Citation: | NONG Liyan, TANG Daobang, LIU Xueming, et al. Research Progress of Polyphenols in Reducing Lactoprotein Sensitization[J]. Science and Technology of Food Industry, 2023, 44(12): 422−429. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022080301. |
[1] |
党慧杰, 郑远荣, 刘振民, 等. 牛乳蛋白过敏及酶水解降低其致敏性的研究进展[J]. 中国乳品工业,2020,48(8):29−33, 45. [DANG H J, ZHENG Y R, LIU Z M, et al. Research progress on cow milk allergy and enzymatic hydrolysis to reduce its sensitizing ability[J]. China Dairy Industry,2020,48(8):29−33, 45.
DANG H J, ZHENG Y R, LIU Z M, et al. Research progress on cow milk allergy and enzymatic hydrolysis to reduce its sensitizing ability[J]. China Dairy Industry, 2020, 48(8): 29-33, 45.
|
[2] |
ZAMANILLO-CAMPOS R, COTO ALONSO L, FUENTES MARTIN M J, et al. Nutritional counseling for cow's milk protein allergy in infants from birth to 2 y of ages: Scoping review[J]. Nutrition,2022,98:111633. doi: 10.1016/j.nut.2022.111633
|
[3] |
KNIPPING K, VAN ESCH B C, VAN IEPEREN-VAN DIJK A G, et al. Enzymatic treatment of whey proteins in cow's milk results in differential inhibition of IgE-mediated mast cell activation compared to T-cell activation[J]. International Archives of Allergy & Immunology,2012,159(3):263−270.
|
[4] |
崔玉涛. 儿童牛奶蛋白过敏的诊断方法和治疗原则的解读[J]. 中国儿童保健杂志,2013,21(2):116−117, 121. [CUI Y T. Understanding of the diagnosis and therapy to the cow's milk protein allergy in children[J]. Chinese Journal of Child Health Care,2013,21(2):116−117, 121.
CUI Y T. Understanding of the diagnosis and therapy to the cow’s milk protein allergy in children[J]. Chinese Journal of Child Health Care, 2013, 21(2): 116-117, 121.
|
[5] |
陈同辛, 洪莉, 王华, 等. 中国婴儿轻中度非IgE介导的牛奶蛋白过敏诊断和营养干预指南[J]. 中华实用儿科临床杂志,2022,37(4):241−250. [CHEN T X, HONG L, WANG H, et al. Guidelines for diagnosis and nutritional intervention of mild to moderate non-IgE mediated cow's milk protein allergy in Chinese infants[J]. Chinese Journal of Applied Clinical Pediatrics,2022,37(4):241−250.
CHEN T X, HONG L, WANG H, et al. Guidelines for diagnosis and nutritional intervention of mild to moderate non-IgE mediated cow’s milk protein allergy in Chinese infants[J]. Chinese Journal of Applied Clinical Pediatrics, 2022, 37(4): 241-250.
|
[6] |
李欣, 程剑锋, 文学方, 等. 免疫耐受在牛乳过敏中的研究进展[J]. 食品与生物技术学报,2021,40(5):1−11. [LI X, CHENG J F, WEN X F, et al. Research advances in immune tolerance in cow's milk allergy[J]. Journal of Food Science and Biotechnology,2021,40(5):1−11.
LI X, CHENG J F, WEN X F, et al. Research advances in immune tolerance in cow’s milk allergy[J]. Journal of Food Science and Biotechnology, 2021, 40(5): 1-11.
|
[7] |
ZHANG L N, ZHOU R Y, ZHANG J Y, et al. Heat-induced denaturation and bioactivity changes of whey proteins[J]. International Dairy Journal,2021,123:105175. doi: 10.1016/j.idairyj.2021.105175
|
[8] |
YANG X, SUN J, TAO J M, et al. The allergenic potential of walnuts treated with high pressure and heat in a mouse model of allergy[J]. Innovative Food Science & Emerging Technologies,2017,39:165−170.
|
[9] |
LIANG X, WANG Z, YANG H, et al. Evaluation of allergenicity of cow milk treated with enzymatic hydrolysis through a mouse model of allergy[J]. Journal of Dairy Science,2022,105(2):1039−1050. doi: 10.3168/jds.2021-20686
|
[10] |
PERUSKO M, VAN ROEST M, STANIC-VUCINIC D, et al. Glycation of the major milk allergen β-lactoglobulin changes its allergenicity by alterations in cellular uptake and degradation[J]. Molecular Nutrition & Food Research,2018,62(17):1800341.
|
[11] |
VERHOECKX K C M, VISSERS Y M, BAUMERT J L, et al. Food processing and allergenicity[J]. Food and Chemical Toxicology,2015,80:223−240. doi: 10.1016/j.fct.2015.03.005
|
[12] |
MALEKI M, KHELGHATI N, ALEMI F, et al. Stabilization of telomere by the antioxidant property of polyphenols: Anti-aging potential[J]. Life Sciences,2020,259(2):118341.
|
[13] |
MITHUL ARAVIND S, WICHIENCHOT S, TSAO R, et al. Role of dietary polyphenols on gut microbiota, their metabolites and health benefits[J]. Food Research International,2021,142(5):110189.
|
[14] |
TRUONG V L, JEONG W S. Antioxidant and anti-inflammatory roles of tea polyphenols in inflammatory bowel diseases[J]. Food Science and Human Wellness,2022,11(3):502−511. doi: 10.1016/j.fshw.2021.12.008
|
[15] |
JAKOBEK L. Interactions of polyphenols with carbohydrates, lipids and proteins[J]. Food Chemistry,2015,175:556−567. doi: 10.1016/j.foodchem.2014.12.013
|
[16] |
BANSODE R R, RANDOLPH P D, PLUNDRICH N J, et al. Peanut protein-polyphenol aggregate complexation suppresses allergic sensitization to peanut by reducing peanut-specific IgE in C3H/HeJ mice[J]. Food Chemistry,2019,299:125025. doi: 10.1016/j.foodchem.2019.125025
|
[17] |
LV L, QU X, YANG N, et al. Changes in structure and allergenicity of shrimp tropomyosin by dietary polyphenols treatment[J]. Food Research International,2021,140:109997. doi: 10.1016/j.foodres.2020.109997
|
[18] |
LIN X, YE L Y, HE K, et al. A new method to reduce allergenicity by improving the functional properties of soybean 7S protein through covalent modification with polyphenols[J]. Food Chemistry,2022,373:131589. doi: 10.1016/j.foodchem.2021.131589
|
[19] |
郑全玲. 牛乳β-乳球蛋白过敏中Th17/Treg细胞失衡的作用研究[D]. 哈尔滨: 东北农业大学, 2014
ZHENG Q L. The Th17/Treg imbalance in bovine β-lactoglobulin-sensitized mice[D]. Harbin: Northeast Agricultural University, 2014.
|
[20] |
谭梦, 华家才, 冯凤琴. 牛乳过敏原及加工技术对其致敏性的影响[J]. 食品工业科技,2016,37(5):384−387, 393. [TAN M, HUA J C, FENG F Q. Cow's milk allergen and effects of processing technology on its allergenicity[J]. Science and Technology of Food Industry,2016,37(5):384−387, 393.
TAN M, HUA J C, FENG F Q. Cow’s milk allergen and effects of processing technology on its allergenicity[J]. Science and Technology of Food Industry, 2016, 37(5): 384-387, 393.
|
[21] |
张琦, 何国庆. 基于生物酶解法的牛乳蛋白脱敏技术研究进展[J]. 食品工业科技,2021,42(1):373−377, 386. [ZHANG Q, HE G Q. Research progress of milk protein desensitization based on biological enzymatic method[J]. Science and Technology of Food Industry,2021,42(1):373−377, 386.
ZHANG Q, HE G Q. Research progress of milk protein desensitization based on biological enzymatic method[J]. Science and Technology of Food Industry, 2021, 42(1): 373-377, 386.
|
[22] |
周健文. 牛乳β-乳球蛋白低聚体的结构表征及致敏性的体外评估[D]. 南昌: 南昌大学, 2013
ZHOU J W. The characterization of β-lactoglobulin oligomers structure and allergenicity assessment in vitro[D]. Nanchang: Nanchang University, 2013.
|
[23] |
BOGAHAWATHTHA D, CHANDRAPALA J, VASILJEVIC T. Modulation of milk immunogenicity by thermal processing[J]. International Dairy Journal,2017,69:23−32. doi: 10.1016/j.idairyj.2017.01.010
|
[24] |
ANVARI S, MILLER J, YEH C Y, et al. IgE-mediated food allergy[J]. Clinical Reviews in Allergy & Immunology,2019,57(2):244−260.
|
[25] |
SKRIPAK J M, MATSUI E C, MUDD K, et al. The natural history of IgE-mediated cow's milk allergy[J]. Journal of Allergy & Clinical Immunology,2007,120(5):1172−1177.
|
[26] |
CRITTENDEN R G, BENNETT L E. Cow's milk allergy: A complex disorder[J]. Journal of the American College of Nutrition,2005,24(sup6):582S−591S. doi: 10.1080/07315724.2005.10719507
|
[27] |
NOWAK-WEGRZYN A, KATZ Y, MEHR S S, et al. Non-IgE-mediated gastrointestinal food allergy[J]. Journal of Allergy and Clinical Immunology,2015,135(5):1114−1124. doi: 10.1016/j.jaci.2015.03.025
|
[28] |
VALENTA R, HOCHWALLNER H, LINHART B, et al. Food allergies: The basics[J]. Gastroenterology,2015,148(6):1120−1131. doi: 10.1053/j.gastro.2015.02.006
|
[29] |
HOCHWALLNER H, SCHULMEISTER U, SWOBODA I, et al. Cow's milk allergy: From allergens to new forms of diagnosis, therapy and prevention[J]. Methods,2014,66(1):22−33. doi: 10.1016/j.ymeth.2013.08.005
|
[30] |
LEPSKI S, BROCKMEYER J. Impact of dietary factors and food processing on food allergy[J]. Molecular Nutrition & Food Research,2013,57(1):145−152.
|
[31] |
RAHAMAN T, VASILJEVIC T, RAMCHANDRAN L, et al. Conformational changes of β-lactoglobulin induced by shear, heat, and pH-Effects on antigenicity[J]. Journal of Dairy Science,2015,98(7):4255−4265. doi: 10.3168/jds.2014-9010
|
[32] |
LIANG X N, CHENG J, SUN J, et al. Reduction of immunoreactivity and improvement of the nutritional qualities in cow milk products by enzymatic hydrolysis[J]. LWT-Food Science and Technology,2021,150:111994. doi: 10.1016/j.lwt.2021.111994
|
[33] |
王宏鑫, 马鸣阳, 刘衍辰, 等. 乳酸菌发酵降低牛乳蛋白致敏性的研究进展[J]. 中国食品学报,2021,21(4):364−374. [WANG H X, MA M Y, LIU Y C, et al. Review on reducing bovine milk allergens by fermentation with lactic acid bacteria[J]. Journal of Chinese Institute of Food Science and Technology,2021,21(4):364−374.
WANG H X, MA M Y, LIU Y C, et al. Review on reducing bovine milk allergens by fermentation with lactic acid bacteria[J]. Journal of Chinese Institute of Food Science and Technology, 2021, 21(4): 364-374.
|
[34] |
LIU J, CHEN W M, SHAO Y H, et al. The mechanism of the reduction in allergenic reactivity of bovine α-lactalbumin induced by glycation, phosphorylation and acetylation[J]. Food Chemistry,2020,310:125853. doi: 10.1016/j.foodchem.2019.125853
|
[35] |
LUO S, LU X, LIU C, et al. Site specific PEGylation of β-lactoglobulin at glutamine residues and its influence on conformation and antigenicity[J]. Food Research International,2019,123:623−630. doi: 10.1016/j.foodres.2019.05.038
|
[36] |
XU L, GONG Y, GERN J E, et al. Influence of whey protein hydrolysis in combination with dextran glycation on immunoglobulin E binding capacity with blood sera obtained from patients with a cow milk protein allergy[J]. Journal of Dairy Science,2020,103(2):1141−1150. doi: 10.3168/jds.2019-17187
|
[37] |
IZQUIERDO F J, PEÑAS E, BAEZA M L, et al. Effects of combined microwave and enzymatic treatments on the hydrolysis and immunoreactivity of dairy whey proteins[J]. International Dairy Journal,2008,18(9):918−922. doi: 10.1016/j.idairyj.2008.01.005
|
[38] |
WU X L, ZHONG X J, LIU M X, et al. Reduced allergenicity of β-lactoglobulin in vitro by tea catechins binding[J]. Food & Agricultural Immunology,2013,24(3):305−313.
|
[39] |
吴序栎. 牛乳β-乳球蛋白的检测及茶多酚对其免疫反应性影响的研究[D]. 广州: 华南理工大学, 2012
WU X L. Detection of bovine β-lactoglobulin and effects of tea polyphenols upon immunoreactivity of β-lactoglobulin[D]. Guangzhou: South China University of Technology, 2012.
|
[40] |
WU X L, LU Y Q, XU H X, et al. Reducing the allergenic capacity of β-lactoglobulin by covalent conjugation with dietary polyphenols[J]. Food Chemistry,2018,256:427−434. doi: 10.1016/j.foodchem.2018.02.158
|
[41] |
PU P, ZHENG X, JIAO L N, et al. Six flavonoids inhibit the antigenicity of β-lactoglobulin by noncovalent interactions: A spectroscopic and molecular docking study[J]. Food Chemistry,2021,339:128106. doi: 10.1016/j.foodchem.2020.128106
|
[42] |
PESSATO T B, DE MORAIS F P R, DE CARVALHO N C, et al. Protein structure modification and allergenic properties of whey proteins upon interaction with tea and coffee phenolic compounds[J]. Journal of Functional Foods,2018,51:121−129. doi: 10.1016/j.jff.2018.10.019
|
[43] |
陆玉琴. 牛乳β-乳球蛋白与植物多酚共价结合对蛋白致敏性影响的初步研究[D]. 深圳: 深圳大学, 2019
LU Y Q. Preliminary investigation of the allergenic capacity of β-lactoglobulin by covalent conjugation with plant polyphenols[D]. Shenzhen: Shenzhen University, 2019.
|
[44] |
ROSITA A. Celiac disease and food allergy: Roles of undigested food peptides[D]. Naples: University of Naples, 2014.
|
[45] |
TANTOUSH Z, STANIC D, STOJADINOVIC M, et al. Digestibility and allergenicity of β-lactoglobulin following laccase-mediated cross-linking in the presence of sour cherry phenolics[J]. Food Chemistry,2011,125:84−91. doi: 10.1016/j.foodchem.2010.08.040
|
[46] |
郝明皓. 三种多酚与β-酪蛋白及β-乳球蛋白相互作用研究[D]. 济南: 山东师范大学, 2019
HAO M H. Interaction of three polyphenols with β-casein and β-lactoglobulin[D]. Jinan: Shandong Normal University, 2019.
|
[47] |
XU H X, ZHANG T T, LU Y Q, et al. Effect of chlorogenic acid covalent conjugation on the allergenicity, digestibility and functional properties of whey protein[J]. Food Chemistry,2019,298:125024. doi: 10.1016/j.foodchem.2019.125024
|
[48] |
NONGONIERMA A B, FITZGERALD R J. Strategies for the discovery, identification and validation of milk protein-derived bioactive peptides[J]. Trends in Food Science & Technology,2016,50:26−43.
|
[49] |
庞广昌, 陈庆森, 胡志和, 等. 蛋白质的消化吸收及其功能评述[J]. 食品科学,2013,34(9):375−391. [PANG G C, CHEN Q S, HU Z H, et al. Bioactive peptides: Absorption, utilization and functionality[J]. Food Science,2013,34(9):375−391. doi: 10.7506/spkx1002-6630-201309074
PANG G C, CHEN Q S, HU Z H, et al. Bioactive peptides: Absorption, utilization and functionality[J]. Food Science, 2013, 34(9): 375-391. doi: 10.7506/spkx1002-6630-201309074
|
[50] |
BU G, LUO Y, ZHENG Z, et al. Effect of heat treatment on the antigenicity of bovine α-lactalbumin and β-lactoglobulin in whey protein isolate[J]. Food and Agricultural Immunology,2009,20(3):195−206. doi: 10.1080/09540100903026116
|
[51] |
QI P X, REN D, XIAO Y, et al. Effect of homogenization and pasteurization on the structure and stability of whey protein in milk[J]. Journal of Dairy Science,2015,98(5):2884−2897. doi: 10.3168/jds.2014-8920
|
[52] |
王明礼, 钱珊珊, 李艾黎, 等. 降低牛乳致敏性方法的研究进展[J]. 中国乳品工业,2021,49(7):25−31. [WANG M L, QIAN S S, LI A L, et al. Research progress on methods of reducing allergenicity of milk[J]. China Dairy Industry,2021,49(7):25−31.
WANG M L, QIAN S S, LI A L, et al. Research progress on methods of reducing allergenicity of milk[J]. China Dairy Industry, 2021, 49(7): 25-31.
|
[53] |
ALJAHDALI N, CARBONERO F. Impact of Maillard reaction products on nutrition and health: Current knowledge and need to understand their fate in the human digestive system[J]. Critical Reviews in Food Science and Nutrition,2019,59(3):474−487. doi: 10.1080/10408398.2017.1378865
|
[54] |
BATOOL Z, XU D, ZHANG X, et al. A review on furan: Formation, analysis, occurrence, carcinogenicity, genotoxicity and reduction methods[J]. Critical Reviews in Food Science and Nutrition,2021,61(3):395−406. doi: 10.1080/10408398.2020.1734532
|
[55] |
FRAGA C G, CROFT K D, KENNEDY D O, et al. The effects of polyphenols and other bioactives on human health[J]. Food & Function,2019,10(2):514−528.
|
[56] |
许倩. 不同加工处理对牛乳蛋白抗原性及过敏原性的影响[D]. 北京: 中国农业大学, 2017
XU Q. Effects of different processing ways on the antigenicity and allergenicity of main bovine milk proteins[D]. Beijing: China Agricultural University, 2017.
|
[57] |
SABADIN I S, VILLAS-BOAS M B, DE LIMA ZOLLNER R, et al. Effect of combined treatment of hydrolysis and polymerization with transglutaminase on β-lactoglobulin antigenicity[J]. European Food Research and Technology,2012,235(5):801−809. doi: 10.1007/s00217-012-1802-z
|
[58] |
WANG X Y, ZHANG J, LEI F, et al. Covalent complexation and functional evaluation of (-)-epigallocatechin gallate and α-lactalbumin[J]. Food Chemistry,2014,150:341−347. doi: 10.1016/j.foodchem.2013.09.127
|
[59] |
WU S, ZHANG Y, REN F, et al. Structure-affinity relationship of the interaction between phenolic acids and their derivatives and β-lactoglobulin and effect on antioxidant activity[J]. Food Chemistry,2018,245:613−619. doi: 10.1016/j.foodchem.2017.10.122
|
[60] |
李欣, 徐子豪, 黄美佳, 等. 乳酸菌降低牛乳中蛋白质致敏性的研究进展[J]. 食品与生物技术学报,2021,40(1):12−19. [LI X, XU Z H, HUANG M J, et al. Progress on the reduction of allergenicity of bovine milk proteins by lactic acid bacteria[J]. Journal of Food Science and Biotechnology,2021,40(1):12−19. doi: 10.3969/j.issn.1673-1689.2021.01.002
LI X, XU Z H, HUANG M J, et al. Progress on the reduction of allergenicity of bovine milk proteins by lactic acid bacteria[J]. Journal of Food Science and Biotechnology, 2021, 40(1): 12-19. doi: 10.3969/j.issn.1673-1689.2021.01.002
|
[61] |
潘丽. 金磁酶联免疫法检测牛乳过敏原酪蛋白、α-乳白蛋白的研究[D]. 上海: 上海师范大学, 2016
PAN L. Study on gold magnetic enzyme-linked immunoassay for detecting allergen casein, α-lactalbumin in bovine milk[D]. Shanghai: Shanghai Normal University, 2016.
|
[62] |
CHATCHATEE P, JARVINEN K M, BARDINA L, et al. Identification of IgE- and IgG-binding epitopes on α(s1)-casein: Differences in patients with persistent and transient cow's milk allergy[J]. Journal of Allergy and Clinical Immunology,2001,107(2):379−383. doi: 10.1067/mai.2001.112372
|
[63] |
JIANG J, ZHANG Z P, ZHAO J, et al. The effect of non-covalent interaction of chlorogenic acid with whey protein and casein on physicochemical and radical-scavenging activity of in vitro protein digests[J]. Food Chemistry,2018,268:334−341. doi: 10.1016/j.foodchem.2018.06.015
|
[64] |
PRIGENT S V, VORAGEN A G, VAN KONINGSVELD G A, et al. Interactions between globular proteins and procyanidins of different degrees of polymerization[J]. Journal of Dairy Science,2009,92(12):5843−5853. doi: 10.3168/jds.2009-2261
|
[65] |
王珂雯, 廖小军, 徐贞贞. 多酚-蛋白质相互作用分析技术研究进展[J]. 食品工业科技,2021,42(14):371−379. [WANG K W, LIAO X J, XU Z Z. Advances in analytical techniques of polyphenol-protein interaction[J]. Science and Technology of Food Industry,2021,42(14):371−379.
WANG K W, LIAO X J, XU Z Z. Advances in analytical techniques of polyphenol-protein interaction[J]. Science and Technology of Food Industry, 2021, 42(14): 371-379.
|
[66] |
TAGLIAZUCCHI D, VERZELLONI E, CONTE A. Effect of some phenolic compounds and beverages on pepsin activity during simulated gastric digestion[J]. Journal of Agricultural and Food Chemistry,2005,53(22):8706−8713. doi: 10.1021/jf058074n
|
[67] |
CIRKOVIC VELICKOVIC T D, STANIC-VUCINIC D J. The role of dietary phenolic compounds in protein digestion and processing technologies to improve their antinutritive properties[J]. Comprehensive Reviews in Food Science and Food Safety,2018,17(1):82−103. doi: 10.1111/1541-4337.12320
|
[68] |
ZHOU S D, LIN Y F, XU X, et al. Effect of non-covalent and covalent complexation of (-)-epigallocatechin gallate with soybean protein isolate on protein structure and in vitro digestion characteristics[J]. Food Chemistry,2020,309:125718. doi: 10.1016/j.foodchem.2019.125718
|
[69] |
DE MORAIS F P R, PESSATO T B, RODRIGUES E, et al. Whey protein and phenolic compound complexation: Effects on antioxidant capacity before and after in vitro digestion[J]. Food Research International,2020,133:109104. doi: 10.1016/j.foodres.2020.109104
|