YANG Qi, WANG Yanling. Investigation on the Transport Mechanism of Penicillium expansum MFS Protein Based on Molecular Dynamics Simulation[J]. Science and Technology of Food Industry, 2023, 44(18): 200−208. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022110341.
Citation: YANG Qi, WANG Yanling. Investigation on the Transport Mechanism of Penicillium expansum MFS Protein Based on Molecular Dynamics Simulation[J]. Science and Technology of Food Industry, 2023, 44(18): 200−208. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022110341.

Investigation on the Transport Mechanism of Penicillium expansum MFS Protein Based on Molecular Dynamics Simulation

More Information
  • Received Date: November 30, 2022
  • Available Online: July 12, 2023
  • The Penicillium expansum produces a toxic secondary metabolite, patulin. The PatC gene encodes the MFS transport protein, and transports the patulin precursor substance to the extracellular space, ultimately forming PAT. This has high reference value in the prevention of patulin. In order to study the transport mechanism of the PatC, the spatial structure of the PatC was predicted by using bioinformatics methods, and the interaction site and possible mechanism of E-ascladiol and the PatC were analyzed by molecular docking and molecular dynamics simulation. The results showed that the gene encoded 546 amino acids, containing 14 transmembrane helix and MFS functional domains. The molecular docking results showed that the protein had 4 binding sites with the E-ascladiol, namely SER353, TYR336, PRO339, and PRO188. Molecular dynamics simulations of 200 ns were performed for the Wild protein complex system and the P188A mutant system. The results showed that the small molecule substrate and the PatC were tightly bound, and that the protein's flexibility changed strongly after forming a complex in the Pro188~Ser197aa and Gly231~Val241aa regions. It could be inferred that these two regions might have functional sites. By analyzing the parameter data of the P188A mutant system, it could be predicted that PRO188 was an important target of the PatC protein, which could provide a basis for subsequent molecular experiments. The results of the research could lay the foundation for exploring the transport mechanism of patulin, and provide new strategies for the prevention of apple rot.
  • [1]
    ZHONG L, CARERE J, LU Z, et al. Patulin in apples and apple-based food products: The burdens and the mitigation strategies[J]. Toxins,2018,10(11):475. doi: 10.3390/toxins10110475
    [2]
    LUCIANO-ROSARIO D, KELLER N P, JURICK W M. Penicillium expansum: Biology, omics, and management tools for a global postharvest pathogen causing blue mould of pome fruit[J]. Mol Plant Pathol,2020,21(11):1391−1404. doi: 10.1111/mpp.12990
    [3]
    TANNOUS J, KELLER N P, ATOUI A, et al. Secondary metabolism in Penicillium expansum: Emphasis on recent advances in patulin research[J]. Crit Rev Food Sci Nutr,2018,58:2082−2098. doi: 10.1080/10408398.2017.1305945
    [4]
    ZHENG X, WEI W, ZHOU W, et al. Prevention and detoxification of patulin in apple and its products: A review[J]. Food Res Int,2021,140:110034. doi: 10.1016/j.foodres.2020.110034
    [5]
    GAO L, ZHANG Q, SUN X, et al. Etiology of moldy core, core browning, and core rot of Fuji apple in China[J]. Plant Disease,2013,97(4):510−516. doi: 10.1094/PDIS-01-12-0024-RE
    [6]
    WANG Z, WANG L, MING Q, et al. Reduction the contamination of patulin during the brewing of apple cider and its characteristics[J]. Food Addit Contam Part A Chem Anal Control Expo Risk Assess,2022,39(6):1149−1162. doi: 10.1080/19440049.2022.2055155
    [7]
    ZHOU T, WANG X, LUO J, et al. Identification of differentially expressed genes involved in spore germination of Penicillium expansum by comparative transcriptome and proteome approaches[J]. Microbiology Open,2018,7(3):e562.
    [8]
    SAJID M, MEHMOOD S, YUAN Y, et al. Mycotoxin patulin in food matrices: Occurrence and its biological degradation strategies[J]. Drug Metab Rev,2019,51(1):105−120. doi: 10.1080/03602532.2019.1589493
    [9]
    PLEADIN J, FRECE J, MARKOV K. Mycotoxins in food and feed[J]. Adv Food Nutr Res,2019,89:297−345.
    [10]
    CHENG M, ZHAO S, LIU H, et al. Functional analysis of a chaetoglobosin A biosynthetic regulator in Chaetomium globosum[J]. Fungal Biol,2021,125(3):201−210. doi: 10.1016/j.funbio.2020.10.010
    [11]
    GUERRA-MORENO A, HANNA J. Induction of proteotoxic stress by the mycotoxin patulin[J]. Toxicol Lett,2017,276:85−91. doi: 10.1016/j.toxlet.2017.05.015
    [12]
    GLASER N, STOPPER H. Patulin: Mechanism of genotoxicity[J]. Food and Chemical Toxicology,2012,50(5):1796−1801. doi: 10.1016/j.fct.2012.02.096
    [13]
    WEI C, YU L, QIAO N, et al. Progress in the distribution, toxicity, control, and detoxification of patulin: A review[J]. Toxicon,2020,184:83−93. doi: 10.1016/j.toxicon.2020.05.006
    [14]
    LI B, CHEN Y, ZHANG Z, et al. Molecular basis and regulation of pathogenicity and patulin biosynthesis in Penicillium expansum[J]. Compr Rev Food Sci Food Saf,2020,19(6):3416−3438. doi: 10.1111/1541-4337.12612
    [15]
    LI B, CHEN Y, ZONG Y, et al. Dissection of patulin biosynthesis, spatial control and regulation mechanism in Penicillium expansum[J]. Environmental Microbiology,2019,21(3):1124−1139. doi: 10.1111/1462-2920.14542
    [16]
    LI B, ZONG Y, DU Z, et al. Genomic characterization reveals insights into patulin biosynthesis and pathogenicity in Penicillium Species[J]. Mol Plant Microbe Interact,2015,28(6):635−647. doi: 10.1094/MPMI-12-14-0398-FI
    [17]
    TANNOUS J, ELKHOURY R, SNINI S P, et al. Physical organization and kinetic expression of the patulin biosynthetic gene cluster from Penicillium expansum[J]. International Journal of Food Microbiology,2014,189:51−60. doi: 10.1016/j.ijfoodmicro.2014.07.028
    [18]
    WANG S C, DAVEJAN P, HENDARGO K J, et al. Expansion of the Major Facilitator Superfamily (MFS) to include novel transporters as well as transmembrane-acting enzymes[J]. Biochim Biophys Acta Biomembr,2020,1862(9):183277. doi: 10.1016/j.bbamem.2020.183277
    [19]
    DE RAMÓN-CARBONELL M, SÁNCHEZ-TORRES P. Penicillium digitatum MFS transporters can display different roles during pathogen-fruit interaction[J]. Int J Food Microbiol,2021,337:108918. doi: 10.1016/j.ijfoodmicro.2020.108918
    [20]
    DREW D, NORTH R, NAGARATHINAM K, et al. Structures and general transport mechanisms by the major facilitator superfamily (MFS)[J]. Chem Rev,2021,121(9):5289−5335. doi: 10.1021/acs.chemrev.0c00983
    [21]
    KUMAR S, LEKSHMI M, PARVATHI A, et al. Functional and structural roles of the major facilitator superfamily bacterial multidrug efflux pumps[J]. Microorganisms,2020,8(2):e266. doi: 10.3390/microorganisms8020266
    [22]
    MADEJ M G, DANG S, YAN N, et al. Evolutionary mix-and-match with MFS transporters[J]. Proc Natl Acad Sci USA,2013,110(15):5870−5874. doi: 10.1073/pnas.1303538110
    [23]
    ALEXANDER N J, MCCORMICK S P, HOHN T M. TRI12, atrichothecene efflux pump from Fusarium sporotrichioides: Geneisolation and expression in yeast[J]. Mol Gen Genet,1999,261(6):977−984. doi: 10.1007/s004380051046
    [24]
    CALLAHAN T M, ROSE M S, MEADE M J, et al. CFP, the putative cercosporin transporter of Cercospora kikuchii, is required for wild type cercosporin production, resistance, and virulence on soybean[J]. Mol Plant Microbe Interact,1999,12(10):901−910. doi: 10.1094/MPMI.1999.12.10.901
    [25]
    LIESCH J M, SWEELEY C C, STAFFELD G D, et al. Structure of HC-toxin, a cyclic tetrapeptide from helminthosporium carbonum[J]. Tetrahedron,1982,38(1):45−48. doi: 10.1016/0040-4020(82)85043-6
    [26]
    PITKIN J W, PANACCIONE D G, WALTON J D. A putative cyclic peptide efflux pump encoded by the TOXA gene of the plant-pathogenic fungus Cochliobolus carbonum[J]. Microbiology (Reading),1996,142(6):1557−1565. doi: 10.1099/13500872-142-6-1557
    [27]
    MOFFAT C S, SEE P T, OLIVER R P. Generation of a ToxA knockout strain of the wheat tan spot pathogen Pyrenophora tritici-repentis[J]. Mol Plant Pathol,2014,15(9):918−926. doi: 10.1111/mpp.12154
    [28]
    MENKE J, DONG Y, KISTLER H C. Fusarium graminearum Tri12p influences virulence to wheat and trichothecene accumulation[J]. Mol Plant Microbe Interact,2012,25(11):1408−1418. doi: 10.1094/MPMI-04-12-0081-R
    [29]
    BRADSHAW R E, BHATNAGAR D, GANLEY R J, et al. Dothistroma pini, a forest pathogen, contains homologs of aflatoxin biosynthetic pathway genes[J]. Appl Environ Microbiol,2002,68:2885−2892. doi: 10.1128/AEM.68.6.2885-2892.2002
    [30]
    王艳玲, 郭小洁, 张紊玮, 等. 棒曲霉素生物合成及分子调控研究进展[J]. 食品科学,2020,41(17):267−274. [WANG Y L, GUO X J, ZHANG W W, et al. Recent advances in patulin biosynthesis and its molecular regulation[J]. Food Science,2020,41(17):267−274.

    WANG Y L, GUO X J, ZHANG W W, et al. Recent Advances in Patulin Biosynthesis and Its Molecular Regulation[J]. Food Science, 2020, 41(17): 267−274.
    [31]
    QUISTGAARD E M, LÖW C, GUETTOU F, et al. Understanding transport by the major facilitator superfamily (MFS): Structures pave the way[J]. Nat Rev Mol Cell Biol,2016,17(2):123−132. doi: 10.1038/nrm.2015.25
    [32]
    钟红梅, 蔡开聪. AutoDock软件在生物化学教学中的应用-半柔性对接[J]. 化学教育(中英文),2020,41(6):86−89. [ZHONG C M, CAI K C. Application of AutoDock software in teaching of biochemistry: Semi-flexible docking[J]. Chinese Journal of Chemical Education,2020,41(6):86−89.

    ZHONG C M, CAI K C. Application of AutoDock software in teaching of biochemistry: Semi-flexible docking[J]. Chinese Journal of Chemical Education, 2020, 41(6): 86−89.
    [33]
    MARCET-HOUBEN M, BALLESTER A R, FUENTE B, et al. Genome sequence of the necrotrophic fungus Penicillium digitatum, the main postharvest pathogen of citrus[J]. BMC Genomics,2012,13:646. doi: 10.1186/1471-2164-13-646
    [34]
    PAULSEN I T, BROWN M H, SKURRAY R A. Proton-dependent multidrug efflux systems[J]. Microbiol Rev,1996,60(4):575−608. doi: 10.1128/mr.60.4.575-608.1996
    [35]
    JIANG D, ZHAO Y, WANG X, et al. Structure of the YajR transporter suggests a transport mechanism based on the conserved motif A[J]. Proc Natl Acad Sci USA,2013,110(36):14664−14669. doi: 10.1073/pnas.1308127110
    [36]
    LAMBERT E, MEHIPOUR A R, SCHMIDT A, et al. Evidence for a trap-and-flip mechanism in a proton-dependent lipid transporter[J]. Nat Commun,2022,13(1):1022. doi: 10.1038/s41467-022-28361-1
    [37]
    SAIER M H. Genome archeology leading to the characterization and classification of transport proteins[J]. Curr Opin Microbiol,1999,2(5):555−561. doi: 10.1016/S1369-5274(99)00016-8
    [38]
    ZHAO Y, MAO G, LIU M, et al. Crystal structure of the E. coli peptide transporter YbgH[J]. Structure,2014,22(8):1152−1160. doi: 10.1016/j.str.2014.06.008
    [39]
    杨萍, 孙益民. 分子动力学模拟方法及其应用[J]. 安徽师范大学学报(自然科学版),2009,32(1):51−54. [YANG P, SUN Y M. Method of molecular dynamics simulation and its application[J]. Journal of Anhui Normal University (Natural Science),2009,32(1):51−54.

    YANG P, SUN Y M. Method of molecular dynamics simulation and its application[J]. Journal of Anhui Normal University, 2009, 32(1): 51−54.
  • Cited by

    Periodical cited type(24)

    1. 张娜,刘丽,李璐,吕京京,董益阳. 青胶蒲公英根多酚超声辅助提取工艺优化及其体外抗氧化、降糖活性. 食品工业科技. 2024(17): 200-208 . 本站查看
    2. 李梅婷,赵泽帆,张晓静,陈宝怡,卢乐怡,张喆,董林欣,王静,肖国丹,张绮玥. 余甘子多酚提取工艺优化研究. 质量安全与检验检测. 2024(04): 85-91 .
    3. 郝晓华,宋雅林,刘可心. 响应面法优化酸提取荷叶中生物碱的工艺研究. 太原师范学院学报(自然科学版). 2024(03): 56-64 .
    4. 李泽洋,黄华,肖善芳,郭松. 半边风多酚提取工艺优化及其抗氧化和抗菌活性研究. 饲料研究. 2024(19): 102-107 .
    5. 李宏,唐中伟,袁建琴,刘亚令,李友莲. 正交设计与响应面法优化甘草多糖提取工艺的研究. 轻工科技. 2023(01): 4-9 .
    6. 张腊腊,胡浩斌,韩明虎,王玉峰,武芸. 响应面优化黄花菜多酚提取工艺及其抗氧化活性研究. 中国食品添加剂. 2023(02): 102-108 .
    7. 郑佳,王军茹,张根生,马书青. 花楸果多酚物质提取及抗氧化性的研究. 中国林副特产. 2023(01): 9-14 .
    8. 赵敏,战祥,徐茜,李泽璠,周立新. 响应面法优化五倍子多酚的提取工艺. 湖北大学学报(自然科学版). 2023(02): 294-300 .
    9. 陈婷,段宙位. 柠檬皮中多酚的超声辅助提取及其抗氧化性研究. 食品科技. 2023(02): 246-252 .
    10. 张园园,刘畅,邵颖,肖付刚. 信阳茶油提取工艺优化及脂肪酸组成分析. 食品研究与开发. 2023(13): 153-159 .
    11. 林志銮,张传海. 多花黄精多酚工艺条件优化及其抗氧化活性评价. 广州化工. 2023(08): 45-49+73 .
    12. 苏泾涵,王改萍,刘玉华,戚亚,彭大庆,李守科,曹福亮. 叶用文冠果总多酚提取工艺及抗氧化活性分析. 南京林业大学学报(自然科学版). 2023(05): 129-137 .
    13. 李科鹏,冯玉会,普开仙,李锐扬,戴应淑,师伟,李琛. 正红菇多酚的提取及抗氧化性能研究. 广州化工. 2023(19): 11-15 .
    14. 张立攀,王俊朋,钱佳英,赵梦瑶,李冰,王春杰,胡桂芳,王法云,王永. 超声辅助法提取牡丹花中总黄酮和总多酚的工艺优化. 食品安全质量检测学报. 2022(02): 567-575 .
    15. 王燕,刘书伟,张田田,侯亚楠,沈梦霞. 槟榔多酚提取工艺的优化. 海南热带海洋学院学报. 2022(02): 25-31 .
    16. 吴卫成,忻晓庭,张程程,刘大群,卢立志,胡宏海,章检明,张治国,郭阳. 番薯叶多酚提取工艺优化及其生物活性研究. 中国食品学报. 2022(05): 189-199 .
    17. 仵菲,买里得尔·叶拉里,白红进. 响应面法优化库尔勒香梨各部位总多酚提取工艺及抗氧化活性研究. 塔里木大学学报. 2022(02): 16-23 .
    18. 王琳,冉佩灵,熊双丽,李安林. 超高压腌制对烤制猪肉品质的影响. 食品工业科技. 2022(15): 19-26 . 本站查看
    19. 舒玉凤,卢静静,陈旭. 蒲公英多糖提取及其抗氧化活性研究. 现代农业科技. 2022(15): 186-189+193 .
    20. 马妮,刘慧燕,方海田,胡海明,辛世华,杨小萍,刘洪涛. 红枣多酚提取工艺优化、成分及抗氧化活性分析. 食品工业科技. 2022(16): 246-254 . 本站查看
    21. 舒玉凤,卢静静,陈旭. 超声辅助法提取蒲公英多糖及抗氧化活性研究. 农产品加工. 2022(13): 42-46 .
    22. 张星和,侯洪波,邹章玉,冯李院,汪玉洁. 高黎贡山紫果西番莲果皮中原花青素的提取工艺及其稳定性. 食品研究与开发. 2022(20): 147-155 .
    23. 林宝妹,邱珊莲,吴妙鸿,张帅,李海明,洪佳敏. 嘉宝果果皮多酚提取工艺优化及生物活性测定. 江苏农业科学. 2021(21): 191-196 .
    24. 宋姗姗,杨艾华,王微微,徐东林,杨倩军,陈杨,林子涵,王小敏. 火炭母提取物抗氧化性及稳定性研究. 中国食品添加剂. 2021(12): 23-30 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (125) PDF downloads (10) Cited by(30)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return