HAN Chunran, YUE Zhenge, YU Shiyou, et al. Progress in Ni-based Electrochemical Sensors for Glucose Detection[J]. Science and Technology of Food Industry, 2023, 44(14): 482−489. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022100194.
Citation: HAN Chunran, YUE Zhenge, YU Shiyou, et al. Progress in Ni-based Electrochemical Sensors for Glucose Detection[J]. Science and Technology of Food Industry, 2023, 44(14): 482−489. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022100194.

Progress in Ni-based Electrochemical Sensors for Glucose Detection

More Information
  • Received Date: October 18, 2022
  • Available Online: May 14, 2023
  • The transition metal Ni is widely used because of its low price, fast electron transfer rate and high catalytic activity. The electrochemical performance of the sensor will be improved by combining metallic Ni with other materials through different preparation methods. This combination can be applied to glucose detection in the food industry, health care and other fields. This paper reviews the methods of constructing electrodes from metal Ni-based composites and the effects of metal Ni compounded with carbon materials, monometallics, metal oxides, and metal hydroxides on sensor performance for the construction of high-performance electrochemical sensors and the practical application of glucose detection.
  • [1]
    王艳, 程美佳, 谢金晖, 等. 葡萄糖无酶快检技术研究进展[J]. 食品工业科技,2022,43(23):467−476. [WANG Y, CHENG M J, XIE J H, et al. Research progress in glucose enzyme-free rapid detection technology[J]. Science and Technology of Food Industry,2022,43(23):467−476.

    WANG Y, CHENG M J, XIE J H, et al. Research progress in glucose enzyme-free rapid detection technology[J]. Science and Technology of Food Industry, 2022, 43(23): 467-476.
    [2]
    杨宇祥, 吴彬, 林海军, 等. 无创血糖检测技术研究进展[J]. 分析测试学报,2022,41(4):578−586. [YANG Y X, WU B, LIN H J, et al. Research progress on non-invasive blood glucose detection techniques[J]. Journal of Instrumental Analysis,2022,41(4):578−586. doi: 10.19969/j.fxcsxb.21093001

    YANG Y X, WU B, LIN H J, et al. Research progress on non-invasive blood glucose detection techniques[J]. Journal of Instrumental Analysis, 2022, 41(4): 578-586. doi: 10.19969/j.fxcsxb.21093001
    [3]
    CHEN Y, TIAN Y, ZHU P, et al. Electrochemically activated conductive Ni-based MOFs for non-enzymatic sensors toward long-term glucose monitoring[J]. Frontiers in Chemistry,2020,8:602752. doi: 10.3389/fchem.2020.602752
    [4]
    CHEN P, LIU L, CHENG Z, et al. Structure elucidation and in vitro rat intestinal fermentation properties of a novel sulfated glucogalactan from Porphyra haitanensis[J]. Food Science and Human Wellness,2023,12(2):596−606. doi: 10.1016/j.fshw.2022.07.062
    [5]
    BATOOI R, RHOUATI A, NAWAZ M H, et al. A review of the construction of nano-hybrids for electrochemical biosensing of glucose[J]. Biosensors,2019,9(1):46. doi: 10.3390/bios9010046
    [6]
    LEI L, HUANG D, CHENG M, et al. Defects engineering of bimetallic Ni-based catalysts for electrochemical energy conversion[J]. Coordination Chemistry Reviews,2020,418:213372. doi: 10.1016/j.ccr.2020.213372
    [7]
    SAIRA F, YAQUB A, RAZZAQ H, et al. Hollow nanocages for electrochemical glucose sensing: A comprehensive review[J]. Journal of Molecular Structure, 2022: 133646.
    [8]
    XUAN X, QIAN M, PAN L, et al. A longitudinally expanded Ni-based metal–organic framework with enhanced double nickel cation catalysis reaction channels for a non-enzymatic sweat glucose biosensor[J]. Journal of Materials Chemistry B,2020,8(39):9094−9109. doi: 10.1039/D0TB01657H
    [9]
    HANDA Y, WATANABE K, CHIHARA K, et al. The mechanism of electro-catalytic oxidation of glucose on manganese dioxide electrode used for amperometric glucose detection[J]. Journal of the Electrochemical Society,2018,165(11):H742. doi: 10.1149/2.0781811jes
    [10]
    ESCALONA-VILLAIPANDO R A, GURROIA M P, TREJO G, et al. Electrodeposition of gold on oxidized and reduced graphite surfaces and its influence on glucose oxidation[J]. Journal of Electroanalytical Chemistry,2018,816:92−98. doi: 10.1016/j.jelechem.2018.03.037
    [11]
    LOPA N S, RAHMAN M M, AHMED F, et al. A Ni-based redox-active metal-organic framework for sensitive and non-enzymatic detection of glucose[J]. Journal of Electroanalytical Chemistry,2018,822:43−49. doi: 10.1016/j.jelechem.2018.05.014
    [12]
    GAO J, MENG T, LU S, et al. Manganese-doped tremella-like nickel oxide as biomimetic sensors toward highly sensitive detection of glucose in human serum[J]. Journal of Electroanalytical Chemistry,2020,863:114071. doi: 10.1016/j.jelechem.2020.114071
    [13]
    DOWNES N, CHEEK Q, MAIDONADO S. Electroreduction of perchlorinated silanes for Si electrodeposition[J]. Journal of the Electrochemical Society,2021,168(2):022503. doi: 10.1149/1945-7111/abda58
    [14]
    TAKEI T, FUSE H, MIURA A, et al. Topotactic transformation of Ni-based layered double hydroxide film to layered metal oxide and hydroxide[J]. Applied Clay Science,2016,124:236−242.
    [15]
    GHOSH M P, MUKHERJEE S. Dielectric and electrical characterizations of transition metal ions-doped nanocrystalline nickel ferrites[J]. Applied Physics A,2019,125(12):1−10.
    [16]
    WANG Q, WANG Z, DONG Q, et al. NiCl (OH) nanosheet array as a high sensitivity electrochemical sensor for detecting glucose in human serum and saliva[J]. Microchemical Journal,2020,158:105184. doi: 10.1016/j.microc.2020.105184
    [17]
    HE Y, WU T, TAO S, et al. NiCo2S4 Nanowire-decorated flexible carbon foam for sensitive glucose sensors[J]. Chemistry Select,2020,5(4):1560−1566.
    [18]
    LU Y, JIANG B, FANG L, et al. Highly sensitive nonenzymatic glucose sensor based on 3D ultrathin NiFe layered double hydroxide nanosheets[J]. Electroanalysis,2017,29(7):1755−1761. doi: 10.1002/elan.201700025
    [19]
    HUANG W, GE L, CHEN Y, et al. Ni (OH)2/NiO nanosheet with opulent active sites for high-performance glucose biosensor[J]. Sensors and Actuators B:Chemical,2017,248:169−177. doi: 10.1016/j.snb.2017.03.151
    [20]
    MENG S, WU M, WANG Q, et al. Cobalt oxide nanosheets wrapped onto nickel foam for non-enzymatic detection of glucose[J]. Nanotechnology,2016,27(34):344001. doi: 10.1088/0957-4484/27/34/344001
    [21]
    LI Y, XIAO Q, HUANG S. Highly active nickel-doped FeS2 nanoparticles trigger non-enzymatic glucose detection[J]. Materials Chemistry and Physics,2017,193:311−315. doi: 10.1016/j.matchemphys.2017.02.051
    [22]
    PUJARI S S, KADAM S A, MA Y R, et al. Highly sensitive hydrothermally prepared nickel phosphate electrocatalyst as non-enzymatic glucose sensing electrode[J]. Journal of Porous Materials,2021,28(2):369−381. doi: 10.1007/s10934-020-01000-0
    [23]
    SALARIZADEH N, HABIBI-REAZEI M, ZARGAR S J. NiO–MoO3 nanocomposite: A sensitive non-enzymatic sensor for glucose and urea monitoring[J]. Materials Chemistry and Physics,2022,281:125870. doi: 10.1016/j.matchemphys.2022.125870
    [24]
    SAFADI B N, GONCALVES J M, CASTALDELLI E, et al. Lamellar FeOcPc-Ni/GO Composite-based enzymeless glucose sensor[J]. ChemElectroChem,2020,7(12):2553−2563. doi: 10.1002/celc.202000138
    [25]
    BAZAZI S, ARSALANI N, KHATAEE A, et al. Comparison of ball milling-hydrothermal and hydrothermal methods for synthesis of ZnO nanostructures and evaluation of their photocatalytic performance[J]. Journal of Industrial and Engineering Chemistry,2018,62:265−272. doi: 10.1016/j.jiec.2018.01.004
    [26]
    CI S, HUANG T, WEN Z, et al. Nickel oxide hollow microsphere for non-enzyme glucose detection[J]. Biosensors and Bioelectronics,2014,54:251−257. doi: 10.1016/j.bios.2013.11.006
    [27]
    GAO F, YANG Y, QIU W, et al. Ni3C/Ni Nanochains for electrochemical sensing of glucose[J]. ACS Applied Nano Materials,2021,4(8):8520−8529. doi: 10.1021/acsanm.1c01845
    [28]
    LI P, SHU J, SHAO L, et al. Comparison of morphology and electrochemical behavior between PbSbO2Cl and PbCl2/Sb4O5Cl2[J]. Journal of Electroanalytical Chemistry,2014,731:128−132. doi: 10.1016/j.jelechem.2014.08.027
    [29]
    RAMAN I, CHANDRASEKARAN N I, PUGAZHENDHI A, et al. Investigation of photoelectrochemical activity of cobalt tin sulfide synthesized via microwave-assisted and solvothermal process[J]. Journal of Alloys and Compounds,2019,778:496−506. doi: 10.1016/j.jallcom.2018.10.403
    [30]
    YAO K, DAI B, TAN X, et al. Fabrication of Au/Ni/boron-doped diamond electrodes via hydrogen plasma etching graphite and amorphous boron for efficient non-enzymatic sensing of glucose[J]. Journal of Electroanalytical Chemistry,2020,871:114264. doi: 10.1016/j.jelechem.2020.114264
    [31]
    SENGUPTA S, PATRA A, JENA S, et al. A study on the effect of electrodeposition parameters on the morphology of porous nickel electrodeposits[J]. Metallurgical and Materials Transactions A,2018,49(3):920−937. doi: 10.1007/s11661-017-4452-8
    [32]
    SAIDUZZAMAN M, TAKI T, KUMADA N. Hydrothermal magic for the synthesis of new bismuth oxides[J]. Inorganic Chemistry Frontiers,2021,8(11):2918−2938. doi: 10.1039/D1QI00337B
    [33]
    MIAO C, ZHENG X, SUN J, et al. Facile electrodeposition of amorphous nickel/nickel sulfide composite films for high-efficiency hydrogen evolution reaction[J]. ACS Applied Energy Materials,2021,4(1):927−933. doi: 10.1021/acsaem.0c02863
    [34]
    LIU S, ZHAO J, QIN L, et al. Fabrication of Ni/Cu ordered bowl-like array film for the highly sensitive nonenzymatic detection of glucose[J]. Journal of Materials Science,2020,55(1):337−346. doi: 10.1007/s10853-019-04059-6
    [35]
    WANG L, ZHU W, LU W, et al. One-step electrodeposition of AuNi nanodendrite arrays as photoelectrochemical biosensors for glucose and hydrogen peroxide detection[J]. Biosensors and Bioelectronics,2019,142:111577. doi: 10.1016/j.bios.2019.111577
    [36]
    ESHGHI A, KHEIRMAND M. Electroplating of Pt–Ni–Cu nanoparticles on glassy carbon electrode for glucose electro-oxidation process[J]. Surface Engineering,2019,35(2):128−134. doi: 10.1080/02670844.2018.1490070
    [37]
    ARVINTE A, DOROFTEI F, PINTEALA M. Comparative electrodeposition of Ni–Co nanoparticles on carbon materials and their efficiency in electrochemical oxidation of glucose[J]. Journal of Applied Electrochemistry,2016,46(4):425−439. doi: 10.1007/s10800-015-0912-2
    [38]
    杨意, 石文龙, 吴青华, 等. 基于ITO的氧化镍薄膜制备及葡萄糖传感研究[J]. 化学研究与应用,2022,34(9):2221−2227. [YANG Y, SHI W L, WU Q H, et al. Ito-based nickel oxide film preparation and glucose sensing research[J]. Chemical Research and Application,2022,34(9):2221−2227.

    YANG Y, SHI W L, WU Q H, et al. Ito-based nickel oxide film preparation and glucose sensing research[J]. Chemical Research and Application, 2022, 34(9): 2221-2227.
    [39]
    KAMYABI M A, HAJARI N. TEMPLATED electrodeposition of vertically aligned copper oxide nanowire arrays on 3D Ni foam substrates for determination of glucosamine in pharmaceutical caplet samples[J]. Analytical Methods,2017,9(19):2845−2852. doi: 10.1039/C7AY00799J
    [40]
    SIVASAKTHI P, BAPU G N K R, CHANDRASEKARAN M. Pulse electrodeposited nickel-indium tin oxide nanocomposite as an electrocatalyst for non-enzymatic glucose sensing[J]. Materials Science and Engineering:C,2016,58:782−789. doi: 10.1016/j.msec.2015.09.036
    [41]
    YU S, PENG X, CAO G, et al. Ni nanoparticles decorated titania nanotube arrays as efficient nonenzymatic glucose sensor[J]. Electrochimica Acta,2012,76:512−517. doi: 10.1016/j.electacta.2012.05.079
    [42]
    CUI D, SU L, LI H, et al. Non-enzymatic glucose sensor based on micro-/nanostructured Cu/Ni deposited on graphene sheets[J]. Journal of Electroanalytical Chemistry,2019,838:154−162. doi: 10.1016/j.jelechem.2019.03.005
    [43]
    SUN X, LI Z, FU Q, et al. The synthesis of long decorated ZnO column by chemical vapor deposition technology[J]. ECS Journal of Solid State Science and Technology,2021,10(6):064003. doi: 10.1149/2162-8777/ac04fb
    [44]
    KUSKOVA N I, SYZONENKO O M, TORPAKOV A S. Electric discharge method of synthesis of carbon and metal-carbon nanomaterials[J]. High Temperature Materials and Processes,2020,39(1):357−367. doi: 10.1515/htmp-2020-0078
    [45]
    KIM W S, LEE G J, RYU J H, et al. A flexible, nonenzymatic glucose biosensor based on Ni-coordinated, vertically aligned carbon nanotube arrays[J]. Rsc Advances,2014,4(89):48310−48316. doi: 10.1039/C4RA07615J
    [46]
    CAI L, LI Y, XIAO X, et al. The electrochemical performances of NiCo2O4 nanoparticles synthesized by one-step solvothermal method[J]. Ionics,2017,23(9):2457−2463. doi: 10.1007/s11581-017-2084-z
    [47]
    WANG F, CHEN X, CHEN L, et al. High-performance non-enzymatic glucose sensor by hierarchical flower-like nickel (II)-based MOF/carbon nanotubes composite[J]. Materials Science and Engineering:C,2019,96:41−50. doi: 10.1016/j.msec.2018.11.004
    [48]
    ZHANG X, XU Y, YE B. An efficient electrochemical glucose sensor based on porous nickel-based metal organic framework/carbon nanotubes composite (Ni-MOF/CNTs)[J]. Journal of Alloys and Compounds,2018,767:651−656. doi: 10.1016/j.jallcom.2018.07.175
    [49]
    CHAKRABORTY M, THANGAVEL R, KOMNINOU P, et al. Nanospheres and nanoflowers of copper bismuth sulphide (Cu3BiS3): Colloidal synthesis, structural, optical and electrical characterization[J]. Journal of Alloys and Compounds,2019,776:142−148. doi: 10.1016/j.jallcom.2018.10.151
    [50]
    JIA H, SHANG N, FENG Y, et al. Facile preparation of Ni nanoparticle embedded on mesoporous carbon nanorods for non-enzymatic glucose detection[J]. Journal of Colloid and Interface Science,2021,583:310−320. doi: 10.1016/j.jcis.2020.09.051
    [51]
    BAI Z, TANG Z, ZHANG B, et al. Review on bimetallic catalysts for electrocatalytic denitrification[J]. Functional Materials Letters,2021,14(7):2130014. doi: 10.1142/S1793604721300140
    [52]
    CAO J, YUN J, ZHANG N, et al. Bifunctional Ag@ Ni-MOF for high performance supercapacitor and glucose sensor[J]. Synthetic Metals,2021,282:116931. doi: 10.1016/j.synthmet.2021.116931
    [53]
    LIU X, YANG H, DIAO Y, et al. Recent advances in the electrochemical applications of Ni-based metal organic frameworks (Ni-MOFs) and their derivatives[J]. Chemosphere, 2022: 135729.
    [54]
    KIM S E, MUTHURASU A. Metal-organic framework–assisted bimetallic Ni@ Cu microsphere for enzyme-free electrochemical sensing of glucose[J]. Journal of Electroanalytical Chemistry,2020,873:114356. doi: 10.1016/j.jelechem.2020.114356
    [55]
    ZOU H, TIAN D, LÜ C, et al. The synergistic effect of Co/Ni in ultrathin metal–organic framework nanosheets for the prominent optimization of non-enzymatic electrochemical glucose detection[J]. Journal of Materials Chemistry B,2020,8(5):1008−1016. doi: 10.1039/C9TB02382H
    [56]
    LEE J S M, FUJIWARA Y, KITAGAWA S, et al. Homogenized bimetallic catalysts from metal-organic framework alloys[J]. Chemistry of Materials,2019,31(11):4205−4212. doi: 10.1021/acs.chemmater.9b01093
    [57]
    LI C, XU Y, DENG K, et al. Metal–nonmetal nanoarchitectures: Quaternary PtPdNiP mesoporous nanospheres for enhanced oxygen reduction electrocatalysis[J]. Journal of Materials Chemistry A,2019,7(8):3910−3916. doi: 10.1039/C8TA09620A
    [58]
    OMRI M, BECUWE M, COURTY M, et al. Nitroxide-grafted nanometric metal oxides for the catalytic oxidation of sugar[J]. ACS Applied Nano Materials,2019,2(8):5200−5205. doi: 10.1021/acsanm.9b01069
    [59]
    YANG Y, WANG Y, BAO X, et al. Electrochemical deposition of Ni nanoparticles decorated ZnO hexagonal prisms as an effective platform for non-enzymatic detection of glucose[J]. Journal of Electroanalytical Chemistry,2016,775:163−170. doi: 10.1016/j.jelechem.2016.04.041
    [60]
    WANG D, CAI D, WANG C, et al. Muti-component nanocomposite of nickel and manganese oxides with enhanced stability and catalytic performance for non-enzymatic glucose sensors[J]. Nanotechnology,2016,27(25):255501. doi: 10.1088/0957-4484/27/25/255501
    [61]
    NGUYEN V H, HUYNH L T N, NGUYEN T H, et al. Promising electrode material using Ni-doped layered manganese dioxide for sodium-ion batteries[J]. Journal of Applied Electrochemistry,2018,48(7):793−800. doi: 10.1007/s10800-018-1196-0
    [62]
    WANG Y, BAI W, NIE F, et al. A non-enzymatic glucose sensor based on Ni/MnO2 nanocomposite modified glassy carbon electrode[J]. Electroanalysis,2015,27(10):2399−2405. doi: 10.1002/elan.201500049
    [63]
    ZONG B, NIU X. Novel hydrothermal synthesis of hexagonal prism-like CeO2 nanotubes and their optical properties[J]. Journal of Materials Science:Materials in Electronics,2017,28(3):2545−2549. doi: 10.1007/s10854-016-5829-y
    [64]
    LI H B, ZHAO P. Amorphous Ni-Co-Fe hydroxide nanospheres for the highly sensitive and selective non-enzymatic glucose sensor applications[J]. Journal of Alloys and Compounds,2019,800:261−271. doi: 10.1016/j.jallcom.2019.05.264
    [65]
    SUN F, WANG S, WANG Y, et al. Synthesis of Ni-Co hydroxide nanosheets constructed hollow cubes for electrochemical glucose determination[J]. Sensors,2019,19(13):2938. doi: 10.3390/s19132938
    [66]
    AMIN K M, MUENCH F, KUNZ U, et al. 3D NiCo-Layered double Hydroxide@ Ni nanotube networks as integrated free-standing electrodes for nonenzymatic glucose sensing[J]. Journal of Colloid and Interface Science,2021,591:384−395. doi: 10.1016/j.jcis.2021.02.023
    [67]
    CHEN Z, GUO J, ZHOU T, et al. A novel nonenzymatic electrochemical glucose sensor modified with Ni/Al layered double hydroxide[J]. Electrochimica Acta,2013,109:532−535. doi: 10.1016/j.electacta.2013.08.017
  • Related Articles

    [1]Boji MA, Yan XIAO, Zude CHEN, Rengeng SHU, Bingtao LI, Li JIANG, Guoliang XU, Qiyun ZHANG. Analysis of Chemical Constituents in Percolate the Extract of Cyclocarya paliurus Tender Leaves by UHPLC-Q-TOF-MS/MS[J]. Science and Technology of Food Industry, 2023, 44(13): 281-291. DOI: 10.13386/j.issn1002-0306.2022070294
    [2]WANG Weihong, HU Juli, WU Dingtao, WANG Shijie, JIANG Hong, ZOU Liang, HU Yichen. Analysis of Quinoa Saponin Extract and Blood Constituents Based on UPLC-Q-Exactive-MS/MS[J]. Science and Technology of Food Industry, 2023, 44(9): 296-308. DOI: 10.13386/j.issn1002-0306.2022050100
    [3]PEI Fei, HAN Ping, WANG Jie, MA Ning, SU Anxiang, YANG Wenjian, HU Qiuhui. Simultaneous Determination of Major Antibiotics Veterinary Drug Residues in Pork by UHPLC-Q-TOF/MS[J]. Science and Technology of Food Industry, 2022, 43(10): 298-304. DOI: 10.13386/j.issn1002-0306.2021080169
    [4]YUAN Guangwei, WU Yi, WANG Haibo, MO Zimei, LIN Guangliao, JIANG Qiuxia. Determination of Eighteen Kinds of Free Amino Acids in Fruits by Ultra Performance Liquid Chromatography-Quadrupole-Exactive Orbitrap Mass Spectrometry[J]. Science and Technology of Food Industry, 2021, 42(5): 243-249. DOI: 10.13386/j.issn1002-0306.2020050015
    [5]YE Lin-yang, KANG Qin, LI Gang, MU Li. Extraction and Analysis of Volatile Aroma Components in Stinky Tofu by Gas-Liquid Microextraction and GC-MS[J]. Science and Technology of Food Industry, 2020, 41(12): 47-55. DOI: 10.13386/j.issn1002-0306.2020.12.008
    [6]GAO Ya-hui, LI Zi-jie. Optimization of analysis conditions of volatile compounds in human breast milk by SPME-GC-MS[J]. Science and Technology of Food Industry, 2018, 39(6): 199-203. DOI: 10.13386/j.issn1002-0306.2018.06.036
    [7]XIA Ning, SHI Yan-guo, Wu yong-qing, ZHANG Hua-jiang. Optimization of headspace solid phase microextraction conditions for GC-MS analysis of volatile components in soymilk[J]. Science and Technology of Food Industry, 2018, 39(1): 262-266. DOI: 10.13386/j.issn1002-0306.2018.01.047
    [8]CHEN Wei-ling, ZHONG Pei-pei, FAN Lin-lin, DING Hao-fu, HE Hong, WANG Yuan-xing. Analysis of volatile compounds in Cyclocarya paliurus leaves by SPME-GC-MS[J]. Science and Technology of Food Industry, 2016, (22): 52-58. DOI: 10.13386/j.issn1002-0306.2016.22.002
    [9]SHA Kun, LI Hai-peng, ZHANG Yang, DANG Xin, LANG Yu-miao, LIU Fei, SUN Bao-zhong. Analysis of volatile compounds in five Xinjiang dried beef by SPME- GS / MS[J]. Science and Technology of Food Industry, 2014, (21): 310-315. DOI: 10.13386/j.issn1002-0306.2014.21.058
    [10]XU Yong-xia, JIANG Cheng-cheng, ZHANG Chao-min, LV Yan-fang, ZHU Dan-shi, LI Jian-rong. Analysis of volatile components in Hairtail by SPME-GC-MS[J]. Science and Technology of Food Industry, 2014, (19): 308-311. DOI: 10.13386/j.issn1002-0306.2014.19.058

Catalog

    Article Metrics

    Article views (321) PDF downloads (20) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return