Citation: | YANG Qi, WANG Yanling. Investigation on the Transport Mechanism of Penicillium expansum MFS Protein Based on Molecular Dynamics Simulation[J]. Science and Technology of Food Industry, 2023, 44(18): 200−208. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022110341. |
[1] |
ZHONG L, CARERE J, LU Z, et al. Patulin in apples and apple-based food products: The burdens and the mitigation strategies[J]. Toxins,2018,10(11):475. doi: 10.3390/toxins10110475
|
[2] |
LUCIANO-ROSARIO D, KELLER N P, JURICK W M. Penicillium expansum: Biology, omics, and management tools for a global postharvest pathogen causing blue mould of pome fruit[J]. Mol Plant Pathol,2020,21(11):1391−1404. doi: 10.1111/mpp.12990
|
[3] |
TANNOUS J, KELLER N P, ATOUI A, et al. Secondary metabolism in Penicillium expansum: Emphasis on recent advances in patulin research[J]. Crit Rev Food Sci Nutr,2018,58:2082−2098. doi: 10.1080/10408398.2017.1305945
|
[4] |
ZHENG X, WEI W, ZHOU W, et al. Prevention and detoxification of patulin in apple and its products: A review[J]. Food Res Int,2021,140:110034. doi: 10.1016/j.foodres.2020.110034
|
[5] |
GAO L, ZHANG Q, SUN X, et al. Etiology of moldy core, core browning, and core rot of Fuji apple in China[J]. Plant Disease,2013,97(4):510−516. doi: 10.1094/PDIS-01-12-0024-RE
|
[6] |
WANG Z, WANG L, MING Q, et al. Reduction the contamination of patulin during the brewing of apple cider and its characteristics[J]. Food Addit Contam Part A Chem Anal Control Expo Risk Assess,2022,39(6):1149−1162. doi: 10.1080/19440049.2022.2055155
|
[7] |
ZHOU T, WANG X, LUO J, et al. Identification of differentially expressed genes involved in spore germination of Penicillium expansum by comparative transcriptome and proteome approaches[J]. Microbiology Open,2018,7(3):e562.
|
[8] |
SAJID M, MEHMOOD S, YUAN Y, et al. Mycotoxin patulin in food matrices: Occurrence and its biological degradation strategies[J]. Drug Metab Rev,2019,51(1):105−120. doi: 10.1080/03602532.2019.1589493
|
[9] |
PLEADIN J, FRECE J, MARKOV K. Mycotoxins in food and feed[J]. Adv Food Nutr Res,2019,89:297−345.
|
[10] |
CHENG M, ZHAO S, LIU H, et al. Functional analysis of a chaetoglobosin A biosynthetic regulator in Chaetomium globosum[J]. Fungal Biol,2021,125(3):201−210. doi: 10.1016/j.funbio.2020.10.010
|
[11] |
GUERRA-MORENO A, HANNA J. Induction of proteotoxic stress by the mycotoxin patulin[J]. Toxicol Lett,2017,276:85−91. doi: 10.1016/j.toxlet.2017.05.015
|
[12] |
GLASER N, STOPPER H. Patulin: Mechanism of genotoxicity[J]. Food and Chemical Toxicology,2012,50(5):1796−1801. doi: 10.1016/j.fct.2012.02.096
|
[13] |
WEI C, YU L, QIAO N, et al. Progress in the distribution, toxicity, control, and detoxification of patulin: A review[J]. Toxicon,2020,184:83−93. doi: 10.1016/j.toxicon.2020.05.006
|
[14] |
LI B, CHEN Y, ZHANG Z, et al. Molecular basis and regulation of pathogenicity and patulin biosynthesis in Penicillium expansum[J]. Compr Rev Food Sci Food Saf,2020,19(6):3416−3438. doi: 10.1111/1541-4337.12612
|
[15] |
LI B, CHEN Y, ZONG Y, et al. Dissection of patulin biosynthesis, spatial control and regulation mechanism in Penicillium expansum[J]. Environmental Microbiology,2019,21(3):1124−1139. doi: 10.1111/1462-2920.14542
|
[16] |
LI B, ZONG Y, DU Z, et al. Genomic characterization reveals insights into patulin biosynthesis and pathogenicity in Penicillium Species[J]. Mol Plant Microbe Interact,2015,28(6):635−647. doi: 10.1094/MPMI-12-14-0398-FI
|
[17] |
TANNOUS J, ELKHOURY R, SNINI S P, et al. Physical organization and kinetic expression of the patulin biosynthetic gene cluster from Penicillium expansum[J]. International Journal of Food Microbiology,2014,189:51−60. doi: 10.1016/j.ijfoodmicro.2014.07.028
|
[18] |
WANG S C, DAVEJAN P, HENDARGO K J, et al. Expansion of the Major Facilitator Superfamily (MFS) to include novel transporters as well as transmembrane-acting enzymes[J]. Biochim Biophys Acta Biomembr,2020,1862(9):183277. doi: 10.1016/j.bbamem.2020.183277
|
[19] |
DE RAMÓN-CARBONELL M, SÁNCHEZ-TORRES P. Penicillium digitatum MFS transporters can display different roles during pathogen-fruit interaction[J]. Int J Food Microbiol,2021,337:108918. doi: 10.1016/j.ijfoodmicro.2020.108918
|
[20] |
DREW D, NORTH R, NAGARATHINAM K, et al. Structures and general transport mechanisms by the major facilitator superfamily (MFS)[J]. Chem Rev,2021,121(9):5289−5335. doi: 10.1021/acs.chemrev.0c00983
|
[21] |
KUMAR S, LEKSHMI M, PARVATHI A, et al. Functional and structural roles of the major facilitator superfamily bacterial multidrug efflux pumps[J]. Microorganisms,2020,8(2):e266. doi: 10.3390/microorganisms8020266
|
[22] |
MADEJ M G, DANG S, YAN N, et al. Evolutionary mix-and-match with MFS transporters[J]. Proc Natl Acad Sci USA,2013,110(15):5870−5874. doi: 10.1073/pnas.1303538110
|
[23] |
ALEXANDER N J, MCCORMICK S P, HOHN T M. TRI12, atrichothecene efflux pump from Fusarium sporotrichioides: Geneisolation and expression in yeast[J]. Mol Gen Genet,1999,261(6):977−984. doi: 10.1007/s004380051046
|
[24] |
CALLAHAN T M, ROSE M S, MEADE M J, et al. CFP, the putative cercosporin transporter of Cercospora kikuchii, is required for wild type cercosporin production, resistance, and virulence on soybean[J]. Mol Plant Microbe Interact,1999,12(10):901−910. doi: 10.1094/MPMI.1999.12.10.901
|
[25] |
LIESCH J M, SWEELEY C C, STAFFELD G D, et al. Structure of HC-toxin, a cyclic tetrapeptide from helminthosporium carbonum[J]. Tetrahedron,1982,38(1):45−48. doi: 10.1016/0040-4020(82)85043-6
|
[26] |
PITKIN J W, PANACCIONE D G, WALTON J D. A putative cyclic peptide efflux pump encoded by the TOXA gene of the plant-pathogenic fungus Cochliobolus carbonum[J]. Microbiology (Reading),1996,142(6):1557−1565. doi: 10.1099/13500872-142-6-1557
|
[27] |
MOFFAT C S, SEE P T, OLIVER R P. Generation of a ToxA knockout strain of the wheat tan spot pathogen Pyrenophora tritici-repentis[J]. Mol Plant Pathol,2014,15(9):918−926. doi: 10.1111/mpp.12154
|
[28] |
MENKE J, DONG Y, KISTLER H C. Fusarium graminearum Tri12p influences virulence to wheat and trichothecene accumulation[J]. Mol Plant Microbe Interact,2012,25(11):1408−1418. doi: 10.1094/MPMI-04-12-0081-R
|
[29] |
BRADSHAW R E, BHATNAGAR D, GANLEY R J, et al. Dothistroma pini, a forest pathogen, contains homologs of aflatoxin biosynthetic pathway genes[J]. Appl Environ Microbiol,2002,68:2885−2892. doi: 10.1128/AEM.68.6.2885-2892.2002
|
[30] |
王艳玲, 郭小洁, 张紊玮, 等. 棒曲霉素生物合成及分子调控研究进展[J]. 食品科学,2020,41(17):267−274. [WANG Y L, GUO X J, ZHANG W W, et al. Recent advances in patulin biosynthesis and its molecular regulation[J]. Food Science,2020,41(17):267−274.
WANG Y L, GUO X J, ZHANG W W, et al. Recent Advances in Patulin Biosynthesis and Its Molecular Regulation[J]. Food Science, 2020, 41(17): 267−274.
|
[31] |
QUISTGAARD E M, LÖW C, GUETTOU F, et al. Understanding transport by the major facilitator superfamily (MFS): Structures pave the way[J]. Nat Rev Mol Cell Biol,2016,17(2):123−132. doi: 10.1038/nrm.2015.25
|
[32] |
钟红梅, 蔡开聪. AutoDock软件在生物化学教学中的应用-半柔性对接[J]. 化学教育(中英文),2020,41(6):86−89. [ZHONG C M, CAI K C. Application of AutoDock software in teaching of biochemistry: Semi-flexible docking[J]. Chinese Journal of Chemical Education,2020,41(6):86−89.
ZHONG C M, CAI K C. Application of AutoDock software in teaching of biochemistry: Semi-flexible docking[J]. Chinese Journal of Chemical Education, 2020, 41(6): 86−89.
|
[33] |
MARCET-HOUBEN M, BALLESTER A R, FUENTE B, et al. Genome sequence of the necrotrophic fungus Penicillium digitatum, the main postharvest pathogen of citrus[J]. BMC Genomics,2012,13:646. doi: 10.1186/1471-2164-13-646
|
[34] |
PAULSEN I T, BROWN M H, SKURRAY R A. Proton-dependent multidrug efflux systems[J]. Microbiol Rev,1996,60(4):575−608. doi: 10.1128/mr.60.4.575-608.1996
|
[35] |
JIANG D, ZHAO Y, WANG X, et al. Structure of the YajR transporter suggests a transport mechanism based on the conserved motif A[J]. Proc Natl Acad Sci USA,2013,110(36):14664−14669. doi: 10.1073/pnas.1308127110
|
[36] |
LAMBERT E, MEHIPOUR A R, SCHMIDT A, et al. Evidence for a trap-and-flip mechanism in a proton-dependent lipid transporter[J]. Nat Commun,2022,13(1):1022. doi: 10.1038/s41467-022-28361-1
|
[37] |
SAIER M H. Genome archeology leading to the characterization and classification of transport proteins[J]. Curr Opin Microbiol,1999,2(5):555−561. doi: 10.1016/S1369-5274(99)00016-8
|
[38] |
ZHAO Y, MAO G, LIU M, et al. Crystal structure of the E. coli peptide transporter YbgH[J]. Structure,2014,22(8):1152−1160. doi: 10.1016/j.str.2014.06.008
|
[39] |
杨萍, 孙益民. 分子动力学模拟方法及其应用[J]. 安徽师范大学学报(自然科学版),2009,32(1):51−54. [YANG P, SUN Y M. Method of molecular dynamics simulation and its application[J]. Journal of Anhui Normal University (Natural Science),2009,32(1):51−54.
YANG P, SUN Y M. Method of molecular dynamics simulation and its application[J]. Journal of Anhui Normal University, 2009, 32(1): 51−54.
|
1. |
张娜,刘丽,李璐,吕京京,董益阳. 青胶蒲公英根多酚超声辅助提取工艺优化及其体外抗氧化、降糖活性. 食品工业科技. 2024(17): 200-208 .
![]() | |
2. |
李梅婷,赵泽帆,张晓静,陈宝怡,卢乐怡,张喆,董林欣,王静,肖国丹,张绮玥. 余甘子多酚提取工艺优化研究. 质量安全与检验检测. 2024(04): 85-91 .
![]() | |
3. |
郝晓华,宋雅林,刘可心. 响应面法优化酸提取荷叶中生物碱的工艺研究. 太原师范学院学报(自然科学版). 2024(03): 56-64 .
![]() | |
4. |
李泽洋,黄华,肖善芳,郭松. 半边风多酚提取工艺优化及其抗氧化和抗菌活性研究. 饲料研究. 2024(19): 102-107 .
![]() | |
5. |
李宏,唐中伟,袁建琴,刘亚令,李友莲. 正交设计与响应面法优化甘草多糖提取工艺的研究. 轻工科技. 2023(01): 4-9 .
![]() | |
6. |
张腊腊,胡浩斌,韩明虎,王玉峰,武芸. 响应面优化黄花菜多酚提取工艺及其抗氧化活性研究. 中国食品添加剂. 2023(02): 102-108 .
![]() | |
7. |
郑佳,王军茹,张根生,马书青. 花楸果多酚物质提取及抗氧化性的研究. 中国林副特产. 2023(01): 9-14 .
![]() | |
8. |
赵敏,战祥,徐茜,李泽璠,周立新. 响应面法优化五倍子多酚的提取工艺. 湖北大学学报(自然科学版). 2023(02): 294-300 .
![]() | |
9. |
陈婷,段宙位. 柠檬皮中多酚的超声辅助提取及其抗氧化性研究. 食品科技. 2023(02): 246-252 .
![]() | |
10. |
张园园,刘畅,邵颖,肖付刚. 信阳茶油提取工艺优化及脂肪酸组成分析. 食品研究与开发. 2023(13): 153-159 .
![]() | |
11. |
林志銮,张传海. 多花黄精多酚工艺条件优化及其抗氧化活性评价. 广州化工. 2023(08): 45-49+73 .
![]() | |
12. |
苏泾涵,王改萍,刘玉华,戚亚,彭大庆,李守科,曹福亮. 叶用文冠果总多酚提取工艺及抗氧化活性分析. 南京林业大学学报(自然科学版). 2023(05): 129-137 .
![]() | |
13. |
李科鹏,冯玉会,普开仙,李锐扬,戴应淑,师伟,李琛. 正红菇多酚的提取及抗氧化性能研究. 广州化工. 2023(19): 11-15 .
![]() | |
14. |
张立攀,王俊朋,钱佳英,赵梦瑶,李冰,王春杰,胡桂芳,王法云,王永. 超声辅助法提取牡丹花中总黄酮和总多酚的工艺优化. 食品安全质量检测学报. 2022(02): 567-575 .
![]() | |
15. |
王燕,刘书伟,张田田,侯亚楠,沈梦霞. 槟榔多酚提取工艺的优化. 海南热带海洋学院学报. 2022(02): 25-31 .
![]() | |
16. |
吴卫成,忻晓庭,张程程,刘大群,卢立志,胡宏海,章检明,张治国,郭阳. 番薯叶多酚提取工艺优化及其生物活性研究. 中国食品学报. 2022(05): 189-199 .
![]() | |
17. |
仵菲,买里得尔·叶拉里,白红进. 响应面法优化库尔勒香梨各部位总多酚提取工艺及抗氧化活性研究. 塔里木大学学报. 2022(02): 16-23 .
![]() | |
18. |
王琳,冉佩灵,熊双丽,李安林. 超高压腌制对烤制猪肉品质的影响. 食品工业科技. 2022(15): 19-26 .
![]() | |
19. |
舒玉凤,卢静静,陈旭. 蒲公英多糖提取及其抗氧化活性研究. 现代农业科技. 2022(15): 186-189+193 .
![]() | |
20. |
马妮,刘慧燕,方海田,胡海明,辛世华,杨小萍,刘洪涛. 红枣多酚提取工艺优化、成分及抗氧化活性分析. 食品工业科技. 2022(16): 246-254 .
![]() | |
21. |
舒玉凤,卢静静,陈旭. 超声辅助法提取蒲公英多糖及抗氧化活性研究. 农产品加工. 2022(13): 42-46 .
![]() | |
22. |
张星和,侯洪波,邹章玉,冯李院,汪玉洁. 高黎贡山紫果西番莲果皮中原花青素的提取工艺及其稳定性. 食品研究与开发. 2022(20): 147-155 .
![]() | |
23. |
林宝妹,邱珊莲,吴妙鸿,张帅,李海明,洪佳敏. 嘉宝果果皮多酚提取工艺优化及生物活性测定. 江苏农业科学. 2021(21): 191-196 .
![]() | |
24. |
宋姗姗,杨艾华,王微微,徐东林,杨倩军,陈杨,林子涵,王小敏. 火炭母提取物抗氧化性及稳定性研究. 中国食品添加剂. 2021(12): 23-30 .
![]() |