WANG Zhuan, HU Hongliu, CHEN Qifeng, et al. Research Progress on Antitumor Mechanism of 6-Shogaol[J]. Science and Technology of Food Industry, 2023, 44(11): 480−486. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022080339.
Citation: WANG Zhuan, HU Hongliu, CHEN Qifeng, et al. Research Progress on Antitumor Mechanism of 6-Shogaol[J]. Science and Technology of Food Industry, 2023, 44(11): 480−486. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022080339.

Research Progress on Antitumor Mechanism of 6-Shogaol

More Information
  • Received Date: August 30, 2022
  • Available Online: April 02, 2023
  • The incidence and mortality of cancer are increasing year by year, which seriously threatens human health. 6-Shogaol, as one of the main active components in ginger, has become the focus of attention in recent years due to its advantages of safety and low toxicity. Moreover, it has anti-inflammatory, antioxidant, anti-tumor and other pharmacological effects. Particularly, its anti-tumor activity has received increasing attention. This paper reviews the anti-tumor mechanism of 6-shogaol, including inhibition of cell proliferation, induction of cell apoptosis, arrest of cell cycle, inhibition of cell migration and invasion, effect of autophagy in tumor cells, etc., in order to provide ideas for further research, development and application of 6-shogaol in anti-tumor.
  • [1]
    FERLAY J, COLOMBET M, SOERJOMATARAM I, et al. Cancer statistics for the year 2020: An overview[J]. International Journal of Cancer, 2021.
    [2]
    CAO W, CHEN H D, YU Y W, et al. Changing profiles of cancer burden worldwide and in China: A secondary analysis of the global cancer statistics 2020[J]. Chinese Medical Journal (England),2021,134(7):783−791.
    [3]
    MOHD Y Y A. Gingerol and its role in chronic diseases[J]. Advances in Experimental Medicine and Biology,2016,929:177−207.
    [4]
    MARX W, RIED K, MCCARTHY A L, et al. Ginger-mechanism of action in chemotherapy-induced nausea and vomiting: A review[J]. Critical Reviews in Food Science and Nutrition,2017,57(1):141−146. doi: 10.1080/10408398.2013.865590
    [5]
    SEMWAL R B, SEMWAL D K, COMBRINCK S, et al. Gingerols and shogaols: Important nutraceutical principles from ginger[J]. Phytochemistry,2015,117:554−568. doi: 10.1016/j.phytochem.2015.07.012
    [6]
    KOU X, LI X Z, RAMIM T R, et al. Efficient dehydration of 6-gingerol to 6-shogaol catalyzed by an acidic ionic liquid under ultrasound irradiation[J]. Food Chemistry,2017,215:193−199. doi: 10.1016/j.foodchem.2016.07.106
    [7]
    ZHANG Y, WANG J J, QU Y, et al. 6-Shogaol suppresses the progression of liver cancer via the inactivation of Wnt/Catenin signaling by regulating TLR4[J]. American Journal of Chinese Medicine,2021,49(8):2033−2048. doi: 10.1142/S0192415X21500968
    [8]
    BAWADOOD A S, ABBASI F A, ANWAR F, et al. 6-Shogaol suppresses the growth of breast cancer cells by inducing apoptosis and suppressing autophagy via targeting notch signaling pathway[J]. Biomedicine & Pharmacothertpy,2020,128:110302.
    [9]
    WU C H, HONG B, HO C T, et al. Targeting cancer stem cells in breast cancer: Potential anticancer properties of 6-shogaol and pterostilbene[J]. Journal of Agricultural and Food Chemistry,2015,63(9):2432−2441. doi: 10.1021/acs.jafc.5b00002
    [10]
    HUANG H, KIM M K, KIM K R. Anticancer effects of 6-shogaol via the AKT signaling pathway in oral squamous cell carcinoma[J]. Journal of Applied Oral Science,2021,29:e209. doi: 10.1590/1678-7757-2021-0209
    [11]
    ZHU Y D, WARIN R F, SOROKA D N, et al. Metabolites of ginger component [6]-shogaol remain bioactive in cancer cells and have low toxicity in normal cells: Chemical synthesis and biological evaluation[J]. PLoS One,2013,8(1):e54677. doi: 10.1371/journal.pone.0054677
    [12]
    AKIMOTO M, IZUKA M, KANEMATSU R, et al. Anticancer effect of ginger extract against pancreatic cancer cells mainly through reactive oxygen species-mediated autotic cell death[J]. PLoS One 2015, 10(5): e0126605.
    [13]
    YAO C, OH J H, OH I G, et al. [6]-Shogaol inhibits melanogenesis in B16 mouse melanoma cells through activation of the ERK pathway[J]. Acta Pharmacologica Sinica,2013,34(2):289−294. doi: 10.1038/aps.2012.134
    [14]
    LIU C M, KAO C, TSENG Y T, et al. Ginger phytochemicals inhibit cell growth and modulate drug resistance factors in docetaxel resistant prostate cancer cell[J]. Molecules,2017,22(9):1477. doi: 10.3390/molecules22091477
    [15]
    BRAHMBHATT M, GUNDALA S R, ASIF G, et al. Ginger phytochemicals exhibit synergy to inhibit prostate cancer cell proliferation[J]. Nutrition and Cancer,2013,65(2):263−272. doi: 10.1080/01635581.2013.749925
    [16]
    SAHA A, BLANDO J, SILVER E, et al. 6-Shogaol from dried ginger inhibits growth of prostate cancer cells both in vitro and in vivo through inhibition of STAT3 and NF-κB signaling[J]. Cancer Prevention Research,2014,7(6):627−638. doi: 10.1158/1940-6207.CAPR-13-0420
    [17]
    FU J S, CHEN H D, SOROKA D N, et al. Cysteine-conjugated metabolites of ginger components, shogaols, induce apoptosis through oxidative stress-mediated p53 pathway in human colon cancer cells[J]. Journal of Agricultural and Food Chemistry,2014,62(20):4632−4642. doi: 10.1021/jf501351r
    [18]
    QI L W, ZHANG Z Y, ZHANG C F, et al. Anti-colon cancer effects of 6-shogaol through G2/M cell cycle arrest by p53/p21-cdc2/cdc25A crosstalk[J]. American Journal of Chinese Medicine,2015,43(4):743−756. doi: 10.1142/S0192415X15500469
    [19]
    ISHIGORO K, ANDO T, MAEDA O, et al. Ginger ingredients reduce viability of gastric cancer cells via distinct mechanisms[J]. Biochemical and Biophysical Research Communications,2007,362(1):218−223. doi: 10.1016/j.bbrc.2007.08.012
    [20]
    KOTOWSKI U, KADLETZ L, SCHNEIDER S, et al. 6-Shogaol induces apoptosis and enhances radiosensitivity in head and neck squamous cell carcinoma cell lines[J]. Phytotherapy Research,2018,32(2):340−347. doi: 10.1002/ptr.5982
    [21]
    YADAV A K, JANG B C. Anti-survival and pro-apoptotic effects of 6-Shogaol on SW872 human liposarcoma cells via control of the intrinsic caspase pathway, STAT-3, AMPK, and ER Stress[J]. Biomolecules,2020,10(10):1380. doi: 10.3390/biom10101380
    [22]
    WONG R S. Apoptosis in cancer: From pathogenesis to treatment[J]. Journal of Experimental & Clinical Cancer Research,2011,30(1):87−87.
    [23]
    AOUACHERIA A, BAGHDIGUIAN S, LAMB H M, et al. Connecting mitochondrial dynamics and life-or-death events via Bcl-2 family proteins[J]. Neurochemistry International,2017,109:141−161. doi: 10.1016/j.neuint.2017.04.009
    [24]
    王宇锋, 杨春, 陈超, 等. 6-姜烯酚诱导SW480凋亡及对APC基因表达的影响[J]. 现代食品科技,2018,34(2):14−19, 175. [WANG Y F, YANG C, CHEN C, et al. Effect of 6-shogaol on apoptosis of SW480 and APC gene expression[J]. Modern Food Technology,2018,34(2):14−19, 175.
    [25]
    王宇锋, 刘旭, 陈超, 等. 6-姜烯酚对结直肠癌细胞中Keap1/Nrf2通路及下游基因表达的影响[J]. 宁夏医科大学学报,2017,39(10):1127−1132, 1241. [WANG Y F, LIU X, CHEN C, et al. Effect of 6-shogaol on the Keap1/Nrf2 pathway and downstream gene expression in colorectal cancer cells[J]. Journal of Ningxia Medical University,2017,39(10):1127−1132, 1241. doi: 10.16050/j.cnki.issn1674-6309.2017.10.004
    [26]
    王宇锋, 陈超, 杨春, 等. 6-姜烯酚诱导人结直肠癌细胞凋亡及与Bax、BCL2、Caspase3和PARP1基因表达的影响[J]. 现代食品科技,2017,33(11):7−15. [WANG Y F, CHEN C, YANG C, et al. Effects of hydrophenol inducing apoptosis and gene expression with Bax, BCL2, Caspase3, and PARP1 in human colorectal cancer cells[J]. Modern Food Technology,2017,33(11):7−15. doi: 10.13982/j.mfst.1673-9078.2017.11.002
    [27]
    PEI X D, HE Z L, YAO H L, et al. 6-Shogaol from ginger shows anti-tumor effect in cervical carcinoma via PI3K/Akt/mTOR pathway[J]. European Journal of Nutrition,2021,60(5):2781−2793. doi: 10.1007/s00394-020-02440-9
    [28]
    GOVINDHAN A, SURESH K, NAGAPPAN K. [6]-Shogaol, a dietary phenolic compound, induces oxidative stress mediated mitochondrial dependant apoptosis through activation of proapoptotic factors in Hep-2 cells[J]. Biomedecine & Pharmacotherapie,2016,82:226−236.
    [29]
    赵行宇, 张漠, 朱志华, 等. 6-姜烯酚对胃癌BGC-823细胞侵袭及迁移的影响及相关作用机制研究[J]. 上海中医药杂志,2020,54(10):82−86. [ZHAO X Y, ZHANG M, ZHU Z H, et al. Effects of 6-shogaol on invasion and migration of BGC-823 cells in gastric cancer[J]. Shanghai Journal of Traditional Chinese Medicine,2020,54(10):82−86.
    [30]
    赵行宇, 侯以森, 刘雅范, 等. 6-姜烯酚诱导胃癌BGC-823细胞凋亡及其机制研究[J]. 上海中医药杂志,2018,52(2):84−88. [ZHAO X Y, HOU Y S, LIU Y F, et al. Apoptosis and its mechanism of 6-shogaol induced BGC-823 cells in gastric cancer[J]. Shanghai Journal of Traditional Chinese Medicine,2018,52(2):84−88. doi: 10.16305/j.1007-1334.2018.02.021
    [31]
    LI L, MAO Y X, ZHAO L N, et al. P53 regulation of ammonia metabolism through urea cycle controls polyamine biosynthesis[J]. Nature,2019,567(7747):1−4.
    [32]
    DORCHEH S N, RAHGOZAR S, TALEI D. 6-Shogaol induces apoptosis in acute lymphoblastic leukaemia cells by targeting p53 signalling pathway and generation of reactive oxygen species[J]. Journal of Cellular and Molecular Medicine,2021,25(13):6148−6160. doi: 10.1111/jcmm.16528
    [33]
    WARIN R F, CHEN H D, SOROKA D N, et al. Induction of lung cancer cell apoptosis through a p53 pathway by [6]-shogaol and its cysteine-conjugated metabolite M2[J]. Journal of Agricultural & Food Chemistry,2014,62(6):1352−1362.
    [34]
    ZROVO D B, FILBURN C R, KLOTZ L, et al. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release[J]. Physiological Reviews,2014,94(3):909. doi: 10.1152/physrev.00026.2013
    [35]
    WU H M, LI Y M. In vitro antitumor activity of guttiferone-A in human breast cancer cells is mediated via apoptosis, mitochondrial mediated oxidative stress and reactive oxygen species production[J]. Journal of Buon,2017,22(6):1500−1504.
    [36]
    PAN M H, HSIEH M C, KUO J M, et al. 6-Shogaol induces apoptosis in human colorectal carcinoma cells via ROS production, caspase activation, and GADD 153 expression[J]. Molecular Nutrition & Food Research,2008,52(5):527−537.
    [37]
    ROMERO A C, SEQUEDA L G, ANDRES A F, et al. Effect of 6-shogaol on the glucose uptake and survival of HT1080 fibrosarcoma cells[J]. Pharmaceuticals (Basel), 2019, 12(3): 131.
    [38]
    李帅, 张炳东. 细胞凋亡途径的研究进展[J]. 山东医药,2017,57(37):103−106. [LI S, ZHANG B D. Progress in studying the apoptotic pathways[J]. Shandong Medicine,2017,57(37):103−106. doi: 10.3969/j.issn.1002-266X.2017.37.036
    [39]
    HU R, ZHOU P, PENG Y B, et al. 6-Shogaol induces apoptosis in human hepatocellular carcinoma cells and exhibits anti-tumor activity in vivo through endoplasmic reticulum stress[J]. PLoS One,2012,7(6):e39664. doi: 10.1371/journal.pone.0039664
    [40]
    NEDUNGADI D, BINOY A, VINOD V, et al. Ginger extract activates caspase independent paraptosis in cancer cells via ER stress, mitochondrial dysfunction, AIF translocation and DNA damage[J]. Nutrion Cancer,2021,73(1):147−159. doi: 10.1080/01635581.2019.1685113
    [41]
    JARRETT A M, LIMA E, HORMUTH D, et al. Mathematical models of tumor cell proliferation: A review of the literature[J]. Expert Review of Anticancer Therapy,2018,18(12):1271−1286. doi: 10.1080/14737140.2018.1527689
    [42]
    DÍAZ-CORÁNGUEZ M, LIU X, ANTONETTI D A. Tight junctions in cell proliferation[J]. International Journal of Molecular Science,2019,20(23):5972. doi: 10.3390/ijms20235972
    [43]
    MATHIYAZHAGAN J, SIVA R, JAYARAJ R, et al. Preventive effect of combined zingiber officinale and terminalia chebula against DMBA-induced breast cancer rats via mTOR inhibition[J]. Nutrition Cancer,2022,74(2):687−696. doi: 10.1080/01635581.2021.1903948
    [44]
    OTTO T, SICINSKI P. Cell cycle proteins as promising targets in cancer therapy[J]. Nature Reviews Cancer,2017,17(2):93−115. doi: 10.1038/nrc.2016.138
    [45]
    WENZEL E S, SINGH A T K. Cell-cycle checkpoints and aneuploidy on the path to cancer, in vivo[J]. Vivo,2018,32(1):1−5.
    [46]
    LEE K, WU K, YEN C, et al. 6-Shogaol antagonizes the adipocyte-conditioned medium-initiated 5-fluorouracil resistance in human colorectal cancer cells through controlling the SREBP1 level[J]. Life (Basel),2021,11(10):1067.
    [47]
    KIM M, LEE M, OI N, et al. [6]-Shogaol inhibits growth and induces apoptosis of non-small cell lung cancer cells by directly regulating Akt1/2[J]. Carcinogenesis,2014,35(3):683−691. doi: 10.1093/carcin/bgt365
    [48]
    LIU Q, PENG Y B, QI L W, et al. The cytotoxicity mechanism of 6-shogaol-treated HeLa human cervical cancer cells revealed by label-free shotgun proteomics and bioinformatics analysis[J]. Evidence-based Complementary and Alternative Medicine,2012,1(1):278652.
    [49]
    CHEN T, YOU Y N, JIANG H, et al. Epithelial-mesenchymal transition (EMT): A biological process in the development, stem cell differentiation, and tumorigenesis[J]. Journal of Cellular Physiology,2017,232(12):3261−3272. doi: 10.1002/jcp.25797
    [50]
    MARKOPOULOS G S, ROEPAKIA E, MARCU K B, et al. Epigenetic regulation of inflammatory cytokine-induced epithelial to mesenchymal cell transition and cancer stem cell generation[J]. Cells,2019,8(10):1143. doi: 10.3390/cells8101143
    [51]
    WENG C, CHOU C P, HO C, et al. Molecular mechanism inhibiting human hepatocarcinoma cell invasion by 6-shogaol and 6-gingerol[J]. Molecular Nutrition & Food Research,2012,56(8):1304−1314.
    [52]
    林嘉怡, 柯乔丹, 吴锦如, 等. 6-姜烯酚介导Hedgehog/Gli1通路对三阴性乳腺癌细胞侵袭及迁移作用机制[J]. 中国药理学通报,2022,38(3):373−379. [LIN J Y, KE Q D, WU J R, et al. Mechanism of 6-gingerenol mediated Hedgehog/Gli1 pathway on invasion and migration of triple negative breast cancer cells[J]. China Pharmacology Bulletin,2022,38(3):373−379.
    [53]
    HONG B, WU C H, YEH C T, et al. Invadopodia-associated proteins blockade as a novel mechanism for 6-shogaol and pterostilbene to reduce breast cancer cell motility and invasion[J]. Molecular Nutrition & Food Research,2013,57(5):886−895.
    [54]
    赵行宇, 张漠, 朱志华, 等. 6-姜烯酚对HPV阳性及阴性宫颈癌细胞侵袭及迁移的作用及其机制[J]. 解放军医学杂志,2020,45(7):691−696. [ZHAO X Y, ZHANG M, ZHU Z H, et al. Effect and mechanism of 6-gingerol on invasion and migration of HPV-positive and negative cervical cancer cells[J]. Medical Journal of PLA,2020,45(7):691−696. doi: 10.11855/j.issn.0577-7402.2020.07.02
    [55]
    ONORATI A V, DYCZYNSKI M, OJHA R, et al. Targeting autophagy in cancer[J]. Cancer,2018,124(16):3307−3318. doi: 10.1002/cncr.31335
    [56]
    LI Y, YANG C, SHARO A T, et al. Autophagy pathway: Cellular and molecular mechanisms[J]. Taylor & Francis,2018,14(2):207−215.
    [57]
    LI T Y, CHIANG B H. 6-Shogaol induces autophagic cell death then triggered apoptosis in colorectal adenocarcinoma HT-29 cells[J]. Biomedicine & Pharmacotherapy,2017,93:208−217.
    [58]
    RAY A, VASUDEVAN S, SENGUPTA S. 6-Shogaol inhibits breast cancer cells and stem cell-like spheroids by modulation of Notch signaling pathway and induction of autophagic cell death[J]. PLoS One,2015,10(9):e0137614. doi: 10.1371/journal.pone.0137614
    [59]
    NAZIM U M, PARK S Y. Attenuation of autophagy flux by 6-shogaol sensitizes human liver cancer cells to TRAIL-induced apoptosis via p53 and ROS[J]. International Journal of Molecular Medicine,2019,43(2):701−708.
    [60]
    ZHANG Y, QU Y, CHEN Y Z. Influence of 6-shogaol potentiated on 5-fluorouracil treatment of liver cancer by promoting apoptosis and cell cycle arrest by regulating AKT/mTOR/MRP1 signalling[J]. Chinese Journal of Natural Medicines,2022,20(5):352−363. doi: 10.1016/S1875-5364(22)60174-2
    [61]
    ZHOU L, QI L, JIANG L, et al. Antitumor activity of gemcitabine can be potentiated in pancreatic cancer through modulation of TLR4/NF-κB signaling by 6-shogaol[J]. The AAPS Journal,2014,16(2):246−257. doi: 10.1208/s12248-013-9558-3
    [62]
    ZHU Y, ZHANG G, LI M, et al. Ultrasound-augmented phase transition nanobubbles for targeted treatment of paclitaxel-resistant cancer[J]. Bioconjug Chemistry,2020,31(8):2008−2020. doi: 10.1021/acs.bioconjchem.0c00364
    [63]
    CHEN C Y, YANG Y H, KUO S Y. Effect of [6]-shogaol on cytosolic Ca2+ levels and proliferation in human oral cancer cells (OC2)[J]. Journal of Natural Products,2010,73(8):1370−1374. doi: 10.1021/np100213a
    [64]
    ANNARMALAI G, SERESH K. [6]-Shogaol attenuates inflammation, cell proliferation via modulate NF-κB and AP-1 oncogenic signaling in 7,12-dimethylbenz[a]anthracene induced oral carcinogenesis[J]. Biomedicine & Pharmacotherapy,2018,98:484−490.
    [65]
    HUNG J, HSU Y L, LI C, et al. 6-Shogaol, an active constituent of dietary ginger, induces autophagy by inhibiting the AKT/mTOR pathway in human non-small cell lung cancer A549 cells[J]. Journal of Agricultural and Food Chemistry,2009,57(20):9809−9816. doi: 10.1021/jf902315e
  • Cited by

    Periodical cited type(10)

    1. 宋永贵,陈运丽,苏丹,李前民,李惠珍,艾志福,杨明,朱根华,陈丽玲. 龙骨-牡蛎通过调节肠道微生态增强柴胡加龙骨牡蛎汤的抗抑郁效应. 中成药. 2025(02): 625-633 .
    2. 崔雨婷,张方圆,许伟明,李子贇,胡镜清. 基于肠道菌群与冠心病的关系探讨“阴火”科学内涵. 世界中医药. 2024(09): 1279-1285 .
    3. 叶清珠,王苗苗. 植物抗菌色素在抗菌纺织品中的应用. 上海纺织科技. 2024(07): 8-11+17 .
    4. 尹东,杜丽坤,徐洪涛,任那,张天昊. 基于肠道菌群探析中医药治疗肥胖的研究进展. 西部中医药. 2024(09): 111-114 .
    5. 王其龙,杨景森,黄凯勇,朱翠. 小檗碱调控动物肠道菌群稳态的研究进展. 中国畜牧杂志. 2022(02): 23-26+31 .
    6. 罗晓璐,李丽娜,黎京荣,彭啸峰,吴鹏,朱翠. 饲喂有抗或无抗饲粮的黄羽肉鸡在不同日龄下肠道菌群的变化. 广东畜牧兽医科技. 2022(01): 6-13 .
    7. 余佳,高欣悦,付凤萍,吴建英,余琳,陈红英. 半仿生-比色法测定三黄泻心汤中总生物碱的溶出量. 湖北农业科学. 2022(03): 140-143 .
    8. 柯群华,彭晶,王胜义. 中药与肠道菌群及其代谢相关研究进展. 中兽医医药杂志. 2022(02): 35-40 .
    9. 刘良浩,蒋志滨,于海洋,吴志斌,李泠君,唐甜,高洁. 黄连素缓解肠易激综合征作用机制的研究进展. 中国病理生理杂志. 2022(05): 944-948 .
    10. 姚广丰,张奇,张楠,隋玲玲,刘佳,李威,胡铁军. 盐酸小檗碱相关杂质的合成. 辽宁化工. 2022(06): 763-765 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return