QU Yaning, XU Mengyue, TANG Shuangqing, et al. Effects of the Structure and Antioxidant Activity of Legume Crude Polysaccharides after Bacillus subtilis Fermentation[J]. Science and Technology of Food Industry, 2023, 44(17): 129−138. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022100196.
Citation: QU Yaning, XU Mengyue, TANG Shuangqing, et al. Effects of the Structure and Antioxidant Activity of Legume Crude Polysaccharides after Bacillus subtilis Fermentation[J]. Science and Technology of Food Industry, 2023, 44(17): 129−138. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022100196.

Effects of the Structure and Antioxidant Activity of Legume Crude Polysaccharides after Bacillus subtilis Fermentation

More Information
  • Received Date: October 18, 2022
  • Available Online: July 02, 2023
  • Eight kinds of common edible legumes were fermented by Bacillus subtilis to produce novel legume polysaccharides under the condition of fermentation temperature at 37 ℃ for 7 days, and the changes of molecular weight, infrared spectra and antioxidant activities of the crude polysaccharides before and after fermentation were analyzed. Results showed that, the fermentation by Bacillus subtilis could effectively remove impurities in polysaccharides and improve the purity of crude polysaccharides. Total sugar contents increased from 3.35%~35.63% to 16.61%~77.11% after fermentation. The content of uronic acid in crude polysaccharides significantly increased after fermentation (P<0.05), and the molecular weight of crude polysaccharides increased from 0.45~14.80 kDa to 18.00~56.56 kDa after fermentation. The infrared spectra of crude polysaccharides of beans before and after fermentation also conformed to the characteristics of polysaccharide molecules. The scavenging capacity of broad bean crude polysaccharide to DPPH free radicals was significantly improved (P<0.05). Moreover, the scavenging capacity of cowpea, red bean, mung bean, lentil, broad bean and common bean crude polysaccharides on ABTS+ free radicals were significantly increased (P<0.05). The reduction abilities of eight kinds of crude legume polysaccharides to iron ions were all improved after fermentation (P<0.05). The molecular weight of legume crude polysaccharides was increased and the antioxidant activity of legume crude polysaccharides was affected by using Bacillus subtilis fermentation.
  • [1]
    CHEN F, HUANG G. Antioxidant activity of polysaccharides from different sources of ginseng[J]. International Journal of Biological Macromolecules,2018,125:906−908.
    [2]
    XIAO H, FU X, CAO C, et al. Sulfated modification, characterization, antioxidant and hypoglycemic activities of polysaccharides from Sargassum pallidum[J]. International Journal of Biological Macromolecules,2018,121:407−414.
    [3]
    YANG Y, ZHU Y, REN G. Antioxidant and immunoregulatory activity of alkali-extractable polysaccharides from mung bean[J]. International Journal of Biological Macromolecules,2016,84(5):289−294.
    [4]
    BAI Z, MENG J, HUANG X, et al. Comparative study on antidiabetic function of six legume crude polysaccharides[J]. International Journal of Biological Macromolecules,2020,154:75−81.
    [5]
    JHAN J K, CHANG W F, WANG P M, et al. Production of fermented red beans with multiple bioactivities using co-cultures of Bacillus subtilis and Lactobacillus delbrueckii subsp. bulgaricus[J]. LWT-Food Science and Technology,2015,63(2):1281−1287. doi: 10.1016/j.lwt.2015.03.107
    [6]
    邰佳, 马海英. 玉米须固体发酵的工艺优化研究[J]. 当代化工研究,2022(15):165−167. [TAI J, MA H Y. Study on optimization of solid fermentation process of corn silk[J]. Contemporary Chemical Research,2022(15):165−167.

    [TAI J, MA H Y. Study on optimization of solid fermentation process of corn silk [J]. Contemporary Chemical Research, 2022 (15): 165-167.
    [7]
    LI S, JIN Z, HU D, et al. Effect of solid-state fermentation with Lactobacillus casei on the nutritional value, isoflavones, phenolic acids and antioxidant activity of whole soybean flour[J]. LWT-Food Science and Technology,2020,125:109−264.
    [8]
    BJMA C, NFAR B, ASMHB C. Identification of antioxidant and antibacterial activities for the bioactive peptides generated from bitter beans (Parkia speciosa) via boiling and fermentation processes[J]. LWT,2020,131:109776. doi: 10.1016/j.lwt.2020.109776
    [9]
    李安琪, 黄晓君, 聂少平, 等. 动态高压微射流处理对红芸豆多糖基本结构特征, 流变性质和固体形貌的影响[J]. 食品科学,2020,41(11):97−103. [LI A Q, HUANG X J, NIE S P, et al. Effects of dynamic high pressure microfluidization treatment on basic structural chara-cteristics, rheological properties and solid morphology of red kidney bean polysaccharide[J]. Food Science,2020,41(11):97−103.

    LI A Q, HUANG X J, NIE S P, et al. Effects of dynamic high pressure microfluidization treatment on basic structural chara -cteristics, rheological properties and solid morphology of red kidney bean polysaccharide[J]. Food Science, 2020, 41 (11): 97-103.
    [10]
    HUANG G, CHEN F, YANG W, et al. Preparation, deproteinization and comparison of bioactive polysaccharides[J]. Trends in Food Science & Technology,2021,109:564−568.
    [11]
    陈红, 王大为, 李侠, 等. 不同方法提取大豆多糖的工艺优化研究[J]. 食品科学,2010,31(4):6−10. [CHEN H, WANG D W, LI X, et al. Study on the optimization of extraction process of soybean polysaccharide by different methods[J]. Food Science,2010,31(4):6−10.

    CHEN H, WANG D W, LI X, et al. Study on the optimization of extraction process of soybean polysaccharide by different met -hods[J]. Food Science, 2010, 31(4): 6-10.
    [12]
    刘艺珠, 刘佩冶, 赵玉梅, 等. 黄花菜多糖的表征与抗氧化活性分析[J]. 食品工业科技,2022,43(12):54−61. [LIU Y Z, LIU P Y, ZHAO Y M, et al. Characterization and antioxidant activity analysis of polysaccharides from day lily[J]. Science and Technology of Food Industry,2022,43(12):54−61.

    LIU Y Z, LIU P Y, ZHAO Y M, et al. Characterization and antioxidant activity analysis of polysaccharides from day lily[J]. Sci -ence and Technology of Food Industry, 2022, 43(12): 54-61.
    [13]
    许会生, 张铁军, 赵广荣, 等. 一种测定酸性多糖中糖醛酸和中性糖含量的改良方法[J]. 食品工业科技,2007,28(7):197−199. [XU H S, ZHANG T J, ZHAO G R, et al. An improved method for the determination of uronic acid and neutral sugar in acidic polysaccharides[J]. Science and Technology of Food Industry,2007,28(7):197−199.

    XU H S, ZHANG T J, ZHAO G R, et al. An improved method for the determination of uronic acid and neutral sugar in acidic polysaccharides[J]. Science and Technology of Food Industry, 2007, 28(7): 197-199.
    [14]
    王思琪, 胡彦波, 翟丽媛, 等. 豆渣可溶酸性多糖的分离纯化及结构解析[J]. 食品科学,2021,42(10):52−57. [WANG S Q, HU Y B, ZHAI L Y, et al. Purification and structure analysis of soluble acidic polysaccharides from soybean dregs[J]. Food Science,2021,42(10):52−57.

    WANG S Q, HU Y B, ZHAI L Y, et al. Purification and structure analysis of soluble acidic polysaccharides from soybean dr -egs[J]. Food Science, 2021, 42(10): 52-57.
    [15]
    张轶斌, 刘鹏, 纪海玉, 等. 绿茶多糖提取工艺优化及其抗氧化活性分析[J]. 食品工业科技,2022,43(20):220−227. [ZHANG Y B, LIU P, JI H Y, et al. Optimization of extraction process of green tea polysaccharide and analysis of its antioxidant activity[J]. Science and Technology of Food Industry,2022,43(20):220−227.

    [ZHANG Y B, LIU P, JI H Y, et al. Optimization of extraction process of green tea polysaccharide and analysis of its antioxidan -t activity[J]. Science and technology of food industry, 2022, 43(20): 220-227.
    [16]
    HONG T, YIN J, NIE S, et al. Applications of infrared spectroscopy in polysaccharide structural analysis: Progress, challenge and perspective.[J]. Food Chemistry:X,2021,12:100168. doi: 10.1016/j.fochx.2021.100168
    [17]
    辛玥, 宋萧萧, 王玉箫, 等. 豇豆不同部位多糖结构特征及抗氧化性能比较[J]. 食品科学,2022,43(16):61−67. [XIN Y, SONG X X, WANG Y X, et al. Comparison of structural characteristics and antioxidant properties of polysaccharides from different parts of cowpea[J]. Food Science,2022,43(16):61−67.

    XIN Y, SONG X X, WANG Y X, et al. Comparison of structural characteristics and antioxidant properties of polysaccharides f -rom different parts of cowpea[J]. Food Science, 2022, 43(16): 61-67.
    [18]
    JIANG L, WANG W, WEN P, et al. Two water-soluble polysaccharides from mung bean skin: Physicochemical characterization, antioxidant and antibacterial activities[J]. Food Hydrocolloids,2019,100:105412.
    [19]
    ZHAO Z, LIU P, WANG S, et al. Optimization of ultrasound, microwave and soxhlet extraction of flavonoids from Millettia speciosa Champ. and evaluation of antioxidant activities in vitro[J]. Journal of Food Measurement Charactrization,2017,11(4):1947−1958. doi: 10.1007/s11694-017-9577-3
    [20]
    邓文亚, 徐婧婷, 郭顺堂, 等. 火麻仁蛋白与大豆蛋白的营养评价及比较[J]. 食品工业科技,2021,42(23):273−279. [[DENG W Y, XU J T, GUO S T, et al. Comparative study on nutritional evaluation of hemp seed proteinand soybean protein[J]. Science and Technology of Food Industry,2021,42(23):273−279.

    [DENG W Y, XU J T, GUO S T, et al. Comparative study on nutritional evaluation of hemp seed proteinand soybean protein[J]. Science and Technology of Food Industry, 2021, 42(23): 273-279.
    [21]
    白海娜. 植物及食用菌多糖的提取, 分离纯化及结构分析[J]. 食品安全导刊,2021,27(22):32−35. [BAI H N. Extraction, purification and structural analysis of polysaccharides from plants and edible fungi[J]. Food Safety Guide,2021,27(22):32−35.

    BAI H N. Extraction, purification and structural analysis of polysaccharides from plants and edible fungi[J]. Food Safety Guide, 2021, 27(22): 32-35.
    [22]
    胡彦波, 翟丽媛, 刘扬, 等. 薇菜多糖的分离纯化及体外抗氧化活性[J]. 食品科学,2022,43(1):59−66. [HU Y B, ZHAI L Y, LIU Y, et al. Isolation and purification of osmunda osmunda polysaccharide and its antioxidant activity in vitro[J]. Food Science,2022,43(1):59−66.

    HU Y B, ZHAI L Y, LIU Y, et al. Isolation and purification of osmunda osmunda polysaccharide and its antioxidant activity in vitro[J]. Food Science, 2022, 43(1): 59-66.
    [23]
    吴伟菁, 陈家凤, 赵海军, 等. 加工方式对黄精多糖的结构和活性影响的研究进展[J]. 食品工业科技,2022,43(17):482−493. [WU W J, CHEN J F, ZHAO H J, et al. Research progress on the effect of processing methods on the structure and activity of polygonatum polysaccharides[J]. Science and Technology of Food Industry,2022,43(17):482−493.

    WU W J, CHEN J F, ZHAO H J, et al. Research progress on the effect of processing methods on the structure and activity of p -olygonatum polysaccharides[J]. Science and Technology of Food Industry, 2022, 43(17): 482-493.
    [24]
    王永霞, 孙敏, 李惟栋, 等. 基于多糖合成酶活性鸡腿菇多糖发酵条件优化及其结构和功能特性研究[J]. 食品科技,2021,46(5):161−167. [WANG Y X, SONG M, LI W D, et al. Optimization of fermentation conditions for intracellular polysaccharide of coprinus comatus based on polysaccharide synthase activity and its structure and functional characteristics[J]. Food Science and Technology,2021,46(5):161−167.

    [WANG Y X, SONG M, LI W D, et al. Optimization of fermentation conditions for intracellular polysaccharide of coprinus comatus based on polysaccharide synthase activity and its structure and functional characteristics[J]. Food Science and Technology, 2021, 46(5): 161-167.
    [25]
    LAI F, WEN Q, LI L, et al. Antioxidant activities of water-soluble polysaccharide extracted from mung bean (Vigna radiata L.) hull with ultrasonic assisted treatment[J]. Carbohydrate Polymers,2010,81(2):323−329. doi: 10.1016/j.carbpol.2010.02.011
    [26]
    HE P, ZHANG A, ZHANG F, et al. Structure and bioactivity of a polysaccharide containing uronic acid from Polyporus umbellatus sclerotia[J]. Carbohydrate Polymers,2016,152:222−230. doi: 10.1016/j.carbpol.2016.07.010
    [27]
    艾于杰. 抗氧化活性茶多糖构效关系研究[D]. 武汉: 华中农业大学, 2019.

    AI Y J. Study on the structure-activity relationship of antioxidant tea polysaccharides[D]. Wuhan: Huazhong Agricultural University, 2019.
    [28]
    SHEN S G, JIA S R, WU Y K, et al. Effect of culture conditions on the physicochemical properties and antioxidant activities of polysaccharides from Nostoc flagelliforme[J]. Carbohydrate Polymers,2018,198:426−433. doi: 10.1016/j.carbpol.2018.06.111
    [29]
    HUANG L, ZHAO J, Wei Y, et al. Structural characterization and mechanisms of macrophage immunomodulatory activity of a pectic polysaccharide from Cucurbita moschata Duch.[J]. Carbohydrate Polymers,2021,269(2):118288.
    [30]
    FENG S, LUAN D, NING K, et al. Ultrafiltration isolation, hypoglycemic activity analysis and structural characterization of polysaccharides from Brasenia schreberi[J]. International Journal of Biological Macromolecules,2019,135:141−151. doi: 10.1016/j.ijbiomac.2019.05.129
    [31]
    WU Q, LUO M, YAO X, et al. Purification, structural characterization, and antioxidant activity of the COP-W1 polysaccharide from Codonopsis tangshen Oliv.[J]. Carbohydrate Polymers,2020,236:116020. doi: 10.1016/j.carbpol.2020.116020
    [32]
    SIU KA-CHAI, CHEN X, WU J Y. Constituents actually responsible for the antioxidant activities of crude polysaccharides isolated from mushrooms[J]. Journal of Functional Foods,2014,11:548−556. doi: 10.1016/j.jff.2014.08.012
    [33]
    文愉熙, 黄晓舟, 林晓思. 裸藻非水溶性和水溶性多糖的化学组成及抗氧化活性分析[J]. 食品工业科技,2022,43(5):105−113. [WEN Y X, HUANG X Z, LIN X S. Chemical composition and antioxidant activity analysis of water soluble and non water soluble polysaccharides from Euglena sp

    J]. Science and Technology of Food Industry,2022,43(5):105−113.
    [34]
    梁杉, 王琨, 刘佩瑶, 等. 山药多糖结构、生物活性及其机制研究进展[J]. 食品科学,2022,43(23):296−304. [LIANG S, WANG K, Liu P Y, et al. Research progress on structure, biological activity and mechanism of yam polysaccharides[J]. Food Science,2022,43(23):296−304.

    [LIANG S, WANG K, Liu P Y, et al. Research progress on structure, biological activity and mechanism of yam polysaccharides [J] Food Science, 2022, 43(23): 296-304.
    [35]
    羌宇. 类胡萝卜素体外抗氧化、抗肿瘤活性及其构效关系初步研究[D]. 南昌: 南昌大学, 2020.

    QIANG Y. Preliminary study on in vitro antioxidant and anti-tumor activity of carotenoids[D]. Nanchang: Nanchang University, 2020.
  • Cited by

    Periodical cited type(4)

    1. 季佳琪,李明初,李冬霞,谭雅宁,高爽,王颉,牟建楼. 高温蒸煮结合蜗牛酶法改性葡萄皮不溶性膳食纤维工艺优化及体外降血糖作用. 食品工业科技. 2024(16): 249-258 . 本站查看
    2. 林良美,肖少香,张丽红. 响应面优化复合酶法提取红薯皮膳食纤维. 粮食科技与经济. 2024(04): 96-100+115 .
    3. 竹娟,王译晗,陈立莉,曲文鑫,刘荣. 芍药花提取物中黄酮的测定及其体外抗氧化和降脂活性研究. 天然产物研究与开发. 2024(11): 1838-1844+1899 .
    4. 赵习爱,傅婧,任娟蕊. 燕麦萌动对膳食纤维结构和功能的影响. 食品与发酵工业. 2024(24): 229-237 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (276) PDF downloads (50) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return