Citation: | GAO Qi, ZHANG Shouyang, TANG Zicheng, et al. Research Progress on Preparation and Application of Protein Nanoparticles in Food Field[J]. Science and Technology of Food Industry, 2023, 44(11): 30−37. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022110153. |
[1] |
邓苏梦, 王健, 邹立强, 等. 食品级纳米粒子的合成及其应用[J]. 食品工业科技,2017(7):365−370. [DENG Sumeng, WANG Jian, ZOU Liqiang, et al. Synthesis and applications of nanoparticles in food[J]. Science and Technology of Food Industry,2017(7):365−370. doi: 10.13386/j.issn1002-0306.2017.07.062
|
[2] |
刘晓飞, 李祥, 连洁, 等. 淀粉纳米颗粒的制备及应用研究进展[J]. 食品工业科技,2022,43(21):480−486. [LIU Xiaofei, LI Xiang, LIAN Jie, et al. Research progress on preparation and application of starch nanoparticles[J]. Science and Technology of Food Industry,2022,43(21):480−486.
|
[3] |
ELZOGHBY A O, ELGOHARY M M, KAMEL N M. Implications of protein-and peptide-based nanoparticles as potential vehicles for anticancer drugs[J]. Advances in Protein Chemistry and Structural Biology,2015,98:169−221.
|
[4] |
ANWAR M, MUHAMMAD F, AKHTAR B. Biodegradable nanoparticles as drug delivery devices[J]. Journal of Drug Delivery Science and Technology,2021,64:102638. doi: 10.1016/j.jddst.2021.102638
|
[5] |
葛思彤, 贾睿, 刘回民, 等. 玉米醇溶蛋白基纳米颗粒的制备及应用研究进展[J]. 食品科学,2021,42(15):285−292. [GE Sitong, JIA Rui, LIU Huimin, et al. Progress in preparation and application of zein-based nanoparticles[J]. Food Science,2021,42(15):285−292. doi: 10.7506/spkx1002-6630-20210127-297
|
[6] |
VERMA M L, DHANYA B S, RANI V, et al. Carbohydrate and protein based biopolymeric nanoparticles: Current status and biotechnological applications[J]. International Journal of Biological Macromolecules,2020,154:390−412. doi: 10.1016/j.ijbiomac.2020.03.105
|
[7] |
钱雪丽, 陶宁萍, 王锡昌. 食品中纳米颗粒的制备、表征及其应用的研究进展[J]. 食品工业科技,2018,39(16):313−317, 324. [QIAN Xueli, TAO Ningping, WANG Xichang. Research progress on the preparation, characterization and application of nanoparticles in food[J]. Science and Technology of Food Industry,2018,39(16):313−317, 324. doi: 10.13386/j.issn1002-0306.2018.16.056
|
[8] |
PATHAKOTI K, MANUBOLU M, HWANG H M. Nanostructures: Current uses and future applications in food science[J]. Journal of Food and Drug Analysis,2017,25(2):245−253. doi: 10.1016/j.jfda.2017.02.004
|
[9] |
花春阳, 李卓烨, 金鹏, 等. 香芹酚-酪蛋白纳米颗粒制备及其对枇杷果实炭疽病的抑制作用[J]. 食品科学,2020,41(15):282−287. [HUA Chunyang, LI Zhuoye, JIN Peng, et al. Preparation of carvacrol-loaded casein nanoparticles and its inhibitory activity against colletotrichum acutatum on loquat fruit (Eriobotrya japonica)[J]. Food Science,2020,41(15):282−287. doi: 10.7506/spkx1002-6630-20190625-312
|
[10] |
LEE E J, KHAN S A, PARK J K, et al. Studies on the characteristics of drug-loaded gelatin nanoparticles prepared by nanoprecipitation[J]. Bioprocess and Biosystems Engineering,2012,35(1):297−307.
|
[11] |
LÓPEZ-RUBIO A, LAGARON J M. Whey protein capsules obtained through electrospraying for the encapsulation of bioactives[J]. Innovative Food Science & Emerging Technologies,2012,13:200−206.
|
[12] |
JAIN I. Crosslinking albumin for drug release from spray dried particles[D]. Louisville: University of Louisville, 2014.
|
[13] |
LAMMEL A S, HU X, PARK S H, et al. Controlling silk fibroin particle features for drug delivery[J]. Biomaterials,2010,31(16):4583−4591. doi: 10.1016/j.biomaterials.2010.02.024
|
[14] |
MADALENA D A, RAMOS Ó L, PEREIRA R N, et al. In vitro digestion and stability assessment of β-lactoglobulin/riboflavin nanostructures[J]. Food Hydrocolloids,2016,58:89−97. doi: 10.1016/j.foodhyd.2016.02.015
|
[15] |
汪晶晶, 祁冰洁, 李宏漫, 等. 含姜黄素奶茶凝珠的研制及特性研究[J]. 现代食品,2020(24):120−124. [WANG Jingjing, QI Bingjie, LI Hongman, et al. Study on the preparation and characteristics of curcumin milk tea beads[J]. Modern Food,2020(24):120−124. doi: 10.16736/j.cnki.cn41-1434/ts.2020.24.034
|
[16] |
GULFAM M, KIM J, LEE J M, et al. Anticancer drug-loaded gliadin nanoparticles induce apoptosis in breast cancer cells[J]. Langmuir,2012,28(21):8216−8223. doi: 10.1021/la300691n
|
[17] |
SHAO Y, TANG C H. Gel-like pea protein Pickering emulsions at pH3 as a potential intestine-targeted and sustained-release delivery system for β-carotene[J]. Food Research International,2016,79(Jan.):64−72.
|
[18] |
KIANFAR E. Protein nanoparticles in drug delivery: Animal protein, plant proteins and protein cages, albumin nanoparticles[J]. Journal of Nanobiotechnology,2021,19(159):1−32.
|
[19] |
AMOABEDINY G, HAGHIRALSADAT F, NADERINEZHAD S, et al. Overview of preparation methods of polymeric and lipid-based (niosome, solid lipid, liposome) nanoparticles: A comprehensive review[J]. International Journal of Polymeric Materials and Polymeric Biomaterials,2018,67(6):383−400. doi: 10.1080/00914037.2017.1332623
|
[20] |
RIVAS C J M, TARHINI M, BADRI W, et al. Nanoprecipitation process: From encapsulation to drug delivery[J]. International Journal of Pharmaceutics,2017,532(1):66−81. doi: 10.1016/j.ijpharm.2017.08.064
|
[21] |
CHEN J J, ZHENG J K, MCCLEMENTS D J, et al. Tangeretin-loaded protein nanoparticles fabricated from zein/β-lactoglobulin: Preparation, characterization, and functional performance[J]. Food Chemistry,2014,158:466−472. doi: 10.1016/j.foodchem.2014.03.003
|
[22] |
JOYE I J, MCCLEMENTS D J. Production of nanoparticles by anti-solvent precipitation for use in food systems[J]. Trends in Food Science & Technology,2013,34(2):109−123.
|
[23] |
DAVIDOV-PARDO G, JOYE I J, MCCLEMENTS D J. Food-grade protein-based nanoparticles and microparticles for bioactive delivery: Fabrication, characterization, and utilization[J]. Advances in Protein Chemistry and Structural Biology,2015,98:293−325.
|
[24] |
ZHAO Z, LI Y, XIE M B. Silk fibroin-based nanoparticles for drug delivery[J]. International Journal of Molecular Sciences,2015,16(3):4880−4903. doi: 10.3390/ijms16034880
|
[25] |
ANNISH J, SINGH S K, ARYA S K, et al. Protein nanoparticles: Promising platforms for drug delivery applications[J]. ACS Biomaterials Science & Engineering, 2018, 4(12).
|
[26] |
LEE S H, HENG D, NG W K, et al. Nano spray drying: A novel method for preparing protein nanoparticles for protein therapy[J]. International Journal of Pharmaceutics,2011,403(1-2):192−200. doi: 10.1016/j.ijpharm.2010.10.012
|
[27] |
JAFARI S M, ARPAGAUS C, CERQUEIRA M A, et al. Nano spray drying of food ingredients; materials, processing and applications[J]. Trends in Food Science & Technology,2021,109:632−646.
|
[28] |
JAYAPRAKASH P, MAUDHUIT A, GAIANI C, et al. Encapsulation of bioactive compounds using competitive emerging techniques: Electrospraying, nano spray drying, and electrostatic spray drying[J]. Journal of Food Engineering,2023,339:4−6.
|
[29] |
ARPAGAUS C, COLLENBERG A, RÜTTI D, et al. Nano spray drying for encapsulation of pharmaceuticals[J]. International Journal of Pharmaceutics,2018,546(1-2):194−214. doi: 10.1016/j.ijpharm.2018.05.037
|
[30] |
WANG W, WANG Y J, WANG D Q. Dual effects of Tween 80 on protein stability[J]. International Journal of Pharmaceutics,2008,347(1-2):31−38. doi: 10.1016/j.ijpharm.2007.06.042
|
[31] |
SALAMA R O, TRAINI D, CHAN H K, et al. Preparation and evaluation of controlled release microparticles for respiratory protein therapy[J]. Journal of Pharmaceutical Sciences,2009,98(8):2709−2717.
|
[32] |
LANGRISH T A G, MARQUEZ N, KOTA K. An investigation and quantitative assessment of particle shape in milk powders from a laboratory-scale spray dryer[J]. Drying Technology,2006,24(12):1619−1630. doi: 10.1080/07373930601031133
|
[33] |
WANG J F, ZHANG Y T, ZHANG W, et al. Research progress of electrostatic spray technology over the last two decades[J]. Journal of Energy Engineering,2021,147(4):03121003. doi: 10.1061/(ASCE)EY.1943-7897.0000763
|
[34] |
苗笑雨, 谷大海, 程志斌, 等. 超临界流体萃取技术及其在食品工业中的应用[J]. 食品研究与开发,2018,39(5):209−218. [MIAO Xiaoyu, GU Dahai, CHENG Zhibin, et al. Applying the technology of supercritical fluid extraction in food industry[J]. Food Research and Development,2018,39(5):209−218. doi: 10.3969/j.issn.1005-6521.2018.05.038
|
[35] |
SUO Q L, HE W Z, HUANG Y C, et al. Micronization of the natural pigment-bixin by the SEDS process through prefilming atomization[J]. Powder Technology,2005,154(2-3):110−115. doi: 10.1016/j.powtec.2005.05.001
|
[36] |
KANG Y Q, YIN G F, OUYANG P, et al. Preparation of PLLA/PLGA microparticles using solution enhanced dispersion by supercritical fluids (SEDS)[J]. Journal of Colloid and Interface Science,2008,322(1):87−94. doi: 10.1016/j.jcis.2008.02.031
|
[37] |
ZHAO Z, CHEN A Z, LI Y, et al. Fabrication of silk fibroin nanoparticles for controlled drug delivery[J]. Journal of Nanoparticle Research,2012,14(4):1−10.
|
[38] |
林长春, 孙丽君, 赵亚平. 超临界二氧化碳抗溶剂法制备玉米蛋白纳米颗粒[J]. 食品工业科技,2010,31(9):216−219, 222. [LIN Changchun, SUN Lijun, ZHAO Yaping. Preparation of zein nanoparticles by supercritical CO2 anti-solvent precipitation[J]. Science and Technology of Food Industry,2010,31(9):216−219, 222. doi: 10.13386/j.issn1002-0306.2010.09.069
|
[39] |
王琳, 许大壮, 代奇轩, 等. 基于超临界流体技术制备药物制剂的研究进展[J]. 科学通报,2021,66(10):1187−1194. [WANG Lin, XU Dazhuang, DAI Qixuan, et al. Research progress in the preparation of pharmaceutical formulations based on supercritical fluid technology[J]. Science Bulletin,2021,66(10):1187−1194.
|
[40] |
姚磊, 杨秋萍. 大豆蛋白纳米粒子的制备及其在食品领域的应用进展[J]. 大豆科技,2019(3):32−37. [YAO Lei, YANG Qiuping. Progress in soy protein nanoparticles preparation and its application in food industry[J]. Soybean Bulletin,2019(3):32−37. doi: 10.3969/j.issn.1674-3547.2019.03.006
|
[41] |
DESETA M L, SPONTON O E, ERBEN M, et al. Nanocomplexes based on egg white protein nanoparticles and bioactive compounds as antifungal edible coatings to extend bread shelf life[J]. Food Research International,2021,148:110597. doi: 10.1016/j.foodres.2021.110597
|
[42] |
XIAO J, GONZALEZ A J P, HUANG Q R. Kafirin nanoparticles-stabilized pickering emulsions: Microstructure and rheological behavior[J]. Food Hydrocolloids,2016,54:30−39. doi: 10.1016/j.foodhyd.2015.09.008
|
[43] |
姚惠芳, 董学艳, 景浩. 牛血清白蛋白与花青素纳米颗粒的特性及稳定性研究[J]. 食品科学,2014,35(1):1−6. [YAO Huifang, DONG Xueyan, JING Hao. Characteristics of bovine serum albumin-anthocyanin bioactive nanoparticles[J]. Food Science,2014,35(1):1−6. doi: 10.7506/spkx1002-6630-201401001
|
[44] |
李媛, 傅玉颖, 李泽亚, 等. 乳清分离蛋白纤维-多糖复合纳米颗粒负载β-胡萝卜素特性研究[J]. 中国食品学报,2021,21(12):25−32. [LI Yuan, FU Yuying, LI Zeya, et al. Studies on characteristic of β-carotene loaded by whey protein nanofibrils-polysaccharide composite nanoparticles[J]. Journal of Chinese Institute of Food Science and Technology,2021,21(12):25−32.
|
[45] |
CHUACHAROEN T, SABLIOV C M. The potential of zein nanoparticles to protect entrapped β-carotene in the presence of milk under simulated gastrointestinal (GI) conditions[J]. LWT-Food Science and Technology,2016,72:302−309. doi: 10.1016/j.lwt.2016.05.006
|
[46] |
FANG Z X, ZHAO Y Y, WARNER R D, et al. Active and intelligent packaging in meat industry[J]. Trends in Food Science & Technology,2017,61:60−71.
|
[47] |
YAN X J, MA C C, CUI F Z, et al. Protein-stabilized pickering emulsions: Formation, stability, properties, and applications in foods[J]. Trends in Food Science & Technology,2020,103:293−303.
|
[48] |
鲍莹, 宋雨婷, 刘清玲, 等. 蛋白质颗粒稳定的Pickering乳液及其在食品中的应用[J]. 粮食与油脂,2022,35(7):5−9. [BAO Ying, SONG Yuting, LIU Qingling, et al. Protein granule stabilized Pickering emulsion and its application in food[J]. Cereals & Oils,2022,35(7):5−9. doi: 10.3969/j.issn.1008-9578.2022.07.002
|
[49] |
ZENG T, WU Z L, ZHU J Y, et al. Development of antioxidant Pickering high internal phase emulsions (HIPEs) stabilized by protein/polysaccharide hybrid particles as potential alternative for PHOs[J]. Food Chemistry,2017,231:122−130. doi: 10.1016/j.foodchem.2017.03.116
|
[50] |
BERTON C, ROPERS M-H L N, GUIBERT D, et al. Modifications of interfacial proteins in oil-in-water emulsions prior to and during lipid oxidation[J]. Journal of Agricultural and Food Chemistry,2012,60(35):8659−8671. doi: 10.1021/jf300490w
|
[51] |
蓝妙传, 李媛, 马良, 等. 高内相Pickering乳液替代脂肪对肉糜制品特性的影响[J]. 食品科学,2021,42(18):28−36. [LAN Miaochuan, LI Yuan, MA Liang, et al. Effect of high internal phase pickering emulsion as a fat substitute on the quality characteristics of minced meat products[J]. Food Science,2021,42(18):28−36. doi: 10.7506/spkx1002-6630-20200615-195
|
[52] |
MWANGI W W, HUI P L, LIANG E L, et al. Food-grade pickering emulsions for encapsulation and delivery of bioactives[J]. Trends in Food Science & Technology,2020,100:320−332.
|
[53] |
FRENZEL M, KROLAK E, WAGNER A E, et al. Physicochemical properties of WPI coated liposomes serving as stable transporters in a real food matrix[J]. LWT-Food Science and Technology,2015,63(1):527−534. doi: 10.1016/j.lwt.2015.03.055
|
[54] |
YI J, LAM T I, YOKOYAMA W, et al. Beta-carotene encapsulated in food protein nanoparticles reduces peroxyl radical oxidation in Caco-2 cells[J]. Food Hydrocolloids,2015,43:31−40. doi: 10.1016/j.foodhyd.2014.04.028
|
[55] |
YU H, PARK J Y, CHANG W K, et al. An overview of nanotechnology in food science: Preparative methods, practical applications, and safety[J]. Journal of Chemistry,2018,2018(15):1−10.
|
[56] |
MCCLEMENTS D J, XIAO H. Is nano safe in foods? Establishing the factors impacting the gastrointestinal fate and toxicity of organic and inorganic food-grade nanoparticles[J]. Npj Science of Food,2017,1(1):6. doi: 10.1038/s41538-017-0005-1
|
[57] |
MILLER III E R, PASTOR-BARRIUSO R, DALAL D, et al. Meta-analysis: High-dosage vitamin E supplementation may increase all-cause mortality[J]. Annals of Internal Medicine,2005,142(1):37−46. doi: 10.7326/0003-4819-142-1-200501040-00110
|
1. |
卢钏燚,周静,赵涛,魏春菊,贺禧,王颖,雷激. 桑葚微胶囊对酸奶品质与风味的影响. 食品与发酵工业. 2025(01): 312-321 .
![]() | |
2. |
彭晓夏,和雨露,王哲,高蕊蕊,逯晓青,窦志芳. 向日葵盘天然低酯化果胶联合氯化钙制备凝固型酸奶的工艺优化. 粮食与油脂. 2024(01): 116-121 .
![]() | |
3. |
朱成成,隋世有,魏文毅,贾建,刘伟,田伟,孟令伟,金丽梅,李志江. 微滤联合大孔树脂纯化蓝莓果脯糖浆中花色苷的工艺优化. 食品工业科技. 2024(09): 177-185 .
![]() | |
4. |
曹燕飞,郝鑫,李宏军,马成业,周陆红. 甜瓜酸奶发酵工艺优化及其品质分析. 中国酿造. 2024(04): 203-210 .
![]() | |
5. |
李睿,郝瑞,王宇,阮文辉,许楚. 模糊数学结合响应面法研制即食黄芪. 食品安全质量检测学报. 2023(02): 316-323 .
![]() |