Citation: | DAI Yan, JIANG Zhiyong, LIU Liya, et al. Electrohydrodynamic Processing Technology in Food: A Review[J]. Science and Technology of Food Industry, 2023, 44(12): 413−421. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022090271. |
[1] |
刘凯龙, 姚国强, 张和平. 基于电流体加工技术对益生菌包封作用研究进展[J]. 食品与生物技术学报,2022,41(7):24−31. [LIU K L, YAO G Q, ZHANG H P. Research progress in encapsulation of probiotics based on electrofluid processing technology[J]. Journal of Food Science and Biotechnology,2022,41(7):24−31.
LIU K L, YAO G Q, ZHANG H P. Research progress in encapsulation of probiotics based on electrofluid processing technology [J]. Journal of Food Science and Biotechnology, 2022, 41(7): 24-31.
|
[2] |
BHUSHANI J A, ANANDHARAMAKRISHNAN C. Electrospinning and electrospraying techniques: Potential food based applications[J]. Trends in Food Science & Technology,2014,38(1):21−33.
|
[3] |
邓伶俐. 静电纺丝技术包埋姜黄素研究进展[J]. 中国食品学报,2022,22(3):378−387. [DENG L L. Research progress of curcumin entrapment by electrospinning[J]. Journal of Chinese Institute of Food Science and Technology,2022,22(3):378−387. doi: 10.16429/j.1009-7848.2022.03.041
DENG L L. Research progress of curcumin entrapment by electrospinning[J]. Journal of Chinese Institute of Food Science and Technology, 2022, 22(3): 378-387. doi: 10.16429/j.1009-7848.2022.03.041
|
[4] |
MERCANTE L A, SCAGION V P, MIGLIORINI F L, et al. Electrospinning-based (bio) sensors for food and agricultural applications: A review[J]. TrAC Trends in Analytical Chemistry,2017,91:91−103. doi: 10.1016/j.trac.2017.04.004
|
[5] |
戴妍, 袁莹, 张静, 等. 食品3D打印技术在现代食品工业中的应用进展[J]. 食品工业科技,2022,43(7):35−42. [DAI Y, YUAN Y, ZHANG J, et al. Food 3D printing technology and application in modern food industry: A review[J]. Science and Technology of Food Industry,2022,43(7):35−42.
DAI Y, YUAN Y, ZHANG J, et al. Food 3D printing technology and application in modern food industry: A review[J]. Science and Technology of Food Industry, 2022, 43(7): 35-42.
|
[6] |
DROSOU C G, KROKIDA M K, BILIADERIS C G. Encapsulation of bioactive compounds through electrospinning/electrospraying and spray drying: A comparative assessment of food-related applications[J]. Drying Technology,2017,35(2):139−162. doi: 10.1080/07373937.2016.1162797
|
[7] |
孙楚钧, 李梦豪, 刘磊, 等. 电流体力学技术在纳米载药系统中的研究应用[J]. 中国新药杂志,2022,31(10):955−964. [SUN C J, LI M H, LIU L, et al. A review on the application of electrohydrodynamic technology in nano drug loading system[J]. Chinese Journal of New Drugs,2022,31(10):955−964. doi: 10.3969/j.issn.1003-3734.2022.10.006
SUN C J, LI M H, LIU L, et al. A review on the application of electrohydrodynamic technology in nano drug loading system [J]. Chinese Journal of New Drugs, 2022, 31(10): 955-964. doi: 10.3969/j.issn.1003-3734.2022.10.006
|
[8] |
LEIDY R, XIMENA Q C M. Use of electrospinning technique to produce nanofibres for food industries: A perspective from regulations to characterisations[J]. Trends in Food Science & Technology,2019,85:92−106.
|
[9] |
COELHO S C, ESTEVINHO B N, ROCHA F. Encapsulation in food industry with emerging electrohydrodynamic techniques: Electrospinning and electrospraying–A review[J]. Food Chemistry, 2021, 339: 127 850.
|
[10] |
ROSTAMI M R, YOUSEFI M, KHEZERLOU A, et al. Application of different biopolymers for nanoencapsulation of antioxidants via electrohydrodynamic processes[J]. Food Hydrocolloids,2019,97:105170−105184. doi: 10.1016/j.foodhyd.2019.06.015
|
[11] |
REZAEI A, NASIRPOUR A, FATHI M. Application of cellulosic nanofibers in food science using electrospinning and its potential risk[J]. Comprehensive Reviews in Food Science and Food Safety,2015,14(3):269−284. doi: 10.1111/1541-4337.12128
|
[12] |
YARIN A L. Coaxial electrospinning and emulsion electrospinning of core–shell fibers[J]. Polymers for Advanced Technologies,2011,22(3):310−317. doi: 10.1002/pat.1781
|
[13] |
ZHANG C, LI Y, WANG P, et al. Electrospinning of nanofibers: Potentials and perspectives for active food packaging[J]. Comprehensive Reviews in Food Science and Food Safety,2020,19(2):479−502. doi: 10.1111/1541-4337.12536
|
[14] |
HOSSEINI S F, RAMEZANZADE L, MCCLEMENTS D J. Recent advances in nanoencapsulation of hydrophobic marine bioactives: Bioavailability, safety, and sensory attributes of nano-fortified functional foods[J]. Trends in Food Science & Technology,2021,109:322−339.
|
[15] |
ALEHOSSEINI A, GHORANI B, SARABI-JAMAB M, et al. Principles of electrospraying: A new approach in protection of bioactive compounds in foods[J]. Critical Reviews in Food Science and Nutrition,2018,58(14):2346−2363. doi: 10.1080/10408398.2017.1323723
|
[16] |
NIU B, SHAO P, LUO Y, et al. Recent advances of electrosprayed particles as encapsulation systems of bioactives for food application[J]. Food Hydrocolloids,2020,99:105376. doi: 10.1016/j.foodhyd.2019.105376
|
[17] |
LIM L T, MENDES A C, CHRONAKIS I S. Electrospinning and electrospraying technologies for food applications[J]. Advances in Food and Nutrition Research,2019,88:167−234.
|
[18] |
ROSTAMABADI H, MAHOONAK A S, ALLAFCHIAN A, et al. Fabrication of β-carotene loaded glucuronoxylan-based nanostructures through electrohydrodynamic processing[J]. International Journal of Biological Macromolecules,2019,139:773−784. doi: 10.1016/j.ijbiomac.2019.07.182
|
[19] |
ENAYATI M, CHANG M W, BRAGMAN F, et al. Electrohydrodynamic preparation of particles, capsules and bubbles for biomedical engineering applications[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2011,382(1−3):154−164. doi: 10.1016/j.colsurfa.2010.11.038
|
[20] |
SINGH A, ORSAT V, RAGHAVAN V. A comprehensive review on electrohydrodynamic drying and high-voltage electric field in the context of food and bioprocessing[J]. Drying Technology,2012,30(16):1812−1820. doi: 10.1080/07373937.2012.708912
|
[21] |
XIE J, LIM L K, PHUA Y, et al. Electrohydrodynamic atomization for biodegradable polymeric particle production[J]. Journal of Colloid and Interface Science,2006,302(1):103−112. doi: 10.1016/j.jcis.2006.06.037
|
[22] |
SOFOKLEOUS P, STRIDE E, BONFIELD W, et al. Design, construction and performance of a portable handheld electrohydrodynamic multi-needle spray gun for biomedical applications[J]. Materials Science and Engineering:C,2013,33(1):213−223. doi: 10.1016/j.msec.2012.08.033
|
[23] |
SILVA P M, TORRES-GINER S, VICENTE A A, et al. Electrohydrodynamic processing for the production of zein-based microstructures and nanostructures[J]. Current Opinion in Colloid & Interface Science,2021,56:101504.
|
[24] |
BASHKIR I, DEFRAEYE T, KUDRA T, et al. Electrohydrodynamic drying of plant-based foods and food model systems[J]. Food Engineering Reviews,2020,12(4):473−497. doi: 10.1007/s12393-020-09229-w
|
[25] |
SILVA P M, TORRES-GINER S, VICENTE A A, et al. Management of operational parameters and novel spinneret configurations for the electrohydrodynamic processing of functional polymers[J]. Macromolecular Materials and Engineering,2022,307(5):2100858. doi: 10.1002/mame.202100858
|
[26] |
ZAEIM D, SARABI-JAMAB M, GHORANI B, et al. Microencapsulation of probiotics in multi-polysaccharide microcapsules by electro-hydrodynamic atomization and incorporation into ice-cream formulation[J]. Food Structure,2020,25:100147−100156. doi: 10.1016/j.foostr.2020.100147
|
[27] |
MENDES A C, SALDARINI E, CHRONAKIS I S. Electrohydrodynamic processing of potato protein into particles and fibers[J]. Molecules,2020,25(24):5968−5980. doi: 10.3390/molecules25245968
|
[28] |
COELHO S C, ESTEVINHO B N, ROCHA F. Recent advances in water-soluble vitamins delivery systems prepared by mechanical processes (electrospinning and spray-drying techniques) for food and nutraceuticals applications—A review[J]. Foods,2022,11(9):1271−1288. doi: 10.3390/foods11091271
|
[29] |
GARCÍA-MORENO P J, MENDES A C, JACOBSEN C, et al. Biopolymers for the nano-microencapsulation of bioactive ingredients by electrohydrodynamic processing[M]//Polymers for food applications. Springer, Cham, 2018: 447-479.
|
[30] |
GASPERINI L, MANIGLIO D, MOTTA A, et al. An electrohydrodynamic bioprinter for alginate hydrogels containing living cells[J]. Tissue Engineering Part C:Methods,2015,21(2):123−132. doi: 10.1089/ten.tec.2014.0149
|
[31] |
ZAEIM D, SARABI-JAMAB M, GHORANI B, et al. Double layer co-encapsulation of probiotics and prebiotics by electro-hydrodynamic atomization[J]. LWT-Food Science and Technology,2019,110:102−109. doi: 10.1016/j.lwt.2019.04.040
|
[32] |
CELEBIOGLU A, UYAR T. Electrohydrodynamic encapsulation of eugenol-cyclodextrin complexes in pullulan nanofibers[J]. Food Hydrocolloids,2021,111:106264. doi: 10.1016/j.foodhyd.2020.106264
|
[33] |
GARCÍA-MORENO P J, ÖZDEMIR N, STEPHANSEN K, et al. Development of carbohydrate-based nano-microstructures loaded with fish oil by using electrohydrodynamic processing[J]. Food Hydrocolloids,2017,69:273−285. doi: 10.1016/j.foodhyd.2017.02.013
|
[34] |
ATHARI B, NASIRPOUR A, SAEIDY S, et al. Physicochemical properties of whipped cream stabilized with electrohydrodynamic modified cellulose[J]. Journal of Food Processing and Preservation,2021,45(9):e15688.
|
[35] |
JACOBSEN C, GARCÍA-MORENO P J, MENDES A C, et al. Use of electrohydrodynamic processing for encapsulation of sensitive bioactive compounds and applications in food[J]. Annu Rev Food Sci Technol,2018,9(1):525−549. doi: 10.1146/annurev-food-030117-012348
|
[36] |
GÓMEZ-ESTACA J, BALAGUER M P, GAVARA R, et al. Formation of zein nanoparticles by electrohydrodynamic atomization: Effect of the main processing variables and suitability for encapsulating the food coloring and active ingredient curcumin[J]. Food Hydrocolloids,2012,28(1):82−91. doi: 10.1016/j.foodhyd.2011.11.013
|
[37] |
FABRA M J, LÓPEZ-RUBIO A, LAGARON J M. Use of the electrohydrodynamic process to develop active/bioactive bilayer films for food packaging applications[J]. Food Hydrocolloids,2016,55:11−18. doi: 10.1016/j.foodhyd.2015.10.026
|
[38] |
LI L T, SUN J F, TATSUMI E. Effect of electrohydrodynamic (EHD) technique on drying process and appearance of okara cake[J]. Journal of Food Engineering,2006,77(2):275−280. doi: 10.1016/j.jfoodeng.2005.06.028
|
[39] |
SEETHU B G, PUSHPADASS H A, EMERALD F, et al. Electrohydrodynamic encapsulation of resveratrol using food-grade nanofibres: Process optimization, characterization and fortification[J]. Food and Bioprocess Technology,2020,13(2):341−354. doi: 10.1007/s11947-019-02399-4
|
[40] |
BEŞIR A, KAHYAOGLU T. Development and characterization of functional electrohydrodynamic particles and fibers using bitter melon (Momordica charantia L.) extract[J]. Journal of Food Measurement and Characterization,2020,14(4):2333−2342. doi: 10.1007/s11694-020-00480-7
|
[41] |
LÜ X, WANG X, WANG Q, et al. Encapsulation of sea buckthorn (Hippophae rhamnoides L.) leaf extract via an electrohydrodynamic method[J]. Food Chemistry,2021,365:130481. doi: 10.1016/j.foodchem.2021.130481
|
[42] |
CHEN Y, MARTYNENKO A. Combination of hydrothermodynamic (HTD) processing and different drying methods for natural blueberry leather[J]. LWT-Food Science and Technology,2018,87:470−477. doi: 10.1016/j.lwt.2017.09.030
|
[43] |
PAPADAKI S, KYRIAKOPOULOU K, KROKIDA M. Recovery and encapsualtion of bioactive extracts from Haematococcus pluvialis and Phaedodactylum tricornutum for food applications[J]. IOSR Journal of Environmental Science, Toxicology and Food Technology,2017,10:53−58.
|
[44] |
MOHAMMED N K, TAN C P, MANAP Y A, et al. Spray drying for the encapsulation of oils-A review[J]. Molecules,2020,25(17):3873. doi: 10.3390/molecules25173873
|
[45] |
EUN J B, MARUF A, DAS P R, et al. A review of encapsulation of carotenoids using spray drying and freeze drying[J]. Critical Reviews in Food Science and Nutrition,2020,60(21):3547−3572. doi: 10.1080/10408398.2019.1698511
|
[46] |
HADIDI M, BOOSTANI S, JAFARI S M. Pea proteins as emerging biopolymers for the emulsification and encapsulation of food bioactives[J]. Food Hydrocolloids, 2021: 107474.
|
[47] |
EGHBAL N, CHOUDHARY R. Complex coacervation: Encapsulation and controlled release of active agents in food systems[J]. LWT-Food Science and Technology,2018,90:254−264. doi: 10.1016/j.lwt.2017.12.036
|
[48] |
LAMMARI N, LOUAER O, MENIAI A H, et al. Encapsulation of essential oils via nanoprecipitation process: Overview, progress, challenges and prospects[J]. Pharmaceutics,2020,12(5):431. doi: 10.3390/pharmaceutics12050431
|
[49] |
ECHEGOYEN Y, FABRA M J, CASTRO-MAYORGA J L, et al. High throughput electro-hydrodynamic processing in food encapsulation and food packaging applications[J]. Trends in Food Science & Technology,2017,60:71−79.
|
[50] |
MENDES A C, CHRONAKIS I S. Electrohydrodynamic encapsulation of probiotics: A review[J]. Food Hydrocolloids,2021,117:106688. doi: 10.1016/j.foodhyd.2021.106688
|
[51] |
JAWOREK A. Electrohydrodynamic microencapsulation technology[M]//Encapsulations. Academic Press, 2016: 1-45.
|
[52] |
MESHRAM B D, AGRAWAL A K, ADIL S, et al. Biosensor and its application in food and dairy industry: A review[J]. International Journal of Current Microbiology and Applied Sciences,2018,7:3305−3324.
|
[53] |
NEO Y P, RAY S, PERERA C O. Fabrication of functional electrospun nanostructures for food applications[J]. Role of Materials Science in Food Bioengineering, 2018: 109-146.
|
[54] |
MARX S, JOSE M V, ANDERSEN J D, et al. Electrospun gold nanofiber electrodes for biosensors[J]. Biosensors and Bioelectronics,2011,26(6):2981−2986. doi: 10.1016/j.bios.2010.11.050
|
[55] |
YILDIRIM S, RÖCKER B, PETTERSEN M K, et al. Active packaging applications for food[J]. Comprehensive Reviews in Food Science and Food Safety,2018,17(1):165−199. doi: 10.1111/1541-4337.12322
|
[56] |
CHARLES A P R, JIN T Z, MU R, et al. Electrohydrodynamic processing of natural polymers for active food packaging: A comprehensive review[J]. Comprehensive Reviews in Food Science and Food Safety,2021,20(6):6027−6056. doi: 10.1111/1541-4337.12827
|
[57] |
KARAMI N, KAMKAR A, SHAHBAZI Y, et al. Electrospinning of double-layer chitosan-flax seed mucilage nanofibers for sustained release of Ziziphora clinopodioides essential oil and sesame oil[J]. LWT-Food Science and Technology,2021,140:110812. doi: 10.1016/j.lwt.2020.110812
|
[58] |
RAEISI M, MOHAMMADI M A, COBAN O E, et al. Physicochemical and antibacterial effect of soy protein isolate/gelatin electrospun nanofibres incorporated with Zataria multiflora and Cinnamon zeylanicum essential oils[J]. Journal of Food Measurement and Characterization,2021,15(2):1116−1126. doi: 10.1007/s11694-020-00700-0
|
[59] |
AMJADI S, ALMASI H, GHORBANI M, et al. Preparation and characterization of TiO2NPs and betanin loaded zein/sodium alginate nanofibers[J]. Food Packaging and Shelf Life,2020,24:100504. doi: 10.1016/j.fpsl.2020.100504
|
[60] |
KWAK H W, PARK J, YUN H, et al. Effect of crosslinkable sugar molecules on the physico-chemical and antioxidant properties of fish gelatin nanofibers[J]. Food Hydrocolloids,2021,111:106259. doi: 10.1016/j.foodhyd.2020.106259
|
[61] |
BÖHMER-MAAS B W, FONSECA L M, OTERO D M, et al. Photocatalytic zein-TiO2 nanofibers as ethylene absorbers for storage of cherry tomatoes[J]. Food Packaging and Shelf Life,2020,24:100508. doi: 10.1016/j.fpsl.2020.100508
|
[62] |
LI S, YAN Y, GUAN X, et al. Preparation of a hordein-quercetin-chitosan antioxidant electrospun nanofibre film for food packaging and improvement of the film hydrophobic properties by heat treatment[J]. Food Packaging and Shelf Life,2020,23:100466. doi: 10.1016/j.fpsl.2020.100466
|
[63] |
HUSAIN O, LAU W, EDIRISINGHE M, et al. Investigating the particle to fibre transition threshold during electrohydrodynamic atomization of a polymer solution[J]. Materials Science and Engineering: C,2016,65:240−250. doi: 10.1016/j.msec.2016.03.076
|
[64] |
JING L, WANG X, LIU H, et al. Zein increases the cytoaffinity and biodegradability of scaffolds 3D-printed with zein and poly (ε-caprolactone) composite ink[J]. ACS Applied Materials & Interfaces,2018,10(22):18551−18559.
|
[65] |
BAI J, WANG H, GAO W, et al. Melt electrohydrodynamic 3D printed poly (ε-caprolactone)/polyethylene glycol/roxithromycin scaffold as a potential anti-infective implant in bone repair[J]. International Journal of Pharmaceutics,2020,576:118941. doi: 10.1016/j.ijpharm.2019.118941
|
[66] |
CHAPMAN J, POWER A, NETZEL M E, et al. Challenges and opportunities of the fourth revolution: A brief insight into the future of food[J]. Critical Reviews in Food Science and Nutrition,2022,62(10):2845−2853. doi: 10.1080/10408398.2020.1863328
|
[67] |
廖小军, 赵婧, 饶雷, 等. 未来食品: 热点领域分析与展望[J]. 食品科学技术学报,2022,40(2):1−14. [LIAO X J, ZHAO J, RAO L, et al. Prospective analysis of hot topics in future foods[J]. Journal of Food Science and Technology,2022,40(2):1−14.
LIAO X J, ZHAO J, RAO L, et al. Prospective analysis of hot topics in future foods[J]. Journal of Food Science and Technology, 2022, 40(2): 1-14.
|
[68] |
KUMAR S, KALITA S, DAS A, et al. Aloe vera: A contemporary overview on scope and prospects in food preservation and packaging[J]. Progress in Organic Coatings,2022,166:106799. doi: 10.1016/j.porgcoat.2022.106799
|
[1] | CUI Cheng, LIU Cuiling, SUN Xiaorong, WU Jingzhu. Peanut Frostbite Detection Method Based on Near Infrared Hyperspectral Imaging Technology[J]. Science and Technology of Food Industry, 2024, 45(6): 226-233. DOI: 10.13386/j.issn1002-0306.2023030252 |
[2] | CUI Lingyan, YANG Yan, WANG Qiong, XU Xiaoyu, LI Kaifeng, LI Maoxing, BAI Lei, GUO Huachun. Anthocyanin Distribution and Sampling Method in Colored Potato Tubers[J]. Science and Technology of Food Industry, 2022, 43(4): 293-299. DOI: 10.13386/j.issn1002-0306.2021050128 |
[3] | LIU Ting, HE Tao, SUN Meng-yin, WANG Zhen, CUI Yang, ZHAO Qian-qian, LI Long. Determination of Cadinium in scallops by solid sampling atomic fluorescence spectrometry[J]. Science and Technology of Food Industry, 2016, (15): 313-315. DOI: 10.13386/j.issn1002-0306.2016.15.052 |
[4] | HUANG Jia- jia, JIANG Dong-wen, YANG Zhao, LI Yan-jie, XU Zhen-lin. Solid- phase extraction technique based on multi- walled carbon nanotubes and its application in food safety detection[J]. Science and Technology of Food Industry, 2016, (14): 368-374. DOI: 10.13386/j.issn1002-0306.2016.14.065 |
[5] | ZHANG Ting-huan, CHEN Lei, PAN Hong-mei, WANG Jin-yong, QIU Jin-jie. Effect of evaluating pork shear force by different sampling temperature,orientation and shear speed[J]. Science and Technology of Food Industry, 2016, (04): 138-141. DOI: 10.13386/j.issn1002-0306.2016.04.018 |
[6] | PENG Hong-wei, BAI Rui-ying, ZHANG Yan, XU Zhen-lin, SUN Yuan-ming, ZENG Dao-ping, YANG Jin-yi. Progress in applications of carbon nanotubes for solid phase extraction in food safety and detection[J]. Science and Technology of Food Industry, 2015, (22): 367-371. DOI: 10.13386/j.issn1002-0306.2015.22.067 |
[7] | DU Jian, XUE Yi. Research progress of sample preparation and testing methods on heavy metal in food additive[J]. Science and Technology of Food Industry, 2015, (04): 397-399. DOI: 10.13386/j.issn1002-0306.2015.04.077 |
[8] | WU Xiao-song, GANG Jie, HE Yu-bo, HU Wen-zhong. PCR detection methods of Salmonella and application in vegetables samples[J]. Science and Technology of Food Industry, 2014, (15): 320-323. DOI: 10.13386/j.issn1002-0306.2014.15.062 |
[9] | CHEN Yang, TAN Zuo-jun, XIE Jing, RAO Jing. Application of terahertz spectroscopy and imaging techniques in food quality and safety[J]. Science and Technology of Food Industry, 2014, (14): 49-55. DOI: 10.13386/j.issn1002-0306.2014.14.001 |
[10] | XU Yan-yang, SI Teng-fei, YU Jiang, QIAN Yong-zhong, LI Yun, ZHOU Jian, ZHANG Xing-lian. Advance on sample pretreatment and analysis of DEHP in food samples[J]. Science and Technology of Food Industry, 2013, (24): 367-371. DOI: 10.13386/j.issn1002-0306.2013.24.086 |