LIU Ran, ZENG Qinghua, LIANG Ming, et al. Effects of Xanthan Gum on Rheological Properties and Microstructure of Soy Protein Isolate Gel[J]. Science and Technology of Food Industry, 2022, 43(4): 65−72. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021060103.
Citation: LIU Ran, ZENG Qinghua, LIANG Ming, et al. Effects of Xanthan Gum on Rheological Properties and Microstructure of Soy Protein Isolate Gel[J]. Science and Technology of Food Industry, 2022, 43(4): 65−72. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021060103.

Effects of Xanthan Gum on Rheological Properties and Microstructure of Soy Protein Isolate Gel

More Information
  • Received Date: June 14, 2021
  • Accepted Date: December 07, 2021
  • Available Online: December 16, 2021
  • Xanthan gum (XG) and soybean protein isolate (SPI) were used as raw materials to prepare XG-SPI mixed gel by ultrasonic pretreatment and glucolactone induction. Rheological tests and scanning electron microscopy were used to study the effects of different concentrations of XG on viscoelasticity, self-healing ability, thermal stability and microstructure of SPI gel. Results showed that SPI gel was a typical viscoelastic material with strong frequency dependence. With the increasing of XG concentration (1%~5%), the elastic modulus and viscous modulus of the mixed gel increased, and the loss tangent decreased, and the gel strength increased. The addition of XG affected the self-healing ability of SPI gel, although the healing time was prolonged, the recovery rate increased. The SPI single gel which was heated (25~100 ℃) occurred a transition of gel-sol state and it structure was extremely damaged. Comparatively, the thermal stability of XG-SPI mix gel increased significantly. The microstructural changes of SPI single gel and XG-SPI mixed gel were not observed under electron microscope. The results of this study could provide important information for developing new soy protein isolate gels with improved quality.
  • [1]
    XI Y A, AL A, DAN L A, et al. Applications of mixed polysaccharide-protein systems in fabricating multi-structures of binary food gels—A review[J]. Trends in Food Science & Technology,2021,109:197−210.
    [2]
    LOPES-DA-SILVA J A, MONTEIRO S R. Gelling and emulsifying properties of soy protein hydrolysates in the presence of a neutral polysaccharide[J]. Food Chemistry, 2019, 294: 216−223.
    [3]
    刘冉, 曾庆华, 王振宇, 等. 超声波处理对大豆分离蛋白凝胶流变性和凝胶形成的影响[J]. 食品工业科技,2020,41(21):95−100,106. [LIU R, ZENG Q H, WANG Z Y, et al. Effects of ultrasonic treatment on gel rheological properties and gel formation of soybean protein isolate[J]. Science and Technology of Food Industry,2020,41(21):95−100,106.
    [4]
    INGRASSIA R, PALAZOLO G G, WAGNER J R, et al. Heat treatments of defatted soy flour: Impact on protein structure, aggregation, and cold-set gelation properties[J]. Food Structure,2019,22:100130. doi: 10.1016/j.foostr.2019.100130
    [5]
    NICOLAI T. Gelation of food protein-protein mixtures[J]. Advances in Colloid and Interface Science,2019,270:147−164. doi: 10.1016/j.cis.2019.06.006
    [6]
    YANG X, LI A, LI X, et al. An overview of classifications, properties of food polysaccharides and their links to applications in improving food textures[J]. Trends in Food Science & Technology,2020,102:1−15.
    [7]
    LAKEMOND C, JONGH H, PAQUES M, et al. Gelation of soy glycinin; influence of pH and ionic strength on network structure in relation to protein conformation[J]. Food Hydrocolloids,2003,17(3):365−377. doi: 10.1016/S0268-005X(02)00100-5
    [8]
    ZHAO H, WANG Y, LI W, et al. Effects of oligosaccharides and soy soluble polysaccharide on the rheological and textural properties of calcium sulfate-induced soy protein gels[J]. Food and Bioprocess Technology,2017,10(3):556−567. doi: 10.1007/s11947-016-1826-7
    [9]
    ZHAO H, CHEN J, HEMAR Y, et al. Improvement of the rheological and textural properties of calcium sulfate- induced soy protein isolate gels by the incorporation of different polysaccharides[J]. Food Chemistry,2020,310(25):125983.1−125983.8.
    [10]
    PERRECHIL F A, BRAGA A, CUNHA R L. Acid gelation of native and heat-denatured soy proteins and locust bean gum[J]. International Journal of Food Science & Technology,2013,48(3):620−627.
    [11]
    MONTEIRO S R, LOPES-DA-SILVA J A. Effect of the molecular weight of a neutral polysaccharide on soy protein gelation[J]. Food Research International,2017,102:14−24. doi: 10.1016/j.foodres.2017.09.066
    [12]
    LEELA J K, SHARMA G. Studies on xanthan production from Xanthomonas campestris[J]. Bioprocess Engineering,2000,23(6):687−689. doi: 10.1007/s004499900054
    [13]
    SINGHVI G, HANS N, SHIVA N, et al. Natural polysaccharides in drug delivery and biomedical applications[M]. Academic press, 2019: 121−144.
    [14]
    曹连鹏, 傅玉颖, 李欣, 等. 酸诱导大豆蛋白凝胶动态变化与流变特性[J]. 中国食品学报,2017,17(11):36−43. [CAO L P, FU Y Y, LI X, et al. Dynamic behavior of acid-induced soybean protein gls and their rheological properties[J]. Journal of Chinese Institute of Food Science and Technology,2017,17(11):36−43.
    [15]
    BRITO-OLIVEIRA T C, BISPO M, MORAES I, et al. Stability of curcumin encapsulated in solid lipid microparticles incorporated in cold-set emulsion filled gels of soy protein isolate and xanthan gum[J]. Food Research International,2017,102:759−767. doi: 10.1016/j.foodres.2017.09.071
    [16]
    刘瑞雪, 周腾, 利月珍, 等. pH调节法制备自愈合明胶/聚甲基丙烯酸甲酯-甲基丙烯酸复合水凝胶[J]. 化工新型材料,2019,47(12):254−257. [LIU R X, ZHOU T, LI Y Z, et al. Preparation of self-healing gelation/PMMS composite hydrogel by pH adjustment[J]. New Chemistry Materials,2019,47(12):254−257.
    [17]
    黄河, 李雅瑜, 郭子砚, 等. 双重响应性生物基自修复凝胶的制备及其性能[J]. 应用化学,2019,36(2):146−154. [HUANG H, LI Y Y, GUO Z Y, et al. Preparation and properties of dual responsive self-healing bio-based hydrogels[J]. Chinese Journal of Applied Chemistry,2019,36(2):146−154. doi: 10.11944/j.issn.1000-0518.2019.02.180106
    [18]
    江连洲, 张潇元, 潘悦, 等. 超声处理大豆分离蛋白与肌原纤维蛋白共混体系乳化性及凝胶性研究[J]. 中国食物与营养,2018,24(2):43−48. [JIANG L Z, ZHANG X Y, PAN Y, et al. Effect of emulsibility and gel properties of ultrasonication treated between soy protein isolate and myofibrillar protein[J]. Food and Nutrition in China,2018,24(2):43−48. doi: 10.3969/j.issn.1006-9577.2018.02.010
    [19]
    CHRONAKIS I S. Network formation and viscoelastic properties of commercial soy protein dispersions: Effect of heat treatment, pH and calcium ions[J]. Food Research International,1996,29(2):123−134. doi: 10.1016/0963-9969(96)00018-X
    [20]
    HU H, LI-CHAN E C Y, WAN L, et al. The effect of high intensity ultrasonic pre-treatment on the properties of soybean protein isolate gel induced by calcium sulfate[J]. Food Hydrocolloids,2013,32(2):303−311. doi: 10.1016/j.foodhyd.2013.01.016
    [21]
    CAVALLIERI A, CUNHA R. The effects of acidification rate, pH and ageing time on the acidic cold set gelation of whey proteins[J]. Food Hydrocolloids,2008,22(3):439−448. doi: 10.1016/j.foodhyd.2007.01.001
    [22]
    BERG L, ROSENBERG Y, BOEKEL M, et al. Microstructural features of composite whey protein/polysaccharide gels characterized at different length scales[J]. Food Hydrocolloids,2009,23(5):1288−1298. doi: 10.1016/j.foodhyd.2008.10.013
    [23]
    ÖZKAN N, XIN H, CHEN X D. Application of a depth sensing indentation hardness test to evaluate the mechanical properties of food materials[J]. Journal of Food Science,2002,67(5):1814−1820. doi: 10.1111/j.1365-2621.2002.tb08728.x
    [24]
    CHANG Y Y, LI D, WANG L J, et al. Effect of gums on the rheological characteristics and microstructure of acid-induced SPI-gum mixed gels[J]. Carbohydrate Polymers,2014,108:183−191. doi: 10.1016/j.carbpol.2014.02.089
    [25]
    董坤, 魏钊, 杨志懋, 等. 自愈合凝胶: 结构、性能及展望[J]. 中国科学:化学,2012,42(6):741−756. [DONG K, WEI D, YANG Z M, et al. Self-healing gels: Structure, performance and future perspective[J]. Science China,2012,42(6):741−756.
    [26]
    LONG Y, JRS A, GEYA C. Viscoelastic behaviour of rapid and slow self-healing hydrogels formed by densely branched arabinoxylans from Plantago ovata seed mucilage[J]. Carbohydrate Polymers,2021,296:118318.
    [27]
    王俊, 张丽冰, 李海燕, 等. 自修复凝胶体系研究进展[J]. 高分子材料科学与工程,2014,30(7):184−190. [WANG J, ZHANG L B, LI H Y, et al. Progress in self-healing gel systems[J]. Polymer Materials Science and Engineering,2014,30(7):184−190.
    [28]
    BLAISZIK B J, KRAMER S, OLUGEBEFOLA S C, et al. Self-healing polymers and composites[J]. Annual Review of Materials Research,2010,40:179−211. doi: 10.1146/annurev-matsci-070909-104532
    [29]
    刘圣雅, 彭媛媛, 张甫生, 等. 酸诱导对大豆蛋白/高酯果胶复合体系凝胶特性的影响[J]. 食品与发酵工业,2019,45(6):104−109. [LIU S Y, PENG Y Y, ZHANG P S, et al. Effect of acid induction on gelling properties of soy protein isolate/high-methoxy pectin complex system[J]. Food and Fermentation Industries,2019,45(6):104−109.
    [30]
    HOU J J, GUO J, WANG J M, et al. Edible double-network gels based on soy protein and sugar beet pectin with hierarchical microstructure[J]. Food Hydrocolloids,2015,50:94−101. doi: 10.1016/j.foodhyd.2015.04.012
    [31]
    TSENG Y C, XIONG Y L. Effect of inulin on the rheological properties of silken tofu coagulated with glucono-delta-lactone[J]. Journal of Food Engineering,2009,90(4):511−516. doi: 10.1016/j.jfoodeng.2008.07.017
  • Cited by

    Periodical cited type(5)

    1. 李志杰,闫睿思,汪秀娟,胡中海,蔡天赐,甄宗圆. 蛋白添加剂增强肉制品凝胶性研究进展. 食品科学. 2024(07): 348-357 .
    2. 曹潇,郭伟滨,林颖琪,林欣然,黄懿迅,夏文杰,陈旭,陈思谦. 采用流变、质构特性及感官评定快速鉴别蒸煮双皮奶和冲调双皮奶. 食品科技. 2024(12): 45-53 .
    3. 郭英. 菜籽蛋白-黄原胶复合物对乳状液稳定性的影响. 食品科技. 2022(02): 279-282 .
    4. 潘泓杉,马高兴,裴斐,马宁,仲磊,赵立艳,胡秋辉. 金针菇多糖对大豆分离蛋白凝胶的增强作用及其结构表征. 食品科学. 2022(20): 102-108 .
    5. 曲敏,王宇,刘琳琳,吴海波,朱颖,张光,朱秀清. 亲水胶体对植物蛋白凝胶影响的研究进展. 食品安全质量检测学报. 2022(22): 7246-7254 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (251) PDF downloads (30) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return