ZHANG Mengyu, LI Yao, PENG Jiayi, et al. Space Breeding of Pediococcus acidilactici with High Yield of Exopolysaccharide and the Study on Its EPS Performance[J]. Science and Technology of Food Industry, 2023, 44(17): 158−167. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022110108.
Citation: ZHANG Mengyu, LI Yao, PENG Jiayi, et al. Space Breeding of Pediococcus acidilactici with High Yield of Exopolysaccharide and the Study on Its EPS Performance[J]. Science and Technology of Food Industry, 2023, 44(17): 158−167. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022110108.

Space Breeding of Pediococcus acidilactici with High Yield of Exopolysaccharide and the Study on Its EPS Performance

More Information
  • Received Date: November 10, 2022
  • Available Online: July 02, 2023
  • Pediococcus acidilactici was mutated by space mutagenesis technology, and the strains with high production of exopolysaccharide (EPS) were screened. The functional characteristics of the EPS were also investigated. EPS production and genetic stability of the strains were measured, and a stable mutant strain L21-49 with high production of EPS was selected. Meanwhile, the self-aggregation and hydrophobicity of the mutant strain and the original strain were investigated, and the tolerances of the strains to acid, bile salts, and artificial simulated gastrointestinal fluid were compared. The anti-biofilm, anti-oxidant, and the inhibitory activities on α-amylase and α-glucosidase of EPS were also analyzed. The results showed that the EPS yield of the mutant strain was 196.23 mg/L, which was 26.54% higher than that of the original strain L21. The strain showed good self-aggregation, hydrophobicity and tolerance in vitro. The viable cell number could be maintained at 107 CFU/mL after being cultured in pH2.0 and 3.0 for 3 h. When treated with 4.00 g/L bile salt for 24 h, the number of viable cells were 107 CFU/mL. The viable count could be maintained at 106 CFU/mL after the treatment of the artificial simulated gastrointestinal fluid. The EPS presented good antioxidant capacity in vitro. When the concentration of EPS was 8.0 mg/mL, the clearance rates on DPPH, OH, ABTS+ and O2 were 91.75%, 38.44%, 54.71% and 58.84%, respectively. The inhibition rates of L21-49 EPS on the biofilms of Staphylococcus aureus, Listeria monocytogenes, Escherichia coli and Pseudomonas aeruginosa were 40.04%, 60.04%, 50.59% and 33.68%, respectively. It inhibited the activities of α-amylase and α-glucosidase by 23.52% and 51.15%, respectively. In this study, the effects of space mutagenesis on the probiotic characteristics and EPS production of lactic acid bacteria were investigated, so as to provide reference for the research and development of lactic acid bacteria and the EPS.
  • [1]
    RAJOKA M, WU Y, MEHWISH H M, et al. Lactobacillus exopolysaccharides: New perspectives on engineering strategies, physiochemical functions, and immunomodulatory effects on host health[J]. Trends in Food Science & Technology,2020,103:36−48.
    [2]
    FIJAN S. Microorganisms with claimed probiotic properties: An overview of recent literature[J]. International Journal of Environmental Research and Public Health,2014,11(5):4745−4767. doi: 10.3390/ijerph110504745
    [3]
    王烁, 姜静, 杜仁鹏, 等. 乳酸菌胞外多糖的生物合成、特性和应用[J]. 生物技术,2022,32(3):394−401. [WANG S, JIANG J, DU R P, et al. Biosynthesis, characterization and application of exopolysaccharides from lactic acid bacteria[J]. Biotechnology,2022,32(3):394−401.

    WANG S, JIANG J, DU R P, et al, Biosynthesis, characterization and application of exopolysaccharides from lactic acid bacteria[J]. Biotechnology, 2022, 32(3): 394-401.
    [4]
    BADEL S, BERNARDI T, MICHAUD P. New perspectives for Lactobacilli exopolysaccharides[J]. Biotechnology Advances,2011,29(1):54−66. doi: 10.1016/j.biotechadv.2010.08.011
    [5]
    ZEIDANA A, POULSEN V K, JANZEN T, et al. Polysaccharide production by lactic acid bacteria: From genes to industrial applications[J]. FEMS Microbiology Reviews,2017,41(1):S168−S200.
    [6]
    黄承敏, 陈绮, 游善兵, 等. 乳酸菌胞外多糖的分类及生物活性研究进展[J]. 中国乳业,2019(9):59−62. [HUANG C M, CHEN Q, YOU S B, et al. Advances in classification and biological activities of exopolysaccharides from lactic acid bacteria[J]. China Dairy,2019(9):59−62.

    HUANG C M, CHEN Q, YOU S B, et al, Advances in classification and biological activities of exopolysaccharides from lactic acid bacteria[J]. China Dairy, 2019(9): 59−62.
    [7]
    李洋. 肠膜明串珠菌SN-8胞外多糖分离纯化、结构鉴定及功能特性研究[D]. 沈阳: 沈阳农业大学, 2020

    LI Y. Isolation, purification, structural identification and functional properties of extracelluar polysaccharide from Leuconosyoc mesenteroides SN-8[D]. Shenyang: Shenyang Agricultural University, 2020.
    [8]
    游勇飞. 太空环境对链球菌菌体多糖分子表达的影响[D]. 广州: 南方医科大学, 2009, 22(7): 676−678

    YOU Y F. The effection of polysaccharide’s expression of Strptococcus in space environment[D]. Guangzhou: Southern Medical University, 2009, 22(7): 676−678.
    [9]
    黄力, 刘功良, 费永涛, 等. 微生物航天育种及其在发酵食品微生物中的应用研究概述[J]. 食品与发酵工业,2021,47(9):321−327. [HUANG L, LIU G L, FEI Y T, et al. Microbial space breeding and its applications in fermented food industry[J]. Food and Fermentation Industries,2021,47(9):321−327.

    HUANG L, LIU G L, FEI Y T, et al, Microbial space breeding and its applications in fermented food industry[J]. Food and Fermentation Industries, 2021, 47(9): 321−327.
    [10]
    WANG J P, LIU Y, ZHAO G X, et al. Integrated proteomic and metabolomic analysis to study the effects of spaceflight on Candida albicans[J]. BMC Genomics,2020,21:57. doi: 10.1186/s12864-020-6476-5
    [11]
    BAI P, ZHANG B, ZHAO X, et al. Decreased metabolism and increased tolerance to extreme environments in Staphylococcus warneri during long-term spaceflight[J]. Microbiology Open,2019,8(12):e917.
    [12]
    Liu C T. The theory and application of space microbiology: China's experiences in space experiments and beyond[J]. Environmental Microbiology,2017,19(2):426−433. doi: 10.1111/1462-2920.13472
    [13]
    王莹, 孙二娜, 隋馨瑶, 等. 航天搭载对嗜热链球菌G2的诱变作用及发酵性能评价[J]. 食品与发酵工业,2018,44(8):65−70. [WANG Y, SUN E N, SUI X Y, et al. Mutagenesis effect of space mutation on Streptococcus thermophilus and its fermentation performance evaluation[J]. Food and Fermentation Industries,2018,44(8):65−70.

    WANG Y, SUN E N, SUI X Y, et al, Mutagenesis effect of space mutation on Streptococcus thermophilus and its fermentation performance evaluation[J]. Food and Fermentation Industries, 2018, 44(8): 65−70.
    [14]
    隋馨瑶. 航天诱变副干酪乳杆菌L105的产酸特性及机理研究[D]. 兰州: 甘肃农业大学, 2018

    SUI X Y. Acidphilic characteristics and mechanism of Lactobacillus paracei L105 induced by space flight[D]. Lanzhou: Gansu Agricultural University, 2018.
    [15]
    CHI Y, WANG X J, LI F, et al. Aerospace technology improves fermentation potential of microorganisms[J]. Frontiers in Microbiology,2022,13:896556−896556. doi: 10.3389/fmicb.2022.896556
    [16]
    卢承蓉, 叶美芝, 上官文丹, 等. 高产胞外多糖乳酸菌的诱变育种及其益生特性[J]. 食品与发酵工业,2020,46(12):14−20. [LU C R, YE M Z, SHANGGUAN W D, et al. Mutation breeding for high-yield exopolysaccharide lactic acid bacteria and evaluation of its probiotic properties[J]. Food and Fermentation Industries,2020,46(12):14−20. doi: 10.13995/j.cnki.11-1802/ts.023807

    LU C R, YE M Z, SHANGGUAN W D, et al. Mutation breeding for high-yield exopolysaccharide lactic acid bacteria and evaluation of its probiotic properties[J]. Food and Fermentation Industries, 2020, 46(12): 14-20. doi: 10.13995/j.cnki.11-1802/ts.023807
    [17]
    王彦平, 娄芳慧, 陈月英, 等. 苯酚-硫酸法测定紫山药多糖含量的条件优化[J]. 食品研究与开发, 2021, 42(4): 170−174

    WANG Y P, LOU F H, CHEN Y Y, et al, Optimization of analytical conditions for the determination of polysaccharides contents in purple yam by phenol-sulfuric acid method[J]. Food Research and Development, 2021, 42(4): 170−174.
    [18]
    彭嘉屹, 上官文丹, 张孟雨, 等. 淬灭副溶血弧菌群体感应的乳酸菌益生特性研究[J]. 食品工业科技,2023,44(8):180−186. [PENG J Y, SHANGGUAN W D, ZHANG M Y, et al. Study on probiotic properties of lactic acid bacteria quenching quorum-sensing of Vibrio parahaemolyticus[J]. Science and Technology of Food Industry,2023,44(8):180−186. doi: 10.13386/j.issn1002-0306.2022070186

    PENG J Y, SHANGGUAN W D, ZHANG M Y, et al. Study on probiotic properties of lactic acid bacteria quenching quorum-sensing of Vibrio parahaemolyticus[J]. Science and Technology of Food Industry, 2023, 44(8): 180-186. doi: 10.13386/j.issn1002-0306.2022070186
    [19]
    焦时阳, 王晓彤, 侯玉新, 等. 柿子醋醪中优良乳酸菌的筛选及其耐受性和功能性分析[J]. 食品工业科技,2023,44(8):161−169. [JIAO S Y, WANG X T, HOU Y X, et al. Screening of superior lactic acid bacteria in persimmon vinegar broth and analysis of its tolerance and function[J]. Science and Technology of Food Industry,2023,44(8):161−169. doi: 10.13386/j.issn1002-0306.2022070040

    JIAO S Y, WANG X T, HOU Y X, et al. Screening of superior lactic acid bacteria in persimmon vinegar broth and analysis of its tolerance and function[J]. Science and Technology of Food Industry, 2023, 44(8): 161-169. doi: 10.13386/j.issn1002-0306.2022070040
    [20]
    向宬屹. 一种复合益生菌菌剂的制备及在羔羊养殖中的应用[D]. 兰州: 兰州理工大学, 2022

    XIANG C Y. Preparation of a compound probiotic bacterial agent and its application in lamb breeding[D]. Lanzhou: Lanzhou University of Technology, 2022.
    [21]
    WANG D, ZHANG T, YE H, et al. In vitro probiotic screening and evaluation of space-induced mutant Lactobacillus plantarum[J]. Food Science & Nutrition,2020,8(11):6031−6036.
    [22]
    ZHANG L, LIU C, LI D, et al. Antioxidant activity of an exopolysaccharide isolated from Lactobacillus plantarum C88[J]. International Journal of Biological Macromolecules,2013,54:270−275. doi: 10.1016/j.ijbiomac.2012.12.037
    [23]
    LI J Y, JIN M M, MENG J, et al. Exopolysaccharide from Lactobacillus planterum LP6: Antioxidation and the effect on oxidative stress[J]. Carbohydrate Polymers,2013,98(1):1147−1152. doi: 10.1016/j.carbpol.2013.07.027
    [24]
    LI C, HUANG Q, FU X, et al. Characterization, antioxidant and immunomodulatory activities of polysaccharides from Prunella vulgaris Linn.[J]. International Journal of Biological Macromolecules,2015,75:298−305. doi: 10.1016/j.ijbiomac.2015.01.010
    [25]
    CHEN Y X, LIU X Y, ZHENG X, et al. Antioxidant activities of polysaccharides obtained from Chlorella pyrenoidosa via different ethanol concentrations[J]. International Journal of Biological Macromolecules,2016,91:505−509.
    [26]
    WANG C, LI W W, CHEN Z Q, et al. Effects of simulated gastrointestinal digestion in vitro on the chemical properties, antioxidant activity, α-amylase and α-glucosidase inhibitory activity of polysaccharides from Inonotus obliquus[J]. Food Research International,2018,103:280−288. doi: 10.1016/j.foodres.2017.10.058
    [27]
    JIANG B, WANG L, ZHU M, et al. Separation, structural characteristics and biological activity of lactic acid bacteria exopolysaccharides separated by aqueous two-phase system[J]. LWT-Food Science and Technology,2021,147:111617. doi: 10.1016/j.lwt.2021.111617
    [28]
    张俊. 甘南传统牦牛酸奶中抗氧化菌株分离、诱变及筛选[D]. 兰州: 甘肃农业大学, 2020

    ZHANG J. Isolation, mutation and screening of antioxidant strains in Gannan traditional yak yogurt[D]. Lanzhou: Gansu Agricultural University, 2020.
    [29]
    费苏, 夏永军, 艾连中, 等. 乳酸菌在肠道内黏附定殖的研究进展[J]. 工业微生物,2020,50(2):58−62. [FEI S, XIA Y J, AI L Z, et al. Research progress of lactic acid bacteria colonization in intestine[J]. Industrial Microbiology,2020,50(2):58−62.

    FEI S, XIA Y J, AI L Z, et al, Research progress of lactic acid bacteria colonization in intestine[J]. Industrial Microbiology, 2020, 50(2): 58−62.
    [30]
    DUARY R K, RAJPUT Y S, BATISH V K, et al. Assessing the adhesion of putative indigenous probiotic Lactobacilli to human colonic epithelial cells methods[J]. Indian Journal of Medical Research,2011,134:664−671. doi: 10.4103/0971-5916.90992
    [31]
    文鹏程, 隋馨瑶, 孙二娜, 等. 航天诱变高产酸副干酪乳杆菌A-4-2性质与酶活性研究[J]. 农业机械学报,2019,50(1):346−353. [WEN P C, SUI X Y, SUN E N, et al. Characteristics and enzyme activity of Lactobacillus paracasei A-4-2 produced by space mutation[J]. Transactions of the Chinese Society for Agricultural Machinery,2019,50(1):346−353. doi: 10.6041/j.issn.1000-1298.2019.01.039

    WEN P C, SUI X Y, SUN E N, et al. Characteristics and enzyme activity of Lactobacillus paracasei A-4-2 produced by space mutation[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(1): 346-353. doi: 10.6041/j.issn.1000-1298.2019.01.039
    [32]
    BAI Y Y, LUO B L, ZHANG Y, et al. Exopolysaccharides produced by Pediococcus acidilactici MT41-11 isolated from camel milk: Structural characteristics and bioactive properties[J]. International Journal of Biological Macromolecules,2021,185:1036−1049. doi: 10.1016/j.ijbiomac.2021.06.152
    [33]
    AVINASH K L, LATHA D, YOUNUS M T, et al. Physicochemical and functional characterization of mannan exopolysaccharide from Weissella confusa MD1 with bioactivities[J]. International Journal of Biological Macromolecules,2020,143(C):797−805.
    [34]
    刘刚. 高产胞外多糖嗜热链球菌菌株的诱变选育、发酵剂制备和益生功能研究[D]. 兰州: 甘肃农业大学, 2019

    LIU G. Mutation breeding, fermentation preparation and probiotic function of high-yield extracellular polysaccharide Streptococcus thermophilus strains[D]. Lanzhou: Gansu Agricultural University, 2019.
    [35]
    BUSTOS A, SAAVEDRA L, VALDEZ G, et al. Relationship between bile salt hydrolase activity, changes in the internal pH and tolerance to bile acids in lactic acid bacteria[J]. Biotechnology Letters,2012,34(8):1511−1518. doi: 10.1007/s10529-012-0932-5
    [36]
    赵丹, 曹慧莹, 孙梦, 等. 假肠膜明串珠菌HDL-3胞外多糖的分离纯化及结构性质分析[J]. 食品工业科技,2022,43(21):115−122. [ZHAO D, CAO H Y, SUN M, et al. Isolation, purification and structural properties analysis of exopolysaccharide from Leuconostoc pseudointestinalis HDL-3[J]. Science and Technology of Food Industry,2022,43(21):115−122.

    ZHAO D, CAO H Y, SUN M, et al. Isolation, purification and structural properties analysis of exopolysaccharide from Leuconostoc pseudointestinalis HDL-3[J]. Science and Technology of Food Industry: 2022, 43(21): 115−122.
    [37]
    方伟, 李佳佳, 耿伟涛, 等. 发酵乳杆菌CECT 5716产胞外多糖培养基成分优化及抗氧化活性研究[J]. 中国酿造,2022,41(11):187−192. [FANG W, LI J J, GENG W T, et al. Optimization for medium components of exopolysaccharide production by Lactobacillus fermentum CECT 5716 and antioxidant activity[J]. China Brewing,2022,41(11):187−192.

    FANG W, LI J J, GENG W T, et al. Optimization for medium components of exopolysaccharide production by Lactobacillus fermentum CECT 5716 and antioxidant activity[J]. China Brewing, 2022, 41(11): 187-192.
    [38]
    FENG T, WANG J. Oxidative stress tolerance and antioxidant capacity of lactic acid bacteria as probiotic: A systematic review[J]. Gut Microbes,2020,12(1):1801944. doi: 10.1080/19490976.2020.1801944
    [39]
    AMARETTI A, NUNZIO M, POMPEI A, et al. Antioxidant properties of potentially probiotic bacteria: In vitro and in vivo activities[J]. Applied Microbiology and Biotechnology,2013,97:809−817. doi: 10.1007/s00253-012-4241-7
    [40]
    SAJADIMAJD S, BAHRAMI G, DAGLIA M, et al. Plant-derived supplementary carbohydrates, polysaccharides and oligosaccharides in management of diabetes mellitus: A comprehensive review[J]. Food Reviews International,2019,35(6):563−586. doi: 10.1080/87559129.2019.1584818
    [41]
    刘滔. 产胞外多糖乳酸菌的筛选及其多糖的结构和体外功能的研究[D]. 四川: 四川农业大学, 2019

    LIU T. Screening of exopolysaccharide-producing lactic acid bacteria and structural characterization and bioactivities of exopolysaccharide[D]. Sichuan: Sichuan Agricultural University, 2019.
    [42]
    SASIKUMAR K, VAIKKATH D K, DEVENDRA L, DEVENDRA L, et al. An exopolysaccharide (EPS) from a Lactobacillus plantarum BR2 with potential benefits for making functional foods[J]. Bioresource Technology,2017,241:1152−1156. doi: 10.1016/j.biortech.2017.05.075
    [43]
    张宇. 副干酪乳杆菌胞外多糖降血糖作用机制的研究[D]. 哈尔滨: 东北农业大学, 2021

    ZHANG Y. Research on the mechanism of lowering blood sugar by Lactobacillus paracasei exopolysaccharide[D]. Harbin: Northeast Agricultural University, 2021.
  • Related Articles

    [1]ZHANG Lijing, HUA Yufei, ZHANG Caimeng, KONG Xiangzhen, LI Xingfei, CHEN Yeming. Effects of Protein Content on the Texture, Rheological Properties and Microstructure of Stirred Soy Yogurt[J]. Science and Technology of Food Industry, 2024, 45(24): 118-124. DOI: 10.13386/j.issn1002-0306.2024030054
    [2]ZHAO Xiao, DU Kun, ZHANG Yuan. Effect of Inulin on the Texture, Rheological Properties, and Microstructure of Synbiotic Yogurt[J]. Science and Technology of Food Industry, 2023, 44(1): 72-77. DOI: 10.13386/j.issn1002-0306.2022030241
    [3]LIU Ran, ZENG Qinghua, LIANG Ming, WANG Lei, CHENG Shuang. Effects of Xanthan Gum on Rheological Properties and Microstructure of Soy Protein Isolate Gel[J]. Science and Technology of Food Industry, 2022, 43(4): 65-72. DOI: 10.13386/j.issn1002-0306.2021060103
    [4]HUANG Yan-ling, REN Hao-tian. Effect of Spray Drying Temperature on Microstructure of Enzyme-assisted Aqueous Extraction Soybean Concentrated Protein Powder[J]. Science and Technology of Food Industry, 2020, 41(24): 50-54. DOI: 10.13386/j.issn1002-0306.2020030225
    [5]QI Ming-ming, GUO Peng, WANG Chen-jie, DONG Shuang, MA Cheng-ye. Research Progress of the Effects of Extrusion on Microstructure and Physicochemical Properties of Starch[J]. Science and Technology of Food Industry, 2020, 41(5): 305-310. DOI: 10.13386/j.issn1002-0306.2020.05.050
    [6]ZHANG Xiao-hong, WAN Zhong-min, SUN Jun, CHEN Pei-dong, LIU Bing. Effect of microwave treatment on RVA spectrum characteristic values and microstructure of rice[J]. Science and Technology of Food Industry, 2017, (12): 87-91. DOI: 10.13386/j.issn1002-0306.2017.12.016
    [7]JIANG Yuan-yuan, YING Tie-jin. Research of additives on texture property and microstructure of Yuba[J]. Science and Technology of Food Industry, 2017, (08): 300-305. DOI: 10.13386/j.issn1002-0306.2017.08.050
    [8]XU Jing-bing, WANG Ren, YU Qiu-sheng, FENG Wei, WANG Li, LUO Xiao-hu, LI Ya-nan, ZHANG Ming-wei, CHEN Zheng-xing. Effect of protein content on the microstructure and functional properties of indica rice flour[J]. Science and Technology of Food Industry, 2016, (17): 59-63. DOI: 10.13386/j.issn1002-0306.2016.17.003
    [9]Effects of spice extract on the textural properties and microstructure of beef balls during frozen storage[J]. Science and Technology of Food Industry, 2013, (16): 300-303. DOI: 10.13386/j.issn1002-0306.2013.16.050
    [10]Research progress in improvement of gel strength of gelatin based on microstructure[J]. Science and Technology of Food Industry, 2013, (13): 395-399. DOI: 10.13386/j.issn1002-0306.2013.13.085
  • Cited by

    Periodical cited type(6)

    1. 杜鑫,易珊珊,何家国,覃明丽,苏旭,陈绍辉,蒋金芳. 快速滤过型净化结合超高效液相色谱-串联质谱法测定茶叶中5种农药残留量. 云南师范大学学报(自然科学版). 2024(02): 54-60 .
    2. 王瑞琛,张婷,伏广想,陈冠涛. 荧光碳量子点传感器检测食品中农药残留的研究进展. 中国食品添加剂. 2024(04): 295-299 .
    3. 彭汝林,刘媛媛,李海波,杜业刚,罗淙岚,朱雨田. 液相色谱-串联三重四极杆质谱仪快速测定鱼腥草中152种农药残留. 粮食与油脂. 2024(12): 154-162 .
    4. 袁列江,王秀,李政,朱礼,邓航. 快速滤过型净化法结合超高效液相色谱串联质谱法测定动物源性食品中四唑虫酰胺残留. 食品与机械. 2024(10): 46-52 .
    5. 程似锦,李恒,谢裕. UPLC-MS/MS法测定加味藿香正气丸中29种禁用农药残留. 广东化工. 2023(18): 159-164 .
    6. 杜鑫,何家国,易珊珊,陈绍辉. 快速滤过型净化结合超高效液相色谱-串联质谱法测定茶叶中氟虫腈及其代谢物残留量. 农药科学与管理. 2023(11): 35-44 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (197) PDF downloads (32) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return