Citation: | HAN Chunran, YUE Zhenge, YU Shiyou, et al. Progress in Ni-based Electrochemical Sensors for Glucose Detection[J]. Science and Technology of Food Industry, 2023, 44(14): 482−489. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022100194. |
[1] |
王艳, 程美佳, 谢金晖, 等. 葡萄糖无酶快检技术研究进展[J]. 食品工业科技,2022,43(23):467−476. [WANG Y, CHENG M J, XIE J H, et al. Research progress in glucose enzyme-free rapid detection technology[J]. Science and Technology of Food Industry,2022,43(23):467−476.
WANG Y, CHENG M J, XIE J H, et al. Research progress in glucose enzyme-free rapid detection technology[J]. Science and Technology of Food Industry, 2022, 43(23): 467-476.
|
[2] |
杨宇祥, 吴彬, 林海军, 等. 无创血糖检测技术研究进展[J]. 分析测试学报,2022,41(4):578−586. [YANG Y X, WU B, LIN H J, et al. Research progress on non-invasive blood glucose detection techniques[J]. Journal of Instrumental Analysis,2022,41(4):578−586. doi: 10.19969/j.fxcsxb.21093001
YANG Y X, WU B, LIN H J, et al. Research progress on non-invasive blood glucose detection techniques[J]. Journal of Instrumental Analysis, 2022, 41(4): 578-586. doi: 10.19969/j.fxcsxb.21093001
|
[3] |
CHEN Y, TIAN Y, ZHU P, et al. Electrochemically activated conductive Ni-based MOFs for non-enzymatic sensors toward long-term glucose monitoring[J]. Frontiers in Chemistry,2020,8:602752. doi: 10.3389/fchem.2020.602752
|
[4] |
CHEN P, LIU L, CHENG Z, et al. Structure elucidation and in vitro rat intestinal fermentation properties of a novel sulfated glucogalactan from Porphyra haitanensis[J]. Food Science and Human Wellness,2023,12(2):596−606. doi: 10.1016/j.fshw.2022.07.062
|
[5] |
BATOOI R, RHOUATI A, NAWAZ M H, et al. A review of the construction of nano-hybrids for electrochemical biosensing of glucose[J]. Biosensors,2019,9(1):46. doi: 10.3390/bios9010046
|
[6] |
LEI L, HUANG D, CHENG M, et al. Defects engineering of bimetallic Ni-based catalysts for electrochemical energy conversion[J]. Coordination Chemistry Reviews,2020,418:213372. doi: 10.1016/j.ccr.2020.213372
|
[7] |
SAIRA F, YAQUB A, RAZZAQ H, et al. Hollow nanocages for electrochemical glucose sensing: A comprehensive review[J]. Journal of Molecular Structure, 2022: 133646.
|
[8] |
XUAN X, QIAN M, PAN L, et al. A longitudinally expanded Ni-based metal–organic framework with enhanced double nickel cation catalysis reaction channels for a non-enzymatic sweat glucose biosensor[J]. Journal of Materials Chemistry B,2020,8(39):9094−9109. doi: 10.1039/D0TB01657H
|
[9] |
HANDA Y, WATANABE K, CHIHARA K, et al. The mechanism of electro-catalytic oxidation of glucose on manganese dioxide electrode used for amperometric glucose detection[J]. Journal of the Electrochemical Society,2018,165(11):H742. doi: 10.1149/2.0781811jes
|
[10] |
ESCALONA-VILLAIPANDO R A, GURROIA M P, TREJO G, et al. Electrodeposition of gold on oxidized and reduced graphite surfaces and its influence on glucose oxidation[J]. Journal of Electroanalytical Chemistry,2018,816:92−98. doi: 10.1016/j.jelechem.2018.03.037
|
[11] |
LOPA N S, RAHMAN M M, AHMED F, et al. A Ni-based redox-active metal-organic framework for sensitive and non-enzymatic detection of glucose[J]. Journal of Electroanalytical Chemistry,2018,822:43−49. doi: 10.1016/j.jelechem.2018.05.014
|
[12] |
GAO J, MENG T, LU S, et al. Manganese-doped tremella-like nickel oxide as biomimetic sensors toward highly sensitive detection of glucose in human serum[J]. Journal of Electroanalytical Chemistry,2020,863:114071. doi: 10.1016/j.jelechem.2020.114071
|
[13] |
DOWNES N, CHEEK Q, MAIDONADO S. Electroreduction of perchlorinated silanes for Si electrodeposition[J]. Journal of the Electrochemical Society,2021,168(2):022503. doi: 10.1149/1945-7111/abda58
|
[14] |
TAKEI T, FUSE H, MIURA A, et al. Topotactic transformation of Ni-based layered double hydroxide film to layered metal oxide and hydroxide[J]. Applied Clay Science,2016,124:236−242.
|
[15] |
GHOSH M P, MUKHERJEE S. Dielectric and electrical characterizations of transition metal ions-doped nanocrystalline nickel ferrites[J]. Applied Physics A,2019,125(12):1−10.
|
[16] |
WANG Q, WANG Z, DONG Q, et al. NiCl (OH) nanosheet array as a high sensitivity electrochemical sensor for detecting glucose in human serum and saliva[J]. Microchemical Journal,2020,158:105184. doi: 10.1016/j.microc.2020.105184
|
[17] |
HE Y, WU T, TAO S, et al. NiCo2S4 Nanowire-decorated flexible carbon foam for sensitive glucose sensors[J]. Chemistry Select,2020,5(4):1560−1566.
|
[18] |
LU Y, JIANG B, FANG L, et al. Highly sensitive nonenzymatic glucose sensor based on 3D ultrathin NiFe layered double hydroxide nanosheets[J]. Electroanalysis,2017,29(7):1755−1761. doi: 10.1002/elan.201700025
|
[19] |
HUANG W, GE L, CHEN Y, et al. Ni (OH)2/NiO nanosheet with opulent active sites for high-performance glucose biosensor[J]. Sensors and Actuators B:Chemical,2017,248:169−177. doi: 10.1016/j.snb.2017.03.151
|
[20] |
MENG S, WU M, WANG Q, et al. Cobalt oxide nanosheets wrapped onto nickel foam for non-enzymatic detection of glucose[J]. Nanotechnology,2016,27(34):344001. doi: 10.1088/0957-4484/27/34/344001
|
[21] |
LI Y, XIAO Q, HUANG S. Highly active nickel-doped FeS2 nanoparticles trigger non-enzymatic glucose detection[J]. Materials Chemistry and Physics,2017,193:311−315. doi: 10.1016/j.matchemphys.2017.02.051
|
[22] |
PUJARI S S, KADAM S A, MA Y R, et al. Highly sensitive hydrothermally prepared nickel phosphate electrocatalyst as non-enzymatic glucose sensing electrode[J]. Journal of Porous Materials,2021,28(2):369−381. doi: 10.1007/s10934-020-01000-0
|
[23] |
SALARIZADEH N, HABIBI-REAZEI M, ZARGAR S J. NiO–MoO3 nanocomposite: A sensitive non-enzymatic sensor for glucose and urea monitoring[J]. Materials Chemistry and Physics,2022,281:125870. doi: 10.1016/j.matchemphys.2022.125870
|
[24] |
SAFADI B N, GONCALVES J M, CASTALDELLI E, et al. Lamellar FeOcPc-Ni/GO Composite-based enzymeless glucose sensor[J]. ChemElectroChem,2020,7(12):2553−2563. doi: 10.1002/celc.202000138
|
[25] |
BAZAZI S, ARSALANI N, KHATAEE A, et al. Comparison of ball milling-hydrothermal and hydrothermal methods for synthesis of ZnO nanostructures and evaluation of their photocatalytic performance[J]. Journal of Industrial and Engineering Chemistry,2018,62:265−272. doi: 10.1016/j.jiec.2018.01.004
|
[26] |
CI S, HUANG T, WEN Z, et al. Nickel oxide hollow microsphere for non-enzyme glucose detection[J]. Biosensors and Bioelectronics,2014,54:251−257. doi: 10.1016/j.bios.2013.11.006
|
[27] |
GAO F, YANG Y, QIU W, et al. Ni3C/Ni Nanochains for electrochemical sensing of glucose[J]. ACS Applied Nano Materials,2021,4(8):8520−8529. doi: 10.1021/acsanm.1c01845
|
[28] |
LI P, SHU J, SHAO L, et al. Comparison of morphology and electrochemical behavior between PbSbO2Cl and PbCl2/Sb4O5Cl2[J]. Journal of Electroanalytical Chemistry,2014,731:128−132. doi: 10.1016/j.jelechem.2014.08.027
|
[29] |
RAMAN I, CHANDRASEKARAN N I, PUGAZHENDHI A, et al. Investigation of photoelectrochemical activity of cobalt tin sulfide synthesized via microwave-assisted and solvothermal process[J]. Journal of Alloys and Compounds,2019,778:496−506. doi: 10.1016/j.jallcom.2018.10.403
|
[30] |
YAO K, DAI B, TAN X, et al. Fabrication of Au/Ni/boron-doped diamond electrodes via hydrogen plasma etching graphite and amorphous boron for efficient non-enzymatic sensing of glucose[J]. Journal of Electroanalytical Chemistry,2020,871:114264. doi: 10.1016/j.jelechem.2020.114264
|
[31] |
SENGUPTA S, PATRA A, JENA S, et al. A study on the effect of electrodeposition parameters on the morphology of porous nickel electrodeposits[J]. Metallurgical and Materials Transactions A,2018,49(3):920−937. doi: 10.1007/s11661-017-4452-8
|
[32] |
SAIDUZZAMAN M, TAKI T, KUMADA N. Hydrothermal magic for the synthesis of new bismuth oxides[J]. Inorganic Chemistry Frontiers,2021,8(11):2918−2938. doi: 10.1039/D1QI00337B
|
[33] |
MIAO C, ZHENG X, SUN J, et al. Facile electrodeposition of amorphous nickel/nickel sulfide composite films for high-efficiency hydrogen evolution reaction[J]. ACS Applied Energy Materials,2021,4(1):927−933. doi: 10.1021/acsaem.0c02863
|
[34] |
LIU S, ZHAO J, QIN L, et al. Fabrication of Ni/Cu ordered bowl-like array film for the highly sensitive nonenzymatic detection of glucose[J]. Journal of Materials Science,2020,55(1):337−346. doi: 10.1007/s10853-019-04059-6
|
[35] |
WANG L, ZHU W, LU W, et al. One-step electrodeposition of AuNi nanodendrite arrays as photoelectrochemical biosensors for glucose and hydrogen peroxide detection[J]. Biosensors and Bioelectronics,2019,142:111577. doi: 10.1016/j.bios.2019.111577
|
[36] |
ESHGHI A, KHEIRMAND M. Electroplating of Pt–Ni–Cu nanoparticles on glassy carbon electrode for glucose electro-oxidation process[J]. Surface Engineering,2019,35(2):128−134. doi: 10.1080/02670844.2018.1490070
|
[37] |
ARVINTE A, DOROFTEI F, PINTEALA M. Comparative electrodeposition of Ni–Co nanoparticles on carbon materials and their efficiency in electrochemical oxidation of glucose[J]. Journal of Applied Electrochemistry,2016,46(4):425−439. doi: 10.1007/s10800-015-0912-2
|
[38] |
杨意, 石文龙, 吴青华, 等. 基于ITO的氧化镍薄膜制备及葡萄糖传感研究[J]. 化学研究与应用,2022,34(9):2221−2227. [YANG Y, SHI W L, WU Q H, et al. Ito-based nickel oxide film preparation and glucose sensing research[J]. Chemical Research and Application,2022,34(9):2221−2227.
YANG Y, SHI W L, WU Q H, et al. Ito-based nickel oxide film preparation and glucose sensing research[J]. Chemical Research and Application, 2022, 34(9): 2221-2227.
|
[39] |
KAMYABI M A, HAJARI N. TEMPLATED electrodeposition of vertically aligned copper oxide nanowire arrays on 3D Ni foam substrates for determination of glucosamine in pharmaceutical caplet samples[J]. Analytical Methods,2017,9(19):2845−2852. doi: 10.1039/C7AY00799J
|
[40] |
SIVASAKTHI P, BAPU G N K R, CHANDRASEKARAN M. Pulse electrodeposited nickel-indium tin oxide nanocomposite as an electrocatalyst for non-enzymatic glucose sensing[J]. Materials Science and Engineering:C,2016,58:782−789. doi: 10.1016/j.msec.2015.09.036
|
[41] |
YU S, PENG X, CAO G, et al. Ni nanoparticles decorated titania nanotube arrays as efficient nonenzymatic glucose sensor[J]. Electrochimica Acta,2012,76:512−517. doi: 10.1016/j.electacta.2012.05.079
|
[42] |
CUI D, SU L, LI H, et al. Non-enzymatic glucose sensor based on micro-/nanostructured Cu/Ni deposited on graphene sheets[J]. Journal of Electroanalytical Chemistry,2019,838:154−162. doi: 10.1016/j.jelechem.2019.03.005
|
[43] |
SUN X, LI Z, FU Q, et al. The synthesis of long decorated ZnO column by chemical vapor deposition technology[J]. ECS Journal of Solid State Science and Technology,2021,10(6):064003. doi: 10.1149/2162-8777/ac04fb
|
[44] |
KUSKOVA N I, SYZONENKO O M, TORPAKOV A S. Electric discharge method of synthesis of carbon and metal-carbon nanomaterials[J]. High Temperature Materials and Processes,2020,39(1):357−367. doi: 10.1515/htmp-2020-0078
|
[45] |
KIM W S, LEE G J, RYU J H, et al. A flexible, nonenzymatic glucose biosensor based on Ni-coordinated, vertically aligned carbon nanotube arrays[J]. Rsc Advances,2014,4(89):48310−48316. doi: 10.1039/C4RA07615J
|
[46] |
CAI L, LI Y, XIAO X, et al. The electrochemical performances of NiCo2O4 nanoparticles synthesized by one-step solvothermal method[J]. Ionics,2017,23(9):2457−2463. doi: 10.1007/s11581-017-2084-z
|
[47] |
WANG F, CHEN X, CHEN L, et al. High-performance non-enzymatic glucose sensor by hierarchical flower-like nickel (II)-based MOF/carbon nanotubes composite[J]. Materials Science and Engineering:C,2019,96:41−50. doi: 10.1016/j.msec.2018.11.004
|
[48] |
ZHANG X, XU Y, YE B. An efficient electrochemical glucose sensor based on porous nickel-based metal organic framework/carbon nanotubes composite (Ni-MOF/CNTs)[J]. Journal of Alloys and Compounds,2018,767:651−656. doi: 10.1016/j.jallcom.2018.07.175
|
[49] |
CHAKRABORTY M, THANGAVEL R, KOMNINOU P, et al. Nanospheres and nanoflowers of copper bismuth sulphide (Cu3BiS3): Colloidal synthesis, structural, optical and electrical characterization[J]. Journal of Alloys and Compounds,2019,776:142−148. doi: 10.1016/j.jallcom.2018.10.151
|
[50] |
JIA H, SHANG N, FENG Y, et al. Facile preparation of Ni nanoparticle embedded on mesoporous carbon nanorods for non-enzymatic glucose detection[J]. Journal of Colloid and Interface Science,2021,583:310−320. doi: 10.1016/j.jcis.2020.09.051
|
[51] |
BAI Z, TANG Z, ZHANG B, et al. Review on bimetallic catalysts for electrocatalytic denitrification[J]. Functional Materials Letters,2021,14(7):2130014. doi: 10.1142/S1793604721300140
|
[52] |
CAO J, YUN J, ZHANG N, et al. Bifunctional Ag@ Ni-MOF for high performance supercapacitor and glucose sensor[J]. Synthetic Metals,2021,282:116931. doi: 10.1016/j.synthmet.2021.116931
|
[53] |
LIU X, YANG H, DIAO Y, et al. Recent advances in the electrochemical applications of Ni-based metal organic frameworks (Ni-MOFs) and their derivatives[J]. Chemosphere, 2022: 135729.
|
[54] |
KIM S E, MUTHURASU A. Metal-organic framework–assisted bimetallic Ni@ Cu microsphere for enzyme-free electrochemical sensing of glucose[J]. Journal of Electroanalytical Chemistry,2020,873:114356. doi: 10.1016/j.jelechem.2020.114356
|
[55] |
ZOU H, TIAN D, LÜ C, et al. The synergistic effect of Co/Ni in ultrathin metal–organic framework nanosheets for the prominent optimization of non-enzymatic electrochemical glucose detection[J]. Journal of Materials Chemistry B,2020,8(5):1008−1016. doi: 10.1039/C9TB02382H
|
[56] |
LEE J S M, FUJIWARA Y, KITAGAWA S, et al. Homogenized bimetallic catalysts from metal-organic framework alloys[J]. Chemistry of Materials,2019,31(11):4205−4212. doi: 10.1021/acs.chemmater.9b01093
|
[57] |
LI C, XU Y, DENG K, et al. Metal–nonmetal nanoarchitectures: Quaternary PtPdNiP mesoporous nanospheres for enhanced oxygen reduction electrocatalysis[J]. Journal of Materials Chemistry A,2019,7(8):3910−3916. doi: 10.1039/C8TA09620A
|
[58] |
OMRI M, BECUWE M, COURTY M, et al. Nitroxide-grafted nanometric metal oxides for the catalytic oxidation of sugar[J]. ACS Applied Nano Materials,2019,2(8):5200−5205. doi: 10.1021/acsanm.9b01069
|
[59] |
YANG Y, WANG Y, BAO X, et al. Electrochemical deposition of Ni nanoparticles decorated ZnO hexagonal prisms as an effective platform for non-enzymatic detection of glucose[J]. Journal of Electroanalytical Chemistry,2016,775:163−170. doi: 10.1016/j.jelechem.2016.04.041
|
[60] |
WANG D, CAI D, WANG C, et al. Muti-component nanocomposite of nickel and manganese oxides with enhanced stability and catalytic performance for non-enzymatic glucose sensors[J]. Nanotechnology,2016,27(25):255501. doi: 10.1088/0957-4484/27/25/255501
|
[61] |
NGUYEN V H, HUYNH L T N, NGUYEN T H, et al. Promising electrode material using Ni-doped layered manganese dioxide for sodium-ion batteries[J]. Journal of Applied Electrochemistry,2018,48(7):793−800. doi: 10.1007/s10800-018-1196-0
|
[62] |
WANG Y, BAI W, NIE F, et al. A non-enzymatic glucose sensor based on Ni/MnO2 nanocomposite modified glassy carbon electrode[J]. Electroanalysis,2015,27(10):2399−2405. doi: 10.1002/elan.201500049
|
[63] |
ZONG B, NIU X. Novel hydrothermal synthesis of hexagonal prism-like CeO2 nanotubes and their optical properties[J]. Journal of Materials Science:Materials in Electronics,2017,28(3):2545−2549. doi: 10.1007/s10854-016-5829-y
|
[64] |
LI H B, ZHAO P. Amorphous Ni-Co-Fe hydroxide nanospheres for the highly sensitive and selective non-enzymatic glucose sensor applications[J]. Journal of Alloys and Compounds,2019,800:261−271. doi: 10.1016/j.jallcom.2019.05.264
|
[65] |
SUN F, WANG S, WANG Y, et al. Synthesis of Ni-Co hydroxide nanosheets constructed hollow cubes for electrochemical glucose determination[J]. Sensors,2019,19(13):2938. doi: 10.3390/s19132938
|
[66] |
AMIN K M, MUENCH F, KUNZ U, et al. 3D NiCo-Layered double Hydroxide@ Ni nanotube networks as integrated free-standing electrodes for nonenzymatic glucose sensing[J]. Journal of Colloid and Interface Science,2021,591:384−395. doi: 10.1016/j.jcis.2021.02.023
|
[67] |
CHEN Z, GUO J, ZHOU T, et al. A novel nonenzymatic electrochemical glucose sensor modified with Ni/Al layered double hydroxide[J]. Electrochimica Acta,2013,109:532−535. doi: 10.1016/j.electacta.2013.08.017
|
[1] | “The full text download” [J]. Science and Technology of Food Industry, 2023, 44(17). |
[2] | “The full text download”[J]. Science and Technology of Food Industry, 2023, 44(2). |
[3] | “The full text download”[J]. Science and Technology of Food Industry, 2022, 43(21). |
[4] | “The full text download”[J]. Science and Technology of Food Industry, 2022, 43(16): 1-1. |
[5] | “The full text download”[J]. Science and Technology of Food Industry, 2022, 43(13). |
[6] | “The full text download”[J]. Science and Technology of Food Industry, 2022, 43(12). |
[7] | “The full text download”[J]. Science and Technology of Food Industry, 2022, 43(11). |
[8] | “The full text download”[J]. Science and Technology of Food Industry, 2022, 43(10). |
[9] | “The full text download”[J]. Science and Technology of Food Industry, 2022, 43(8). |
[10] | “The full text download”[J]. Science and Technology of Food Industry, 2022, 43(7). |