CHENG Teng, XUE Dong, FENG Kun, et al. Research Progress on the Application of Atmospheric Cold Plasma in Ready-to-eat Meat Products[J]. Science and Technology of Food Industry, 2023, 44(15): 427−433. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022100032.
Citation: CHENG Teng, XUE Dong, FENG Kun, et al. Research Progress on the Application of Atmospheric Cold Plasma in Ready-to-eat Meat Products[J]. Science and Technology of Food Industry, 2023, 44(15): 427−433. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022100032.

Research Progress on the Application of Atmospheric Cold Plasma in Ready-to-eat Meat Products

More Information
  • Received Date: October 08, 2022
  • Available Online: June 05, 2023
  • Ready-to-eat meat (RTE) products are potential to contaminate bacteria, yeasts and molds during the processing, transport, storage, and sale periods, causing food spoilage and foodborne diseases. As a new non-thermal sterilization technology, atmospheric cold plasma (ACP) is effective and green and has shown great potential in food sterilization and preservation. This paper summarizes the inactivation effects of ACP on microorganisms as well as the factors influencing the antimicrobial efficacy of ACP. The recent progress in the applications of ACP in the sterilization and preservation of RTE meat products is also reviewed in this article. Meanwhile, the effects of ACP treatments on the lipids, proteins, color parameter and sensory quality parameters of RTE meat products are also well discussed. This paper provides references for the potential application of ACP technology in the sterilization and preservation of RTE meat products.
  • [1]
    刘阳, 唐莉娟, 王凌云, 等. 即食肉制品产业发展现状与市场前景[J]. 食品工业,2017,38(2):275−279. [LIU Y, TANG L J, WANG L Y, et al. Industry development status and market prospects of ready-to-eat meat products[J]. Food Industry,2017,38(2):275−279.

    LIU Y, TANG L J, WANG L Y, et al. Industry development status and market prospects of ready-to-eat meat products[J]. Food Industry, 2017, 38(2): 275–279.
    [2]
    刘辉, 任婧寰, 伍雅婷, 等. 2018年全国食物中毒事件流行特征分析[J]. 中国食品卫生杂志,2022,34(1):147−153. [LIU H, REN J H, WU Y T, et al. Epidemiological characteristics of food poisoning events in China, 2018[J]. Chinese Journal of Food Hygiene,2022,34(1):147−153. doi: 10.13590/j.cjfh.2022.01.028

    LIU H, REN J H, WU Y T, et al. Epidemiological characteristics of food poisoning events in China, 2018[J]. Chinese Journal of Food Hygiene, 2022, 34(1): 147–153. doi: 10.13590/j.cjfh.2022.01.028
    [3]
    王霄晔, 任婧寰, 王哲, 等. 2017年全国食物中毒事件流行特征分析[J]. 疾病监测,2018,33(5):359−364. [WANG X Y, REN J H, WANG Z, et al. Epidemiological characteristics of food poisoning events in China, 2017[J]. Disease Surveillance,2018,33(5):359−364.

    WANG X Y, REN J H, WANG Z, et al. Epidemiological characteristics of food poisoning events in China, 2017[J]. Disease Surveillance, 2018, 33(5): 359–364.
    [4]
    MANDAL R, SINGH A, PRATAP S A. Recent developments in cold plasma decontamination technology in the food industry[J]. Trends in Food Science & Technology,2018,80:93−103.
    [5]
    相启森, 张嵘, 范刘敏, 等. 大气压冷等离子体在鲜切果蔬保鲜中的应用研究进展[J]. 食品工业科技,2021,42(1):368−372. [XIANG Q S, ZHANG R, FAN L M, et al. Research progress of atmospheric cold plasma in fresh-cut fruits and vegetables preservation[J]. Science and Technology of Food Industry,2021,42(1):368−372. doi: 10.13386/j.issn1002-0306.2020030152

    XIANG Q S, ZHANG R, FAN L M, et al. Research progress of atmospheric cold plasma in fresh-cut fruits and vegetables preservation[J]. Science and Technology of Food Industry, 2021, 42(1): 368–372. doi: 10.13386/j.issn1002-0306.2020030152
    [6]
    PANKAJ S K, WAN Z F, KEENER K M. Effects of cold plasma on food quality: A review[J]. Foods,2018,7(1):4. doi: 10.3390/foods7010004
    [7]
    马良军, 王佳媚, 黄明明, 等. 不同处理条件对介质阻挡放电低温等离子体杀菌效果及影响机理研究[J]. 微生物学报,2019,59(8):1512−1521. [MA L J, WANG J M, HUANG M M, et al. Sterilization by dielectric barrier discharge low temperature plasma under different treatment conditions[J]. Acta Microbiologica Sinica,2019,59(8):1512−1521. doi: 10.13343/j.cnki.wsxb.20180447

    MA L J, WANG J M, HUANG M M, et al. Sterilization by dielectric barrier discharge low temperature plasma under different treatment conditions[J]. Acta Microbiologica Sinica, 2019, 59(8): 1512–1521. doi: 10.13343/j.cnki.wsxb.20180447
    [8]
    ALKAWAREEK M Y, ALGWARI Q T, LAVERTY G, et al. Eradication of pseudomonas aeruginosa biofilms by atmospheric pressure non-thermal plasma[J]. Plos One,2012,7(8):e44289. doi: 10.1371/journal.pone.0044289
    [9]
    WANG L, XIA C, GUO Y, et al. Bactericidal efficacy of cold atmospheric plasma treatment against multidrug-resistant Pseudomonas aeruginosa[J]. Future Microbiology,2020,15(2):115−125. doi: 10.2217/fmb-2019-0265
    [10]
    XU Z M, SHEN J, CHENG C, et al. In vitro antimicrobial effects and mechanism of atmospheric-pressure He/O2 plasma jet on Staphylococcus aureus biofilm[J]. Journal of Physics D-Applied Physics,2017,50(10):105201. doi: 10.1088/1361-6463/aa593f
    [11]
    NISHIME T, BORGES A C, KOGA-ITO C Y, et al. Non-thermal atmospheric pressure plasma jet applied to inactivation of different microorganisms[J]. Surface & Coatings Technology,2017,312:19−24.
    [12]
    PATIL S, MOISEEV T, MISRA N N, et al. Influence of high voltage atmospheric cold plasma process parameters and role of relative humidity on inactivation of Bacillus atrophaeusspores inside a sealed package[J]. Journal of Hospital Infection,2014,88(3):162−169. doi: 10.1016/j.jhin.2014.08.009
    [13]
    LEE K N, PAEK K H, JU W T, et al. Sterilization of bacteria, yeast, and bacterial endospores by atmospheric-pressure cold plasma using helium and oxygen[J]. Journal of Microbiology,2006,44(3):269−275.
    [14]
    LAROUSSI M, MENDIS D A, ROSENBERG M. Plasma interaction with microbes[J]. New Journal of Physics,2003,5(1):410−411.
    [15]
    KIM J S, LEE E J, CHOI E H, et al. Inactivation of staphylococcus aureus on the beef jerky by radio-frequency atmospheric pressure plasma discharge treatment[J]. Innovative Food Science & Emerging Technologies,2014,22:124−130.
    [16]
    SMET C, NORIEGA E, ROSIER F, et al. Influence of food intrinsic factors on the inactivation efficacy of cold atmospheric plasma: Impact of osmotic stress, suboptimal pH and food structure[J]. Innovative Food Science & Emerging Technologies,2016,38:393−406.
    [17]
    KAYES M M, CRITZER F J, KELLY-WINTENBERG K, et al. Inactivation of foodborne pathogens using a one atmosphere uniform glow discharge plasma[J]. Foodborne Pathogens & Disease,2007,4(1):50−59.
    [18]
    李欣欣, 李大宇, 赵子瑞, 等. 低温等离子体处理功率对酱牛肉贮藏品质的影响[J]. 吉林大学学报(工学版),2020,50(5):1934−1940. [LI X X, LI D Y, ZHAO Z R, et al. Effect of low-temperature plasma treatment power on storage quality of spiced beef[J]. Journal of Jilin University (Engineering and Technology Edition),2020,50(5):1934−1940.

    LI X X, LI D Y, ZHAO Z R, et al. Effect of low-temperature plasma treatment power on storage quality of spiced beef[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(5): 1934–1940.
    [19]
    GöK V, AKTOP S, öZKAN M, et al. The effects of atmospheric cold plasma on inactivation of Listeria monocytogenes and Staphylococcus aureus and some quality characteristics of pastırma-A dry-cured beef product[J]. Innovative Food Science & Emerging Technologies,2019,56:102188.
    [20]
    YONG H I, LEE H, PARK S, et al. Flexible thin-layer plasma inactivation of bacteria and mold survival in beef jerky packaging and its effects on the meat's physicochemical properties[J]. Meat Science,2018,123:151−156.
    [21]
    黄现青, 宋莲军, 赵秋艳, 等. 低温等离子体(500 W)处理对真空包装酱卤鸭腿货架期的影响[J]. 肉类工业,2018,3:30−32. [HUANG X Q, SONG L J, ZHAO Q Y, et al. Effect of low temperature plasma (500 W) treatment on the shelf life of vacuum packaged sauced stewed duck leg[J]. Meat Industry,2018,3:30−32. doi: 10.3969/j.issn.1008-5467.2018.07.009

    HUANG X Q, SONG L J, ZHAO Q Y, et al. Effect of low temperature plasma (500 W) treatment on the shelf life of vacuum packaged sauced stewed duck leg[J]. Meat Industry, 2018, 3: 30–32. doi: 10.3969/j.issn.1008-5467.2018.07.009
    [22]
    ZHANG Y L, LEI Y, HUANG S H, et al. In-package cold plasma treatment of braised chicken: Voltage effect[J]. Food Science and Human Wellness,2022,11(4):845−853. doi: 10.1016/j.fshw.2022.03.006
    [23]
    王晨, 钱婧, 盛孝维, 等. 低温等离子体冷杀菌对盐水鸭货架期及风味品质的影响[J]. 食品工业科技,2021,42(17):70−77. [WANG C, QIAN J, SHENG X W, et al. Effects of cold plasma sterilization on shelf life and flavor quality of salted duck[J]. Science and Technology of Food Industry,2021,42(17):70−77. doi: 10.13386/j.issn1002-0306.2021010031

    WANG C, QIAN J, SHENG X W, et al. Effects of cold plasma sterilization on shelf life and flavor quality of salted duck[J]. Science and Technology of Food Industry, 2021, 42(17): 70–77. doi: 10.13386/j.issn1002-0306.2021010031
    [24]
    LEE E S, JEON Y J, MIN S C. Microbial inactivation and quality preservation of chicken breast salad using atmospheric dielectric barrier discharge cold plasma treatment[J]. Foods,2021,10(6):1214. doi: 10.3390/foods10061214
    [25]
    GONZÁLEZ-GONZÁLEZ C R, LABO-POPOOLA O, DELGADO-PANDO G, et al. The effect of cold atmospheric plasma and linalool nanoemulsions against Escherichia coli O157: H7 and Salmonella on ready-to-eat chicken meat[J]. LWT-Food Science and Technology,2021,149:111898. doi: 10.1016/j.lwt.2021.111898
    [26]
    LEE E S, CHEIGH C I, KANG J H, et al. Evaluation of in-package atmospheric dielectric barrier discharge cold plasma treatment as an intervention technology for decontaminating bulk ready-to-eat chicken breast cubes in plastic containers[J]. Applied Sciences,2020,10(18):6301. doi: 10.3390/app10186301
    [27]
    ZERAATPISHEH F, YAZDI F T, SHAHIDI F. Investigation of effect of cold plasma on microbial load and physicochemical properties of ready-to-eat sliced chicken sausage[J]. Journal of Food Science and Technology,2022,59(10):3928−3937. doi: 10.1007/s13197-022-05422-3
    [28]
    LIS K A, BOULAABA A, BINDER S, et al. Inactivation of Salmonella Typhimurium and Listeria monocytogenes on ham with nonthermal atmospheric pressure plasma[J]. Plos One,2018,13(5):e0197773. doi: 10.1371/journal.pone.0197773
    [29]
    YADAV B, SPINELLI A C, GOVINDAN B N, et al. Cold plasma treatment of ready-to-eat ham: Influence of process conditions and storage on inactivation of Listeria innocua[J]. Food Research International,2019,123:276−285. doi: 10.1016/j.foodres.2019.04.065
    [30]
    YADAV B, SPINELLI A C, MISRA N N, et al. Effect of in-package atmospheric cold plasma discharge on microbial safety and quality of ready-to-eat ham in modified atmospheric packaging during storage[J]. Journal of Food Science,2020,85(4):1203−1212. doi: 10.1111/1750-3841.15072
    [31]
    ZHOU R W, ZHOU R S, WANG P Y, et al. Plasma activated water: Generation, origin of reactive species and biological applications[J]. Journal of Physics D-Applied Physics,2020,53(30):303001. doi: 10.1088/1361-6463/ab81cf
    [32]
    GAVASKER R, RATHORE S V. Optimization of process parameters to generate plasma activated water and study of physicochemical properties of plasma activated solutions at optimum condition[J]. Journal of Applied Physics,2021,129(8):084901. doi: 10.1063/5.0033848
    [33]
    INGUGLIA E S, OLIVEIRA M, BURGESS C M, et al. Plasma-activated water as an alternative nitrite source for the curing of beef jerky: Influence on quality and inactivation of Listeria innocua[J]. Innovative Food Science & Emerging Technologies,2020,59:102276.
    [34]
    MARCINKOWSKA-LESIAK M, WOJTASIK-KALINOWSKA I, ONOPIUK A, et al. Application of atmospheric pressure cold plasma activated plant protein preparations solutions as an alternative curing method for pork sausages[J]. Meat Science,2022,187:108751. doi: 10.1016/j.meatsci.2022.108751
    [35]
    XIANG Q S, LIU X F, LI J G, et al. Influences of cold atmospheric plasma on microbial safety, physicochemical and sensorial qualities of meat products[J]. Journal of Food Science and Technology,2018,55(3):846−857. doi: 10.1007/s13197-017-3020-y
    [36]
    LUNOV O, CHURPITA O, ZABLOTSKII V, et al. Non-thermal plasma mills bacteria: Scanning electron microscopy observations[J]. Applied Physics Letters,2015,106(5):053703. doi: 10.1063/1.4907624
    [37]
    SATO T, MIYAHARA T, DOI A, et al. Sterilization mechanism for Escherichia coli by plasma flow at atmospheric pressure[J]. Applied Physics Letters,2006,89(7):073902. doi: 10.1063/1.2336594
    [38]
    JUNG S, LEE J, LIM Y, et al. Direct infusion of nitrite into meat batter by atmospheric pressure plasma treatment[J]. Innovative Food Science & Emerging Technologies,2016,39:113−118.
    [39]
    YONG H I, PARK J, KIM H J, et al. An innovative curing process with plasma-treated water for production of loin ham and for its quality and safety[J]. Plasma Processes & Polymers,2018,15(2):e1700050.
    [40]
    MARCINKOWSKA-LESIAK M, WOJTASIK-KALINOWSKA I, ONOPIUK A, et al. Plasma-activated milk powder as a sodium nitrite alternative in pork sausages[J]. Meat Science,2022,192:108880. doi: 10.1016/j.meatsci.2022.108880
    [41]
    倪思思. 等离子体活化水在中式香肠中的应用[D]. 杭州: 浙江大学, 2021

    NI S S. Application of plasma activated water in Chinese sausage[D]. Hangzhou: Zhejiang University, 2021.
    [42]
    KIM H J, SUNG N Y, YONG H I, et al. Mutagenicity and immune toxicity of emulsion-type sausage cured with plasma-treated water[J]. Korean Journal for Food Science of Animal Resources,2016,36(4):494−498. doi: 10.5851/kosfa.2016.36.4.494
    [43]
    ROD S K, HANSEN F, LEIPOLD F, et al. Cold atmospheric pressure plasma treatment of ready-to-eat meat: Inactivation of Listeria innocua and changes in product quality[J]. Food Microbiology,2012,30(1):233−238. doi: 10.1016/j.fm.2011.12.018
    [44]
    YONG H I, LEE S H, KIM S Y, et al. Color development, physiochemical properties, and microbiological safety of pork jerky processed with atmospheric pressure plasma[J]. Innovative Food Science & Emerging Technologies,2019,53:78−84.
    [45]
    HOGG N, KALYANARAMAN B. Nitric oxide and lipid peroxidation[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1999, 1411(2–3): 378–384.
    [46]
    刘宸成, 王佳媚, 陈姑, 等. 低温等离子体对动物源食品中脂质氧化作用研究进展[J]. 食品安全质量检测学报,2022,13(20):6535−6544. [LIU C C, WANG J M, CHEN G, et al. Research progress of lipids oxidation of animal-derived food by cold plasma[J]. Journal of Food Safety & Quality,2022,13(20):6535−6544. doi: 10.19812/j.cnki.jfsq11-5956/ts.2022.20.005

    LIU C C, WANG J M, CHEN G, et al. Research progress of lipids oxidation of animal-derived food by cold plasma[J]. Journal of Food Safety & Quality, 2022, 13(20): 6535-6544. doi: 10.19812/j.cnki.jfsq11-5956/ts.2022.20.005
    [47]
    LEE J, JO K, LIM Y, et al. The use of atmospheric pressure plasma as a curing process for canned ground ham[J]. Food Chemistry,2018,240:430−436. doi: 10.1016/j.foodchem.2017.07.148
    [48]
    李季林, 陈雅淇, 成军虎. 射频等离子体活性水处理对火腿发色的影响[J]. 食品科学,2021,42(22):9−15. [LI J L, CHEN Y Q, CHENG J H. Effect of plasma activated water on the color development of ham[J]. Food Science,2021,42(22):9−15. doi: 10.7506/spkx1002-6630-20201019-172

    LI J L, CHEN Y Q, CHENG J H. Effect of plasma activated water on the color development of ham[J]. Food Science, 2021, 42(22): 9–15. doi: 10.7506/spkx1002-6630-20201019-172
    [49]
    HUI T, FANG Z F, MA Q L, et al. Effect of cold atmospheric plasma-assisted curing process on the color, odor, volatile composition, and heterocyclic amines in beef meat roasted by charcoal and superheated steam[J]. Meat Science,2023,196:109046. doi: 10.1016/j.meatsci.2022.109046
  • Related Articles

    [1]CHEN Yang, WANG Peng, PAN Kaijin, WANG Zhe, XU Jian, ZHOU Junqiang, LIAO Ziwei. Optimization of the Extraction Process of Highland Barley β-glucan by Three-phase Partitioning and Its Molecular Weight Distribution[J]. Science and Technology of Food Industry, 2023, 44(14): 220-228. DOI: 10.13386/j.issn1002-0306.2022100064
    [2]ZHANG Lixia, SUN Xiaojing, WEI Songli, JIN Lu, MA Lin, SUN Qiang, LU Xin, ZHAO Mouming. Optimization of Mixed Enzyme Ratio of Taste-based Materials Prepared by Enzymatic Hydrolysis of Peanut Meal by Mixture Design[J]. Science and Technology of Food Industry, 2021, 42(23): 184-191. DOI: 10.13386/j.issn1002-0306.2021030209
    [3]WANG Sheng-guang, YU Shuai, MENG Fan-gang, LI Bing-run, SONG Xiao-guang, LIU Guo-fei, WANG Guang-lu, DAI Long, GAO Peng. Study on relative molecular weight distribution and depressor effect of soybean peptide prepared by enzymatic method[J]. Science and Technology of Food Industry, 2018, 39(1): 46-51. DOI: 10.13386/j.issn1002-0306.2018.01.009
    [4]PENG Zhen-fen, WANG Wei, XIE Qian, YE Qing-hua, CHEN Qing-xi, XU Chang-tong. Optimization of testing method for free amino acid of Chinese olive[J]. Science and Technology of Food Industry, 2017, (22): 263-267. DOI: 10.13386/j.issn1002-0306.2017.22.051
    [5]ZHOU Feng-fang, CAI Bin-xin, WU Xin-rui, LUO Fen. Study on hydrolysis condition and molecular weight distribution of ACE inhibitory peptide derived from sea cucumber protein[J]. Science and Technology of Food Industry, 2017, (17): 163-167. DOI: 10.13386/j.issn1002-0306.2017.17.031
    [6]ZHANG Jie, DING Lin, BAI Ge, ZHENG De-juan, CAO Yan-ping. Effect of ultrasonic on molecular weight distribution of papain hydrolyzate[J]. Science and Technology of Food Industry, 2017, (14): 116-120. DOI: 10.13386/j.issn1002-0306.2017.14.023
    [7]YANG Qin, GUO Li-chang, CHEN Hai-qin, ZHANG Hao, CHEN Wei, CHEN Yong- quan. Analysis and characterization of the fatty acids and free amino acids from silkworm and tussah pupa[J]. Science and Technology of Food Industry, 2016, (23): 351-356. DOI: 10.13386/j.issn1002-0306.2016.23.058
    [8]TANG Xiao-yan, ZHENG Hui-na, ZHANG Chao-hua, HAO Ji-ming, ZHANG Jing. Protein composition analysis and molecular weight distribution of Meretrix lusoria[J]. Science and Technology of Food Industry, 2015, (22): 362-366. DOI: 10.13386/j.issn1002-0306.2015.22.066
    [9]LAI Ji- xiang, HE Cong-fen, FANG Yun, ZHAO Ya, WEI Shao-min. Study on molecular weight distribution and antioxidant activity of protein components in germinal black soybean[J]. Science and Technology of Food Industry, 2015, (01): 49-53. DOI: 10.13386/j.issn1002-0306.2015.01.001
    [10]CHANG Ya-nan, ZHAO Gai-ming, LIU Yan-xia, LI Miao-yun, HUANG Xian-qing, SUN Ling-xia. Changes of free amino acids in chicken and its broth during cooking[J]. Science and Technology of Food Industry, 2014, (09): 333-337. DOI: 10.13386/j.issn1002-0306.2014.09.064
  • Cited by

    Periodical cited type(10)

    1. 郁冯艳,付佳伟,从光雷,刘春雪,夏双双,杜莉,李俊波. 发酵饲料在动物生产中应用的研究进展. 饲料研究. 2024(04): 154-157 .
    2. 付洋洋,刘禹熙,敖翔,古燕,周建川. 液体发酵饲料的品质管理及其在养猪生产中的应用. 中国畜牧杂志. 2024(08): 55-61 .
    3. 蔡英,文洋,张官巨,邵晨阳,桂义国,蓝洪,胡延春. 小分子胶束中药对青峪黑猪肉质的影响研究. 四川畜牧兽医. 2024(10): 28-32 .
    4. 申远航,李登云,陈华,姚学丹. 发酵饲料对猪肉品质影响的Meta分析. 动物营养学报. 2023(08): 5374-5383 .
    5. 李思懿,粘颖群,谭建庄,卞宝国,杜宏,任向蕾,李春保. 基于电子鼻快速检测生鲜猪肉的异味. 食品工业科技. 2023(20): 338-348 . 本站查看
    6. 王娜. 1株益生乳酸菌的分离及其制备的发酵饲料对仔猪生长性能、血清抗氧化与免疫相关指标的影响. 黑龙江畜牧兽医. 2023(19): 93-99 .
    7. 牟超. 饲粮中添加白藜芦醇对生长育肥期猪肉品质的影响研究. 畜牧业环境. 2023(06): 5-8 .
    8. 李鹏,苏为为,王利平,肖研博,吕珂,王绍怡,岳锋,郭东光,刘兴友. 发酵饲料及其在生猪生产中的应用研究进展. 中国饲料. 2022(16): 119-122 .
    9. 宋雪莹. 发酵饲料及其在畜禽生产中应用的研究. 湖南饲料. 2022(06): 47-48 .
    10. 王成,靳明亮,单体中,汪以真. 发酵饲料对猪肉品质的影响及机制研究进展. 动物营养学报. 2022(10): 6185-6192 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return