Citation: | PAN Zhenqing, ZHANG Bing, WANG Shunmin. Effect of Starch Raw Materials on Pullulan Polysaccharide Biosynthesis and the Underlying Physiological Mechanism[J]. Science and Technology of Food Industry, 2023, 44(12): 124−129. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022080320. |
[1] |
SHINGEL K I. Current knowledge on biosynthesis, biological activity, and chemical modification of the exopolysaccharide, pullulan[J]. Carbohydrate Research,2004,339(3):447−460. doi: 10.1016/j.carres.2003.10.034
|
[2] |
马赛箭, 安超, 薛文娇, 等. 有机氮源对出芽短梗霉发酵普鲁兰多糖的影响[J]. 食品工业科技,2016,37(11):169−173. [MA S, AN C, XUE W, et al. Effects of organic nitrogen sources on the fermentation of pullulan by Aureobasidium pullulans[J]. Science and Technology of Food Industry,2016,37(11):169−173.
MA S, AN C, XUE W, et al. Effects of organic nitrogen sources on the fermentation of pullulan by Aureobasidium pullulans [J]. Science and Technology of Food Industry, 2016, 37(11): 169-173.
|
[3] |
王大慧, 巨晓敏, 卫功元. 表面活性剂在生物转化法合成普鲁兰中的作用及生理机制[J]. 食品科学,2019,40(22):27−32. [WANG D, JU X, WEI G. Physiological mechanism of the effect of surfactants on pullulan production by bioconversion[J]. Food Science,2019,40(22):27−32. doi: 10.7506/spkx1002-6630-20181030-350
WANG D, JU X, WEI G. Physiological mechanism of the effect of surfactants on pullulan production by bioconversion [J]. Food Science, 2019, 40(22): 27-32. doi: 10.7506/spkx1002-6630-20181030-350
|
[4] |
DUAN X, CHI Z, WANG L, et al. Influence of different sugars on pullulan production and activities of α-phosphoglucose mutase, UDPG-pyrophosphorylase and glucosyltransferase involved in pullulan synthesis in Aureobasidium pullulans Y68[J]. Carbohydrate Polymers,2008,73(4):587−593. doi: 10.1016/j.carbpol.2007.12.028
|
[5] |
CHENG K, DEMIRCI A, CATCHMARK J M. Pullulan: Biosynthesis, production, and applications[J]. Applied Microbiology and Biotechnology,2011,92(1):29−44. doi: 10.1007/s00253-011-3477-y
|
[6] |
朱灿灿, 陈晨, 王大慧, 等. 普鲁兰生物合成中底物的作用及其生理机制[J]. 食品科学,2019,40(14):63−68. [ZHU C, CHEN C, WANG D, et al. Physiological mechanism underlying the effect of substrates on pullulan biosynthesis[J]. Food Science,2019,40(14):63−68.
ZHU C, CHEN C, WANG D, et al. Physiological mechanism underlying the effect of substrates on pullulan biosynthesis[J]. Food Science, 2019, 40(14): 63-68.
|
[7] |
金征宇, 李佳欣, 周星. 冷水可溶淀粉的物理法制备及应用研究进展[J]. 食品科学技术学报,2021,39(1):1−12. [JIN Z, LI J, ZHOU X. Research progress on physical preparation and application of cold-water-soluble starch[J]. Journal of Food Science and Technology,2021,39(1):1−12.
JIN Z, LI J, ZHOU X. Research progress on physical preparation and application of cold-water-soluble starch [J]. Journal of Food Science and Technology, 2021, 39(1): 1-12.
|
[8] |
ZENG W, ZHANG B, JIANG L, et al. Poly (malic acid) production from liquefied corn starch by simultaneous saccharification and fermentation with a novel isolated Aureobasidium pullulans GXL-1 strain and its techno-economic analysis[J]. Bioresource Technology,2020,304:122990. doi: 10.1016/j.biortech.2020.122990
|
[9] |
KRAJANG M, MALAIRUANG K, SUKNA J, et al. Single-step ethanol production from raw cassava starch using a combination of raw starch hydrolysis and fermentation, scale-up from 5-L laboratory and 200-L pilot plant to 3000-L industrial fermenters[J]. Biotechnology for Biofuels,2021,14(1):68. doi: 10.1186/s13068-021-01903-3
|
[10] |
PEERAWAT K, PRAWIT K, BUSSAKORN U, et al. Continuous hydrogen production from cassava starch processing wastewater by two-stage thermophilic dark fermentation and microbial electrolysis[J]. International Journal of Hydrogen Energy,2017,42:27584−27592. doi: 10.1016/j.ijhydene.2017.06.145
|
[11] |
AN C, MA S J, CHANG F, et al. Efficient production of pullulan by Aureobasidium pullulans grown on mixtures of potato starch hydrolysate and sucrose[J]. Brazilian Journal of Microbiology,2017,48(1):180−185. doi: 10.1016/j.bjm.2016.11.001
|
[12] |
WU S J, JIN Z Y, TONG Q Y. Sweet potato: A novel substrate for pullulan production by Aureobasidium pullulans[J]. Carbohydrate Polymers,2009,76(4):645−649. doi: 10.1016/j.carbpol.2008.11.034
|
[13] |
JU X, WANG D, ZHANG G, et al. Efficient pullulan production by bioconversion using Aureobasidium pullulans as the whole-cell catalyst[J]. Applied Microbiology and Biotechnology,2015,99(1):211−220. doi: 10.1007/s00253-014-6100-1
|
[14] |
CHENG K, DEMIRCI A, CATCHMARK J M, et al. Effects of initial ammonium ion concentration on pullulan production by Aureobasidium pullulans and its modeling[J]. Journal of Food Engineering,2011,103(2):115−122. doi: 10.1016/j.jfoodeng.2010.10.004
|
[15] |
陈世伟, 唐淑贤, 王舸楠, 等. 基于蛋白质组学分析尿嘧啶对出芽短梗霉产普鲁兰多糖的影响[J]. 食品工业科技,2022,43(16):18−25. [CHEN S, TANG S, WANG G, et al. Proteomics analysis of the effect of uracil on pullulan polysaccharide production by Aureobasidium pullulans[J]. Science and Technology of Food Industry,2022,43(16):18−25.
CHEN S, TANG S, WANG G, et al. Proteomics analysis of the effect of uracil on pullulan polysaccharide production by Aureobasidium pullulans[J]. Science and Technology of Food Industry, 2022, 43(16): 18-25.
|
[16] |
余小六. 普鲁兰生物合成及其高产策略研究[D]. 苏州: 苏州大学, 2013
YU Xiaoliu. Strategies on the fermentation of Aureobasidium pullulans for enhanced production of pullulan [D]. Suzhou: Soochow University, 2013.
|
[17] |
RAMM M, WOLFENDER J, QUEIROZ E F, et al. Rapid analysis of nucleotide-activated sugars by high-performance liquid chromatography coupled with diode-array detection, electrospray ionization mass spectrometry and nuclear magnetic resonance[J]. Journal of Chromatography A,2004,1034(1-2):139−148. doi: 10.1016/j.chroma.2004.02.023
|
[18] |
CHEN X, WANG Q, LIU N, et al. A glycosyltransferase gene responsible for pullulan biosynthesis in Aureobasidium melanogenum P16[J]. International Journal of Biological Macromolecules,2017,95:539−549. doi: 10.1016/j.ijbiomac.2016.11.081
|
[19] |
WEI X, LIU G L, JIA S L, et al. Pullulan biosynthesis and its regulation in Aureobasidium spp.[J]. Carbohydrate Polymers,2021,251:11707.
|
[20] |
WANG D, NI T, JU X, et al. Sodium chloride improves pullulan production by Aureobasidium pullulans but reduces the molecular weight of pullulan[J]. Applied Microbiology and Biotechnoly,2018,102:8921−8930. doi: 10.1007/s00253-018-9292-y
|
[21] |
张高川, 何超永, 王崇龙, 等. 转录组测序分析氯化钠对普鲁兰生物合成的影响[J]. 食品科学,2021,42(18):45−50. [ZHANG G, HE C, WANG C, et al. Understanding the effect of sodium chloride on pullulan biosynthesis by RNA sequencing[J]. Food Science,2021,42(18):45−50.
ZHANG G, HE C, WANG C, et al. Understanding the effect of sodium chloride on pullulan biosynthesis by RNA sequencing[J]. Food Science, 2021, 42(18): 45-50.
|
[22] |
WANG G, DIN A, QIU Y, et al. Triton X-100 improves co-production of β-1, 3-D-glucan and pullulan by Aureobasidium pullulans[J]. Applied Microbiology and Biotechnology,2020,104:10685−10696. doi: 10.1007/s00253-020-10992-3
|
[23] |
SINGH R S, KAUR N, KENNEDY J F. Pullulan production from agro-industrial waste and its applications in food industry: A review[J]. Carbohydrate Polymers,2019,217:46−57. doi: 10.1016/j.carbpol.2019.04.050
|
[24] |
WANG D, JU X, ZHANG G, et al. Copper sulfate improves pullulan production by bioconversion using whole cells of Aureobasidium pullulans as the catalyst[J]. Carbohydrate Polymer,2016,150:209−215. doi: 10.1016/j.carbpol.2016.05.035
|
[25] |
LEATHERS T D. Biotechnological production and applications of pullulan[J]. Applied Microbiology and Biotechnology,2003,62:468−473. doi: 10.1007/s00253-003-1386-4
|
[26] |
王金梦, 张思维, 赵康云, 等. 不同品种木薯淀粉理化和结构性质的比较[J]. 食品工业科技,2023,44(2):115−122. [WANG J M, ZHANG S W, ZHAO K Y, et al. Comparison of physicochemical and structural properties of different varieties of cassava starch[J]. Science and Technology of Food Industry,2023,44(2):115−122.
WANG J M, ZHANG S W, ZHAO K Y, et al. Comparison of physicochemical and structural properties of different varieties of cassava starch [J]. Science and Technology of Food Industry, 2023, 44(2): 115-122.
|
[1] | LIU Changnian, GUO Yan, ZHANG Jiaxin, YU Xiuzhu, LI Qi. Research Progress of Protein/Lipid-Starch Interactions and Their Effect in Slowing Down Starch Digestion Rate[J]. Science and Technology of Food Industry, 2025, 46(9): 1-10. DOI: 10.13386/j.issn1002-0306.2024070226 |
[2] | ZHANG Yun, ZHANG Kangyi, ZHAO Di, GUO Dongxu, ZHANG Guozhi. Structure and in Vitro Digestion Properties of Waxy Wheat Starch-Lipid Complexes[J]. Science and Technology of Food Industry, 2022, 43(20): 97-106. DOI: 10.13386/j.issn1002-0306.2022010171 |
[3] | YUAN Lu, HU Jie-lun, YIN Jun-yi. Progress on the Effect of Microwave Irradiation on Structural Characteristics of Starch and Its Application in Starch Derived Food Processing[J]. Science and Technology of Food Industry, 2020, 41(18): 330-337,343. DOI: 10.13386/j.issn1002-0306.2020.18.052 |
[4] | MIAO Lan-ge, XU Yan, ZHAO Si-ming, JIA Cai-hua, NIU Meng, LIN Qin-lu. Effects of Anthocyanin on Physicochemical Properties of Starches with Different Amylose Contents[J]. Science and Technology of Food Industry, 2020, 41(14): 22-28. DOI: 10.13386/j.issn1002-0306.2020.14.004 |
[5] | CAO Ying, XIA Wen, WANG Fei, LI Ji-hua, LIN Yan-yun. Research Progress on the Effect of Physical Modification on Starch Properties[J]. Science and Technology of Food Industry, 2019, 40(21): 315-319,325. DOI: 10.13386/j.issn1002-0306.2019.21.051 |
[6] | ZHANG Yu, ZHANG Kang-yi, ZHANG Guo-zhi. Research Progress on Starch Retrogradation Process Mechanism and Application of Starch Anti-retrogradation Agent[J]. Science and Technology of Food Industry, 2019, 40(13): 316-321. DOI: 10.13386/j.issn1002-0306.2019.13.053 |
[7] | WEI Ping, YOU Xiang-rong, ZHANG Ya-yuan, SUN Jian, HUANG Cheng-zu, LI Ming-juan, WANG Ying, ZHOU Kui, XIE Xiao-qiang. Influences of Adding Starch on Potato Rice Noodle Quality[J]. Science and Technology of Food Industry, 2019, 40(11): 79-84. DOI: 10.13386/j.issn1002-0306.2019.11.014 |
[8] | HUANG Jun- rong, LI Yan-fang, PU Hua-yin, LI Hong-liang. Research progress on application of texture analyzer in quality of starch and starch- based food[J]. Science and Technology of Food Industry, 2017, (04): 390-395. DOI: 10.13386/j.issn1002-0306.2017.04.065 |
[9] | LI Xue-hong, CHEN Zhi-jing, LU Yong, NIE Yu-hong. Research on the factors and characterization methods of starch digestibility[J]. Science and Technology of Food Industry, 2015, (22): 376-378. DOI: 10.13386/j.issn1002-0306.2015.22.069 |
[10] | WU Li- jing, CHE Li- ming, CHEN Xiao-dong. Effect of tea polyphenols on the retrogradation of sweet potato starch[J]. Science and Technology of Food Industry, 2014, (21): 123-127. DOI: 10.13386/j.issn1002-0306.2014.21.018 |