DAI Yan, JIANG Zhiyong, LIU Liya, et al. Electrohydrodynamic Processing Technology in Food: A Review[J]. Science and Technology of Food Industry, 2023, 44(12): 413−421. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022090271.
Citation: DAI Yan, JIANG Zhiyong, LIU Liya, et al. Electrohydrodynamic Processing Technology in Food: A Review[J]. Science and Technology of Food Industry, 2023, 44(12): 413−421. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022090271.

Electrohydrodynamic Processing Technology in Food: A Review

More Information
  • Received Date: September 25, 2022
  • Available Online: April 12, 2023
  • Electrohydrodynamic processing technology, as an innovative non-thermal processing technology, is gradually applied in food science and technology field with the assistance of future food industry development. This article reviews principle, classification, accessible factors, biological materials and application, summarizes and discusses future developments in food field of electrohydrodynamic processing technology. Electrohydrodynamic processing technology consistes of electrospinning and electrospraying techniques, and could produce complex function micron/nano fibrosome or particle, which may be adopted in microencapsulation of food functional components, immobilized enzyme, biosensor, active food packaging, assistant technique of food 3D printing developments. Future work should be carried out in increasing yield of fibrosome/particle, decreasing solvent residual toxicity and integrating 3D printing for future food industry development.
  • [1]
    刘凯龙, 姚国强, 张和平. 基于电流体加工技术对益生菌包封作用研究进展[J]. 食品与生物技术学报,2022,41(7):24−31. [LIU K L, YAO G Q, ZHANG H P. Research progress in encapsulation of probiotics based on electrofluid processing technology[J]. Journal of Food Science and Biotechnology,2022,41(7):24−31.

    LIU K L, YAO G Q, ZHANG H P. Research progress in encapsulation of probiotics based on electrofluid processing technology [J]. Journal of Food Science and Biotechnology, 2022, 41(7): 24-31.
    [2]
    BHUSHANI J A, ANANDHARAMAKRISHNAN C. Electrospinning and electrospraying techniques: Potential food based applications[J]. Trends in Food Science & Technology,2014,38(1):21−33.
    [3]
    邓伶俐. 静电纺丝技术包埋姜黄素研究进展[J]. 中国食品学报,2022,22(3):378−387. [DENG L L. Research progress of curcumin entrapment by electrospinning[J]. Journal of Chinese Institute of Food Science and Technology,2022,22(3):378−387. doi: 10.16429/j.1009-7848.2022.03.041

    DENG L L. Research progress of curcumin entrapment by electrospinning[J]. Journal of Chinese Institute of Food Science and Technology, 2022, 22(3): 378-387. doi: 10.16429/j.1009-7848.2022.03.041
    [4]
    MERCANTE L A, SCAGION V P, MIGLIORINI F L, et al. Electrospinning-based (bio) sensors for food and agricultural applications: A review[J]. TrAC Trends in Analytical Chemistry,2017,91:91−103. doi: 10.1016/j.trac.2017.04.004
    [5]
    戴妍, 袁莹, 张静, 等. 食品3D打印技术在现代食品工业中的应用进展[J]. 食品工业科技,2022,43(7):35−42. [DAI Y, YUAN Y, ZHANG J, et al. Food 3D printing technology and application in modern food industry: A review[J]. Science and Technology of Food Industry,2022,43(7):35−42.

    DAI Y, YUAN Y, ZHANG J, et al. Food 3D printing technology and application in modern food industry: A review[J]. Science and Technology of Food Industry, 2022, 43(7): 35-42.
    [6]
    DROSOU C G, KROKIDA M K, BILIADERIS C G. Encapsulation of bioactive compounds through electrospinning/electrospraying and spray drying: A comparative assessment of food-related applications[J]. Drying Technology,2017,35(2):139−162. doi: 10.1080/07373937.2016.1162797
    [7]
    孙楚钧, 李梦豪, 刘磊, 等. 电流体力学技术在纳米载药系统中的研究应用[J]. 中国新药杂志,2022,31(10):955−964. [SUN C J, LI M H, LIU L, et al. A review on the application of electrohydrodynamic technology in nano drug loading system[J]. Chinese Journal of New Drugs,2022,31(10):955−964. doi: 10.3969/j.issn.1003-3734.2022.10.006

    SUN C J, LI M H, LIU L, et al. A review on the application of electrohydrodynamic technology in nano drug loading system [J]. Chinese Journal of New Drugs, 2022, 31(10): 955-964. doi: 10.3969/j.issn.1003-3734.2022.10.006
    [8]
    LEIDY R, XIMENA Q C M. Use of electrospinning technique to produce nanofibres for food industries: A perspective from regulations to characterisations[J]. Trends in Food Science & Technology,2019,85:92−106.
    [9]
    COELHO S C, ESTEVINHO B N, ROCHA F. Encapsulation in food industry with emerging electrohydrodynamic techniques: Electrospinning and electrospraying–A review[J]. Food Chemistry, 2021, 339: 127 850.
    [10]
    ROSTAMI M R, YOUSEFI M, KHEZERLOU A, et al. Application of different biopolymers for nanoencapsulation of antioxidants via electrohydrodynamic processes[J]. Food Hydrocolloids,2019,97:105170−105184. doi: 10.1016/j.foodhyd.2019.06.015
    [11]
    REZAEI A, NASIRPOUR A, FATHI M. Application of cellulosic nanofibers in food science using electrospinning and its potential risk[J]. Comprehensive Reviews in Food Science and Food Safety,2015,14(3):269−284. doi: 10.1111/1541-4337.12128
    [12]
    YARIN A L. Coaxial electrospinning and emulsion electrospinning of core–shell fibers[J]. Polymers for Advanced Technologies,2011,22(3):310−317. doi: 10.1002/pat.1781
    [13]
    ZHANG C, LI Y, WANG P, et al. Electrospinning of nanofibers: Potentials and perspectives for active food packaging[J]. Comprehensive Reviews in Food Science and Food Safety,2020,19(2):479−502. doi: 10.1111/1541-4337.12536
    [14]
    HOSSEINI S F, RAMEZANZADE L, MCCLEMENTS D J. Recent advances in nanoencapsulation of hydrophobic marine bioactives: Bioavailability, safety, and sensory attributes of nano-fortified functional foods[J]. Trends in Food Science & Technology,2021,109:322−339.
    [15]
    ALEHOSSEINI A, GHORANI B, SARABI-JAMAB M, et al. Principles of electrospraying: A new approach in protection of bioactive compounds in foods[J]. Critical Reviews in Food Science and Nutrition,2018,58(14):2346−2363. doi: 10.1080/10408398.2017.1323723
    [16]
    NIU B, SHAO P, LUO Y, et al. Recent advances of electrosprayed particles as encapsulation systems of bioactives for food application[J]. Food Hydrocolloids,2020,99:105376. doi: 10.1016/j.foodhyd.2019.105376
    [17]
    LIM L T, MENDES A C, CHRONAKIS I S. Electrospinning and electrospraying technologies for food applications[J]. Advances in Food and Nutrition Research,2019,88:167−234.
    [18]
    ROSTAMABADI H, MAHOONAK A S, ALLAFCHIAN A, et al. Fabrication of β-carotene loaded glucuronoxylan-based nanostructures through electrohydrodynamic processing[J]. International Journal of Biological Macromolecules,2019,139:773−784. doi: 10.1016/j.ijbiomac.2019.07.182
    [19]
    ENAYATI M, CHANG M W, BRAGMAN F, et al. Electrohydrodynamic preparation of particles, capsules and bubbles for biomedical engineering applications[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2011,382(1−3):154−164. doi: 10.1016/j.colsurfa.2010.11.038
    [20]
    SINGH A, ORSAT V, RAGHAVAN V. A comprehensive review on electrohydrodynamic drying and high-voltage electric field in the context of food and bioprocessing[J]. Drying Technology,2012,30(16):1812−1820. doi: 10.1080/07373937.2012.708912
    [21]
    XIE J, LIM L K, PHUA Y, et al. Electrohydrodynamic atomization for biodegradable polymeric particle production[J]. Journal of Colloid and Interface Science,2006,302(1):103−112. doi: 10.1016/j.jcis.2006.06.037
    [22]
    SOFOKLEOUS P, STRIDE E, BONFIELD W, et al. Design, construction and performance of a portable handheld electrohydrodynamic multi-needle spray gun for biomedical applications[J]. Materials Science and Engineering:C,2013,33(1):213−223. doi: 10.1016/j.msec.2012.08.033
    [23]
    SILVA P M, TORRES-GINER S, VICENTE A A, et al. Electrohydrodynamic processing for the production of zein-based microstructures and nanostructures[J]. Current Opinion in Colloid & Interface Science,2021,56:101504.
    [24]
    BASHKIR I, DEFRAEYE T, KUDRA T, et al. Electrohydrodynamic drying of plant-based foods and food model systems[J]. Food Engineering Reviews,2020,12(4):473−497. doi: 10.1007/s12393-020-09229-w
    [25]
    SILVA P M, TORRES-GINER S, VICENTE A A, et al. Management of operational parameters and novel spinneret configurations for the electrohydrodynamic processing of functional polymers[J]. Macromolecular Materials and Engineering,2022,307(5):2100858. doi: 10.1002/mame.202100858
    [26]
    ZAEIM D, SARABI-JAMAB M, GHORANI B, et al. Microencapsulation of probiotics in multi-polysaccharide microcapsules by electro-hydrodynamic atomization and incorporation into ice-cream formulation[J]. Food Structure,2020,25:100147−100156. doi: 10.1016/j.foostr.2020.100147
    [27]
    MENDES A C, SALDARINI E, CHRONAKIS I S. Electrohydrodynamic processing of potato protein into particles and fibers[J]. Molecules,2020,25(24):5968−5980. doi: 10.3390/molecules25245968
    [28]
    COELHO S C, ESTEVINHO B N, ROCHA F. Recent advances in water-soluble vitamins delivery systems prepared by mechanical processes (electrospinning and spray-drying techniques) for food and nutraceuticals applications—A review[J]. Foods,2022,11(9):1271−1288. doi: 10.3390/foods11091271
    [29]
    GARCÍA-MORENO P J, MENDES A C, JACOBSEN C, et al. Biopolymers for the nano-microencapsulation of bioactive ingredients by electrohydrodynamic processing[M]//Polymers for food applications. Springer, Cham, 2018: 447-479.
    [30]
    GASPERINI L, MANIGLIO D, MOTTA A, et al. An electrohydrodynamic bioprinter for alginate hydrogels containing living cells[J]. Tissue Engineering Part C:Methods,2015,21(2):123−132. doi: 10.1089/ten.tec.2014.0149
    [31]
    ZAEIM D, SARABI-JAMAB M, GHORANI B, et al. Double layer co-encapsulation of probiotics and prebiotics by electro-hydrodynamic atomization[J]. LWT-Food Science and Technology,2019,110:102−109. doi: 10.1016/j.lwt.2019.04.040
    [32]
    CELEBIOGLU A, UYAR T. Electrohydrodynamic encapsulation of eugenol-cyclodextrin complexes in pullulan nanofibers[J]. Food Hydrocolloids,2021,111:106264. doi: 10.1016/j.foodhyd.2020.106264
    [33]
    GARCÍA-MORENO P J, ÖZDEMIR N, STEPHANSEN K, et al. Development of carbohydrate-based nano-microstructures loaded with fish oil by using electrohydrodynamic processing[J]. Food Hydrocolloids,2017,69:273−285. doi: 10.1016/j.foodhyd.2017.02.013
    [34]
    ATHARI B, NASIRPOUR A, SAEIDY S, et al. Physicochemical properties of whipped cream stabilized with electrohydrodynamic modified cellulose[J]. Journal of Food Processing and Preservation,2021,45(9):e15688.
    [35]
    JACOBSEN C, GARCÍA-MORENO P J, MENDES A C, et al. Use of electrohydrodynamic processing for encapsulation of sensitive bioactive compounds and applications in food[J]. Annu Rev Food Sci Technol,2018,9(1):525−549. doi: 10.1146/annurev-food-030117-012348
    [36]
    GÓMEZ-ESTACA J, BALAGUER M P, GAVARA R, et al. Formation of zein nanoparticles by electrohydrodynamic atomization: Effect of the main processing variables and suitability for encapsulating the food coloring and active ingredient curcumin[J]. Food Hydrocolloids,2012,28(1):82−91. doi: 10.1016/j.foodhyd.2011.11.013
    [37]
    FABRA M J, LÓPEZ-RUBIO A, LAGARON J M. Use of the electrohydrodynamic process to develop active/bioactive bilayer films for food packaging applications[J]. Food Hydrocolloids,2016,55:11−18. doi: 10.1016/j.foodhyd.2015.10.026
    [38]
    LI L T, SUN J F, TATSUMI E. Effect of electrohydrodynamic (EHD) technique on drying process and appearance of okara cake[J]. Journal of Food Engineering,2006,77(2):275−280. doi: 10.1016/j.jfoodeng.2005.06.028
    [39]
    SEETHU B G, PUSHPADASS H A, EMERALD F, et al. Electrohydrodynamic encapsulation of resveratrol using food-grade nanofibres: Process optimization, characterization and fortification[J]. Food and Bioprocess Technology,2020,13(2):341−354. doi: 10.1007/s11947-019-02399-4
    [40]
    BEŞIR A, KAHYAOGLU T. Development and characterization of functional electrohydrodynamic particles and fibers using bitter melon (Momordica charantia L.) extract[J]. Journal of Food Measurement and Characterization,2020,14(4):2333−2342. doi: 10.1007/s11694-020-00480-7
    [41]
    LÜ X, WANG X, WANG Q, et al. Encapsulation of sea buckthorn (Hippophae rhamnoides L.) leaf extract via an electrohydrodynamic method[J]. Food Chemistry,2021,365:130481. doi: 10.1016/j.foodchem.2021.130481
    [42]
    CHEN Y, MARTYNENKO A. Combination of hydrothermodynamic (HTD) processing and different drying methods for natural blueberry leather[J]. LWT-Food Science and Technology,2018,87:470−477. doi: 10.1016/j.lwt.2017.09.030
    [43]
    PAPADAKI S, KYRIAKOPOULOU K, KROKIDA M. Recovery and encapsualtion of bioactive extracts from Haematococcus pluvialis and Phaedodactylum tricornutum for food applications[J]. IOSR Journal of Environmental Science, Toxicology and Food Technology,2017,10:53−58.
    [44]
    MOHAMMED N K, TAN C P, MANAP Y A, et al. Spray drying for the encapsulation of oils-A review[J]. Molecules,2020,25(17):3873. doi: 10.3390/molecules25173873
    [45]
    EUN J B, MARUF A, DAS P R, et al. A review of encapsulation of carotenoids using spray drying and freeze drying[J]. Critical Reviews in Food Science and Nutrition,2020,60(21):3547−3572. doi: 10.1080/10408398.2019.1698511
    [46]
    HADIDI M, BOOSTANI S, JAFARI S M. Pea proteins as emerging biopolymers for the emulsification and encapsulation of food bioactives[J]. Food Hydrocolloids, 2021: 107474.
    [47]
    EGHBAL N, CHOUDHARY R. Complex coacervation: Encapsulation and controlled release of active agents in food systems[J]. LWT-Food Science and Technology,2018,90:254−264. doi: 10.1016/j.lwt.2017.12.036
    [48]
    LAMMARI N, LOUAER O, MENIAI A H, et al. Encapsulation of essential oils via nanoprecipitation process: Overview, progress, challenges and prospects[J]. Pharmaceutics,2020,12(5):431. doi: 10.3390/pharmaceutics12050431
    [49]
    ECHEGOYEN Y, FABRA M J, CASTRO-MAYORGA J L, et al. High throughput electro-hydrodynamic processing in food encapsulation and food packaging applications[J]. Trends in Food Science & Technology,2017,60:71−79.
    [50]
    MENDES A C, CHRONAKIS I S. Electrohydrodynamic encapsulation of probiotics: A review[J]. Food Hydrocolloids,2021,117:106688. doi: 10.1016/j.foodhyd.2021.106688
    [51]
    JAWOREK A. Electrohydrodynamic microencapsulation technology[M]//Encapsulations. Academic Press, 2016: 1-45.
    [52]
    MESHRAM B D, AGRAWAL A K, ADIL S, et al. Biosensor and its application in food and dairy industry: A review[J]. International Journal of Current Microbiology and Applied Sciences,2018,7:3305−3324.
    [53]
    NEO Y P, RAY S, PERERA C O. Fabrication of functional electrospun nanostructures for food applications[J]. Role of Materials Science in Food Bioengineering, 2018: 109-146.
    [54]
    MARX S, JOSE M V, ANDERSEN J D, et al. Electrospun gold nanofiber electrodes for biosensors[J]. Biosensors and Bioelectronics,2011,26(6):2981−2986. doi: 10.1016/j.bios.2010.11.050
    [55]
    YILDIRIM S, RÖCKER B, PETTERSEN M K, et al. Active packaging applications for food[J]. Comprehensive Reviews in Food Science and Food Safety,2018,17(1):165−199. doi: 10.1111/1541-4337.12322
    [56]
    CHARLES A P R, JIN T Z, MU R, et al. Electrohydrodynamic processing of natural polymers for active food packaging: A comprehensive review[J]. Comprehensive Reviews in Food Science and Food Safety,2021,20(6):6027−6056. doi: 10.1111/1541-4337.12827
    [57]
    KARAMI N, KAMKAR A, SHAHBAZI Y, et al. Electrospinning of double-layer chitosan-flax seed mucilage nanofibers for sustained release of Ziziphora clinopodioides essential oil and sesame oil[J]. LWT-Food Science and Technology,2021,140:110812. doi: 10.1016/j.lwt.2020.110812
    [58]
    RAEISI M, MOHAMMADI M A, COBAN O E, et al. Physicochemical and antibacterial effect of soy protein isolate/gelatin electrospun nanofibres incorporated with Zataria multiflora and Cinnamon zeylanicum essential oils[J]. Journal of Food Measurement and Characterization,2021,15(2):1116−1126. doi: 10.1007/s11694-020-00700-0
    [59]
    AMJADI S, ALMASI H, GHORBANI M, et al. Preparation and characterization of TiO2NPs and betanin loaded zein/sodium alginate nanofibers[J]. Food Packaging and Shelf Life,2020,24:100504. doi: 10.1016/j.fpsl.2020.100504
    [60]
    KWAK H W, PARK J, YUN H, et al. Effect of crosslinkable sugar molecules on the physico-chemical and antioxidant properties of fish gelatin nanofibers[J]. Food Hydrocolloids,2021,111:106259. doi: 10.1016/j.foodhyd.2020.106259
    [61]
    BÖHMER-MAAS B W, FONSECA L M, OTERO D M, et al. Photocatalytic zein-TiO2 nanofibers as ethylene absorbers for storage of cherry tomatoes[J]. Food Packaging and Shelf Life,2020,24:100508. doi: 10.1016/j.fpsl.2020.100508
    [62]
    LI S, YAN Y, GUAN X, et al. Preparation of a hordein-quercetin-chitosan antioxidant electrospun nanofibre film for food packaging and improvement of the film hydrophobic properties by heat treatment[J]. Food Packaging and Shelf Life,2020,23:100466. doi: 10.1016/j.fpsl.2020.100466
    [63]
    HUSAIN O, LAU W, EDIRISINGHE M, et al. Investigating the particle to fibre transition threshold during electrohydrodynamic atomization of a polymer solution[J]. Materials Science and Engineering: C,2016,65:240−250. doi: 10.1016/j.msec.2016.03.076
    [64]
    JING L, WANG X, LIU H, et al. Zein increases the cytoaffinity and biodegradability of scaffolds 3D-printed with zein and poly (ε-caprolactone) composite ink[J]. ACS Applied Materials & Interfaces,2018,10(22):18551−18559.
    [65]
    BAI J, WANG H, GAO W, et al. Melt electrohydrodynamic 3D printed poly (ε-caprolactone)/polyethylene glycol/roxithromycin scaffold as a potential anti-infective implant in bone repair[J]. International Journal of Pharmaceutics,2020,576:118941. doi: 10.1016/j.ijpharm.2019.118941
    [66]
    CHAPMAN J, POWER A, NETZEL M E, et al. Challenges and opportunities of the fourth revolution: A brief insight into the future of food[J]. Critical Reviews in Food Science and Nutrition,2022,62(10):2845−2853. doi: 10.1080/10408398.2020.1863328
    [67]
    廖小军, 赵婧, 饶雷, 等. 未来食品: 热点领域分析与展望[J]. 食品科学技术学报,2022,40(2):1−14. [LIAO X J, ZHAO J, RAO L, et al. Prospective analysis of hot topics in future foods[J]. Journal of Food Science and Technology,2022,40(2):1−14.

    LIAO X J, ZHAO J, RAO L, et al. Prospective analysis of hot topics in future foods[J]. Journal of Food Science and Technology, 2022, 40(2): 1-14.
    [68]
    KUMAR S, KALITA S, DAS A, et al. Aloe vera: A contemporary overview on scope and prospects in food preservation and packaging[J]. Progress in Organic Coatings,2022,166:106799. doi: 10.1016/j.porgcoat.2022.106799
  • Related Articles

    [1]CUI Cheng, LIU Cuiling, SUN Xiaorong, WU Jingzhu. Peanut Frostbite Detection Method Based on Near Infrared Hyperspectral Imaging Technology[J]. Science and Technology of Food Industry, 2024, 45(6): 226-233. DOI: 10.13386/j.issn1002-0306.2023030252
    [2]CUI Lingyan, YANG Yan, WANG Qiong, XU Xiaoyu, LI Kaifeng, LI Maoxing, BAI Lei, GUO Huachun. Anthocyanin Distribution and Sampling Method in Colored Potato Tubers[J]. Science and Technology of Food Industry, 2022, 43(4): 293-299. DOI: 10.13386/j.issn1002-0306.2021050128
    [3]LIU Ting, HE Tao, SUN Meng-yin, WANG Zhen, CUI Yang, ZHAO Qian-qian, LI Long. Determination of Cadinium in scallops by solid sampling atomic fluorescence spectrometry[J]. Science and Technology of Food Industry, 2016, (15): 313-315. DOI: 10.13386/j.issn1002-0306.2016.15.052
    [4]HUANG Jia- jia, JIANG Dong-wen, YANG Zhao, LI Yan-jie, XU Zhen-lin. Solid- phase extraction technique based on multi- walled carbon nanotubes and its application in food safety detection[J]. Science and Technology of Food Industry, 2016, (14): 368-374. DOI: 10.13386/j.issn1002-0306.2016.14.065
    [5]ZHANG Ting-huan, CHEN Lei, PAN Hong-mei, WANG Jin-yong, QIU Jin-jie. Effect of evaluating pork shear force by different sampling temperature,orientation and shear speed[J]. Science and Technology of Food Industry, 2016, (04): 138-141. DOI: 10.13386/j.issn1002-0306.2016.04.018
    [6]PENG Hong-wei, BAI Rui-ying, ZHANG Yan, XU Zhen-lin, SUN Yuan-ming, ZENG Dao-ping, YANG Jin-yi. Progress in applications of carbon nanotubes for solid phase extraction in food safety and detection[J]. Science and Technology of Food Industry, 2015, (22): 367-371. DOI: 10.13386/j.issn1002-0306.2015.22.067
    [7]DU Jian, XUE Yi. Research progress of sample preparation and testing methods on heavy metal in food additive[J]. Science and Technology of Food Industry, 2015, (04): 397-399. DOI: 10.13386/j.issn1002-0306.2015.04.077
    [8]WU Xiao-song, GANG Jie, HE Yu-bo, HU Wen-zhong. PCR detection methods of Salmonella and application in vegetables samples[J]. Science and Technology of Food Industry, 2014, (15): 320-323. DOI: 10.13386/j.issn1002-0306.2014.15.062
    [9]CHEN Yang, TAN Zuo-jun, XIE Jing, RAO Jing. Application of terahertz spectroscopy and imaging techniques in food quality and safety[J]. Science and Technology of Food Industry, 2014, (14): 49-55. DOI: 10.13386/j.issn1002-0306.2014.14.001
    [10]XU Yan-yang, SI Teng-fei, YU Jiang, QIAN Yong-zhong, LI Yun, ZHOU Jian, ZHANG Xing-lian. Advance on sample pretreatment and analysis of DEHP in food samples[J]. Science and Technology of Food Industry, 2013, (24): 367-371. DOI: 10.13386/j.issn1002-0306.2013.24.086

Catalog

    Article Metrics

    Article views (278) PDF downloads (20) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return