy[J]. Molecules,2017,22(5):699. doi: 10.3390/molecules22050699
    [10]
    KLEIN S. Long-term pharmacotherapy for obesity[J]. Obesity Research,2004,12(12):163−166.
    [11]
    BIRARI R B, BHUTANI K K. Pancreatic lipase inhibitors from natural sources:Unexplored potential[J]. Drug Discovery Today,2007,12(19-20):879−889. doi: 10.1016/j.drudis.2007.07.024
    [12]
    姜运耀, 吕国英, 李燕飞, 等. 植物来源的胰脂肪酶抑制剂研究进展[J]. 中国生化药物杂志,2012,33(2):199−202

    JIANG Y Y, LÜ G Y, LI Y F, et al. Research advances in pancreatic lipase inhibitors from plants[J]. Chinese Journal of Biochemical Pharmaceutics,2012,33(2):199−202.
    [13]
    SLANC P, DOLJAK B, KREFT S, et al. Screening of selected food and medicinal plant extracts for pancreatic lipase inhibition[J]. Phytotherapy Research,2009,23(6):874−877. doi: 10.1002/ptr.2718
    [14]
    SUTANA R, ALASHI A M, ISLAM K, et al. Inhibitory activities of polyphenolic extracts of bangladeshi vegetables against α-amylase, α-glucosidase, pancreatic lipase, renin, and angiotensin-converting enzyme[J]. Foods,2020,9(7):844−857. doi: 10.3390/foods9070844
    [15]
    任秀娟, 马海乐. 葡萄籽提取物脂肪酶抑制活性筛选及抑制机理的研究[J]. 食品工业科技,2009,30(6):181−186 doi: 10.13386/j.issn1002-0306.2009.06.106

    REN X J, MA H L. Study on inhibitory screening and mechanism of grape seed on pancreatic lipases[J]. Science and Technology of Food Industry,2009,30(6):181−186. doi: 10.13386/j.issn1002-0306.2009.06.106
    [16]
    田强, 吴子健, 黄道荣, 等. 葡萄籽中胰脂肪酶抑制物提取工艺[J]. 食品研究与开发,2010,31(4):41−44 doi: 10.3969/j.issn.1005-6521.2010.04.012

    TIAN Q, WU Z J, HUANG D R, et al. Optimizing conditions for the isolation of pancreatic lipase inhibitive substance from grape seeds[J]. Food Research and Development,2010,31(4):41−44. doi: 10.3969/j.issn.1005-6521.2010.04.012
    [17]
    张燕新. 云南三种蜂花粉多酚的制备及抑制黑色素瘤B16细胞生物活性研究[D]. 昆明:昆明理工大学, 2016

    ZHANG Y X. Preparation of three kinds of bee pollen polyphenols from Yunnan and their bioactivity against melanoma B16 cells[D]. Kunming:Kunming University of Science and Technology. 2016.
    [18]
    杨佳林. 油菜蜂花粉酚类化合物的分离及其抗氧化活性研究[D]. 北京: 中国农业科学院, 2010

    YANG J L. Purification of phenolic compounds in rape seed pollen (Brassica capestris) and its antioxidant activity[D]. Beijing: Chinese Academy of Agricultural Sciences, 2010.
    [19]
    张静, 米佳, 禄璐, 等. 黑果枸杞花色苷提取物对胰脂肪酶活性的影响[J]. 食品科学,2020,41(5):8−14 doi: 10.7506/spkx1002-6630-20190620-234

    ZHANG J, MI J, LU L, et al. Effect of anthocyanins extract from Lycium ruthenicum murr. fruit on pancreatic lipase activity[J]. Food Science,2020,41(5):8−14. doi: 10.7506/spkx1002-6630-20190620-234
    [20]
    张忠. 茶多酚对胰脂肪酶活性的抑制作用[J]. 食品工业, 2013, 34(8):168−170

    ZHANG Z. The inhibition effect of tea polyphenol on pancreatic lipase[J]. The Food Industry, 2013, 34(8):168−170.
    [21]
    江慧芳, 王雅琴, 刘春国. 三种脂肪酶活力测定方法的比较及改进[J]. 化学与生物工程,2007,24(8):72−75 doi: 10.3969/j.issn.1672-5425.2007.08.022

    JIANG H F, WANG Y Q, LIU C G. Comparison and improvement of three determination methods for of lipase activity[J]. Chemistry & Bioengineering,2007,24(8):72−75. doi: 10.3969/j.issn.1672-5425.2007.08.022
    [22]
    王燕, 吕达, 郭明, 等. 全氟辛酸与血清蛋白分子间作用的紫外-荧光光谱分析法建立及理论模建研究[J]. 光谱学与光谱分析,2018,38(2):494−501

    WANG Y, LV D, GUO M, et al. Study on the intermolrcular interaction between perfluorooctanoic acid and serum protein by UV-fluorescence spectrometry and the establishment of theoretical models[J]. Spectroscopy and Spectral Analysis,2018,38(2):494−501.
    [23]
    LI X, CAI J J, YU J L, et al. Inhibition of in vitro enzymatic starch digestion by coffee extract[J]. Food Chemistry,2021,358(6):129837−129843.
    [24]
    LIN M Z, CHAI W M, ZHENG Y L, et al. Inhibitory kinetics and mechanism of rifampicin on α-glucosidase:Insights from spectroscopic and molecular docking analyses[J]. International Journal of Biological Macromolecules,2018,122:1244−1252.
    [25]
    ZHENG L, LEE J, YUE L M, et al. Inhibitory effect of pyrogallol on alpha-glucosidase:Integrating docking simulations with inhibition kinetics[J]. International Journal of Biological Macromolecules:Structure, Function and Interactions, 2018, 112:686−693.
    [26]
    黄桂丽, 王毓宁, 马佳佳, 等. 枇杷花多酚对脂肪酶的抑制作用[J]. 江苏农业学报,2021,37(1):192−196 doi: 10.3969/j.issn.1000-4440.2021.01.025

    HUANG G L, WANG Y N, MA J J, et al. Inhibitory effect of loqual flowers polyphenolics on lipase activity[J]. Jiangsu Journal of Agricultural Sciences,2021,37(1):192−196. doi: 10.3969/j.issn.1000-4440.2021.01.025
    [27]
    HUANG Q, CHAI W M, MA Z Y, et al. Antityrosinase mechanism of ellagic acid in vitro and its effect on mouse melanoma cells[J]. Journal of Food Biochemistry,2019,43(11):12996−13005.
    [28]
    陈宇霞, 张凯, 龚盛昭. 茯苓提取物对酪氨酸酶抑制动力学及刺激性研究[J]. 日用化学工业,2017,47(6):317−321 doi: 10.13218/j.cnki.csdc.2017.06.004

    CHEN Y X, ZHANG K, GONG S Z. Tyrosinase activity inhibition kinetics and skin irritation of extracts of Poria cocos extract[J]. China Surfactant Detergent & Cosmetics,2017,47(6):317−321. doi: 10.13218/j.cnki.csdc.2017.06.004
    [29]
    王燕飞, 郭贯新, 张晖. 米胚芽中脂肪酶抑制剂提取工艺及其性质的研究[J]. 食品工业科技,2004,25(2):85−87 doi: 10.3969/j.issn.1002-0306.2004.02.032

    WANG Y F, GUO G X, ZHANG H. Inhibitory mechanism studies of pancreatic lipase inhibitor derived from rice germ[J]. Science and Technology of Food Industry,2004,25(2):85−87. doi: 10.3969/j.issn.1002-0306.2004.02.032
    [30]
    李朕, 尚丽平, 邓琥, 等. 色氨酸和酪氨酸的三维荧光光谱特征参量提取[J]. 光谱学与光谱分析,2009,29(7):1925−1928 doi: 10.3964/j.issn.1000-0593(2009)07-1925-04

    LI Z, SHANG L P, DENG H, et al. Extraction of characteristic parameters of three-dimensional fluorescence spectra of tyrosine and tryptophan[J]. Spectroscopy and Spectral Analysis,2009,29(7):1925−1928. doi: 10.3964/j.issn.1000-0593(2009)07-1925-04
    [31]
    冯素玲, 袁道琴. 阿魏酸哌嗪与牛血清白蛋白相互作用的研究[J]. 分析试验室,2009,28(7):78−82 doi: 10.3969/j.issn.1000-0720.2009.07.021

    FENG S L, YUAN D Q. Study on interaction between piperazine ferulate and bovine serum albumin[J]. Chinese Journal of Analysis Laboratory,2009,28(7):78−82. doi: 10.3969/j.issn.1000-0720.2009.07.021
    [32]
    范金波, 李鑫芮, 葛春辉, 等. 荧光光谱法研究绿原酸与胰脂肪酶相互作用[J]. 食品与发酵科技,2017,53(6):106−110

    FAN J B, LI X R, GE C H, et al. Study on the interaction between chlorogenic acid and pancreatic lipase by fluorescence spectrometry[J]. Food and Fermentation Science & Technology,2017,53(6):106−110.
    [33]
    范金波, 王晓露, 姜海静, 等. 荧光光谱法研究咖啡酸与胰脂肪酶相互作用[J]. 食品工业科技,2017,38(2):152−155

    FAN J B, WANG X L, JIANG H J, et al. Study on the interaction between caffeic acid and pancreatic lipase by fluorescence spectroscopy[J]. Science and Technology of Food Industry,2017,38(2):152−155.
    [34]
    张国文, 黎沙, 朱苗. 白杨素对胰脂肪酶的抑制作用及机制[J]. 南昌大学学报(理科版),2021,45(6):545−552 doi: 10.3969/j.issn.1006-0464.2021.06.006

    ZHANG G W, LI S, ZHU M. Inhibitory interaction and mechanism of chrysin on pancreatic lipase[J]. Journal of Nanchang University (Natural Science),2021,45(6):545−552. doi: 10.3969/j.issn.1006-0464.2021.06.006
    [35]
    周玉玳, 戴双雄, 佟斌, 等. 光谱学与分子对接结合解释生物大分子与配体间作用机制的研究进展[J]. 影像科学与光化学,2021,39(3):337−347 doi: 10.7517/issn.1674-0475.201204

    ZHOU Y D, DAI S X, TONG B, et al. Recent progress of the interaction mechanism between biomacromolecules with ligands based on combining spectroscopy analysis with molecular docking[J]. Imaging Science and Photochemistry,2021,39(3):337−347. doi: 10.7517/issn.1674-0475.201204
  • Related Articles

    [1]ZHENG Yaqi, WU Yi, YUAN Weiqiong, WANG Tao, LÜ Zhaolin. Study on the Fatty Acid Composition and Basic Physical and Chemical Indicators of Peony Seed Oil in Different Origins[J]. Science and Technology of Food Industry, 2023, 44(15): 312-319. DOI: 10.13386/j.issn1002-0306.2022090172
    [2]ZHOU Xingrong, ZHOU Hui, LUO Jie, LIU Chengguo, LEI Wenping, ZHOU Jiahao. Comparative Analysis of Physical and Chemical Indexes and Microbial Diversity of Fresh Cow Milk in Nanshan Pasture[J]. Science and Technology of Food Industry, 2021, 42(3): 101-107. DOI: 10.13386/j.issn1002-0306.2020040058
    [3]YI Sheng-nan, ZHANG Shu-wen, LU Jing, PANG Xiao-yang, SONG Hui-min, LIANG Jia-qi, HAO Li-yu, HU Cheng, XU Xiao-xi, LV Jia-ping. Effects of Different Storage Temperatures on Physico-Chemical Characteristics and Flavor Changes of Ultra Pasteurized Milk[J]. Science and Technology of Food Industry, 2020, 41(21): 15-20,28. DOI: 10.13386/j.issn1002-0306.2019080175
    [4]ZHANG Jing, ZUO Yong, XIE Guang-jie, HUANG Dan-dan, SUN Shi-guang, ZHANG Xin, QIN Shi-rong, HE Song-jie. Dynamic Changes of Main Physical and Chemical Indexes During Main Fermentation Process in Mulberry Wine[J]. Science and Technology of Food Industry, 2018, 39(14): 18-22,28. DOI: 10.13386/j.issn1002-0306.2018.14.004
    [5]WAN Yi, ZHANG Yu, YANG Hua, WANG Qiang, WANG Jun-hong, LI Xue, ZHU Zuo-yi, WANG Wei, ZHANG Cun-li. Study on rapid detection model of physical and chemical indexes of olive oil based on near infrared spectroscopy[J]. Science and Technology of Food Industry, 2017, (21): 257-262. DOI: 10.13386/j.issn1002-0306.2017.21.051
    [6]HUANG He, GENG Li-jing, CHEN Bo, WANG Guan, LIU Bing, ZHOU Wei. Correlations between physical-chemical properties and sensory qualities of crab paste during the fermentation process[J]. Science and Technology of Food Industry, 2017, (21): 121-125. DOI: 10.13386/j.issn1002-0306.2017.21.025
    [7]LI Na, JIN Hui-yu, XU Fei, CHU Zhong, ZHANG Yan-jun. Analysis of physico-chemical indicator and flavor substances in vanilla extraction process by ethanol[J]. Science and Technology of Food Industry, 2017, (07): 299-304. DOI: 10.13386/j.issn1002-0306.2017.07.050
    [8]FAN Xiao- pan, SHANG Xin-ru, MA Li-zhen, REN Xiao-qing, ZHANG Nai-lin. Effect of 3 kinds of fresh vegetables on the physical and chemical properties of fermented sausage[J]. Science and Technology of Food Industry, 2016, (14): 112-117. DOI: 10.13386/j.issn1002-0306.2016.14.014
    [9]MA Jian, YUAN Jian-hua. Wine quality evaluation research based on the physical and chemical indicators[J]. Science and Technology of Food Industry, 2013, (18): 137-140. DOI: 10.13386/j.issn1002-0306.2013.18.054
    [10]Refinement of rice germ oil and analysis of its physico and chemical properties[J]. Science and Technology of Food Industry, 2013, (01): 233-237. DOI: 10.13386/j.issn1002-0306.2013.01.040
  • Cited by

    Periodical cited type(2)

    1. 郑丽萍,张建超,白羽嘉,伊丽达娜·开赛尔,孔丽洁,辛雯钰,冯作山. 玫瑰花风味杏果糕弱微波辅助干热空气干燥动力学模型的建立. 食品科技. 2022(08): 54-62 .
    2. 方良材,吴钊龙,刘梦姣,黄卫萍,黄浩. 牛大力微波干燥特性及其动力学模型分析. 南方农业学报. 2021(09): 2554-2561 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (131) PDF downloads (22) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return