ZHANG Huikang, MA Jiabo, SI Qi, et al. Antioxidative Stress and Anti-aging Effects of Lithocarpus litseifolius folium Based on Caenorhabditis elegans Model[J]. Science and Technology of Food Industry, 2023, 44(12): 363−370. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022080282.
Citation: ZHANG Huikang, MA Jiabo, SI Qi, et al. Antioxidative Stress and Anti-aging Effects of Lithocarpus litseifolius folium Based on Caenorhabditis elegans Model[J]. Science and Technology of Food Industry, 2023, 44(12): 363−370. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022080282.

Antioxidative Stress and Anti-aging Effects of Lithocarpus litseifolius folium Based on Caenorhabditis elegans Model

More Information
  • Received Date: August 29, 2022
  • Available Online: April 10, 2023
  • In this study, the main components of the extract of (Lithocarpus litseifolius folium extract, LLFE) were analyzed,and the anti-oxidative stress and anti-aging effects of LLFE on C.elegans were evaluated using Caenorhabditis elegans (C.elegans) as a model to explore the possible mechanisms of action.The results showed that LLFE contained 52.84±1.45 mg/g of total phenols, 380.74±15.12 mg/g of total flavonoids, 470.36±5.84 mg/g of total sugars and about 6.00% of dihydrochalcone compounds, with phloridzin 52.76±0.71 mg/g, phloretin 1.64±0.06 mg/g and trilobatin 4.88±0.01 mg/g. LLFE (0.25, 1.25 mg/mL) also significantly extended the mean lifespan of C.elegans under oxidative and heat stress conditions (P<0.05) and enhanced their own resistance to stress. After using H2O2-induced oxidative damage in C.elegans as a model, it was found that LLFE (0.05, 0.25 and 1.25 mg/mL) significantly increased the mean lifespan of C.elegans compared with the model group (P<0.05). When the LLFE concentration was 1.25 mg/mL, the total superoxide dismutase activity in C.elegans increased by 39.85% (P<0.05), catalase activity by 39.21%(P<0.05) and glutathione peroxidase activity by 66.95% (P<0.001). The accumulation of malondialdehyde and reactive oxygen species was also reduced by 66.05% (P<0.001) and 49.69% (P<0.001), respectively. This indicates that LLFE has good antioxidant effect, and then delay the process of aging.
  • [1]
    孙晓康, 张艳艳, 张晓元, 等. 衰老机制及抗衰老治疗的研究进展[J]. 食品与药品,2022,24(1):74−80. [SUN X K, ZHANG Y Y, ZHANG X Y, et al. Research progress of aging mechanism and anti-aging treatment[J]. Food and Drugs,2022,24(1):74−80.

    SUN X K, ZHANG Y Y, ZHANG X Y, et al. Research progress of aging mechanism and anti-aging treatment[J]. Food and Drugs, 2022, 24(1): 74-80.
    [2]
    LÓPEZ-OTÍN C, BLASCO M A, PARTRIDGE L, et al. The hallmarks of aging[J]. Cell,2013,153(6):1194−1217. doi: 10.1016/j.cell.2013.05.039
    [3]
    杨善岚, 吴磊, 涂嘉欣, 等. 自由基致衰老的研究进展[J]. 中华疾病控制杂志,2022,26(5):589−594. [YANG S L, WU L, TU J X, et al. Advances in the study of free radicals in aging[J]. Chinese Journal of Disease Control,2022,26(5):589−594. doi: 10.16462/j.cnki.zhjbkz.2022.05.017

    YANG S L, WU L, TU J X, et al. Advances in the study of free radicals in aging[J]. Chinese Journal of Disease Control, 2022, 26(5): 589-594. doi: 10.16462/j.cnki.zhjbkz.2022.05.017
    [4]
    SHANG A, LIU H Y, LUO M, et al. Sweet tea (Lithocarpus polystachyus Rehd. ) as a new natural source of bioactive dihydrochalcones with multiple health benefits[J]. Critical Reviews in Food Science and Nutrition,2020:1−18.
    [5]
    LI S, ZENG J, WU Q, et al. Antioxidant and hepatoprotective effects of Lithocarpus polystachyus against carbon tetrachloride-induced injuries in rat[J]. Bangladesh Journal of Pharmacology,2013,8(4):420−427.
    [6]
    MIN J, LI X, HUANG K, et al. Phloretin induces apoptosis of non-small cell lung carcinoma A549 cells via JNK1/2 and p38 MAPK pathways[J]. Oncology Reports,2015,34(6):2871−2879. doi: 10.3892/or.2015.4325
    [7]
    ZHANG W, CHEN S, FU H, et al. Hypoglycemic and hypolipidemic activities of phlorizin from Lithocarpus polystachyus Rehd in diabetes rats[J]. Food Science & Nutrition,2021,9(4):1989−1996.
    [8]
    LU M, KONG Q, XU X, et al. Evaluation of apoptotic and growth inhibitory activity of phloretin in BGC823 gastric cancer cell[J]. Tropical Journal of Pharmaceutical Research,2015,14(1):27−31. doi: 10.4314/tjpr.v14i1.5
    [9]
    HOU S, CHEN S, HUANG S, et al. The hypoglycemic activity of Lithocarpus polystachyus Rehd leaves in the experimental hyperglycemic rats[J]. Journal of Ethnopharmacology,2011,138(1):142−149. doi: 10.1016/j.jep.2011.08.067
    [10]
    SUN Y S, LI W, LIU Z B. Preparative isolation, quantification and antioxidant activity of dihydrochalcones from sweet tea (Lithocarpus polystachyus Rehd. )[J]. Journal of Chromatography B,2015,1002:372−378. doi: 10.1016/j.jchromb.2015.08.045
    [11]
    罗颖, 黄帅, 杨雪彬, 等. 木姜叶柯老叶根皮苷的抗氧化及抑菌活性研究[J]. 中国食品添加剂,2021,32(2):51−57. [LUO Y, HUANG S, YANG X B, et al. Study on the antioxidant and antibacterial activities of the phloridzin of the old leaves of Lithocarpus polystachyus Rehd[J]. China Food Additives,2021,32(2):51−57.

    LUO Y, HUANG S, YANG X B, et al. Study on the antioxidant and antibacterial activities of the phloridzin of the old leaves of Lithocarpus polystachyus Rehd[J]. China Food Additives, 2021, 32(2): 51-57.
    [12]
    范昊安, 薛淑龙, 王高坚, 等. 紫苏叶酵素发酵过程中代谢产物与抗氧化活性研究[J]. 中国酿造,2019,38(9):148−154. [FAN H A, XUE S L, WANG G J, et al. Study on metabolites and antioxidant activity of perilla leaf enzymes during fermentation[J]. China Brewing,2019,38(9):148−154.

    FAN H A, XUE S L, WANG G J, et al. Study on metabolites and antioxidant activity of perilla leaf enzymes during fermentation[J]. China Brewing, 2019, 38(9): 148-154.
    [13]
    杨小慧, 石光波, 拜晓彬, 等. 文冠果落果黄酮成分分析及抑菌性评价[J]. 食品科学,2018,39(10):53−58. [YANG X H, SHI G B, BAI X B, et al. Analysis of flavonoid composition and evaluation of antibacterial properties of deciduous fruits of Ficus wenge[J]. Food Science,2018,39(10):53−58.

    YANG X H, SHI G B, BAI X B, et al. Analysis of flavonoid composition and evaluation of antibacterial properties of deciduous fruits of Ficus wenge[J]. Food Science, 2018, 39(10): 53-58.
    [14]
    金瑾, 刘延奇, 秦令祥. 蒸汽爆破辅助提取莼菜多糖及苯酚-硫酸法测定其多糖含量的研究[J]. 粮食与油脂,2022,35(5):116−120. [JIN J, LIU Y Q, QIN L X. Steam blast-assisted extraction of polysaccharides fromUlva lactuca and determination of its polysaccharide content by phenol-sulfuric acid method[J]. Grain and Oil,2022,35(5):116−120.

    JIN J, LIU Y Q, QIN L X. Steam blast-assisted extraction of polysaccharides from Ulva lactuca and determination of its polysaccharide content by phenol-sulfuric acid method[J]. Grain and Oil, 2022, 35(5): 116-120.
    [15]
    HUANG W, ZHANG C, GU Z, et al. Effect of microbial fermentation on the sensory characteristics and chemical compositions of Chinese sweet tea (Lithocarpus litseifolius (Hance) Chun)[J]. Food Bioscience,2022,46:101567. doi: 10.1016/j.fbio.2022.101567
    [16]
    MENG F, LI J, WANG W, et al. Gengnianchun, a traditional Chinese medicine, enhances oxidative stress resistance and lifespan in Caenorhabditis elegans by modulating daf-16/FOXO[J]. Evidence-Based Complementary and Alternative Medicine, 2017, 2017.
    [17]
    HU Q, LIU Z, GUO Y, et al. Antioxidant capacity of flavonoids from Folium Artemisiae argyi and the molecular mechanism in Caenorhabditis elegans[J]. Journal of Ethnopharmacology,2021,279:114398. doi: 10.1016/j.jep.2021.114398
    [18]
    LIU H, WANG Y, ZHANG W, et al. Lentinan extends lifespan and increases oxidative stress resistance through DAF-16 and SKN-1 pathways in Caenorhabditis elegans[J]. International Journal of Biological Macromolecules,2022,202:286−295. doi: 10.1016/j.ijbiomac.2022.01.071
    [19]
    RATHOR L, PANT A, NAGAR A, et al. Trachyspermum ammi L. (Carom) oil induces alterations in SOD-3, GST-4 expression and prolongs lifespan in Caenorhabditis elegans[J]. Proceedings of the National Academy of Sciences, India Section B:Biological Sciences,2017,87(4):1355−1362. doi: 10.1007/s40011-016-0710-6
    [20]
    LI Y, CHU Q, LIU Y, et al. Radix Tetrastigma flavonoid ameliorates inflammation and prolongs the lifespan of Caenorhabditis elegans through JNK, p38 and Nrf2 pathways[J]. Free Radical Research,2019,53(5):562−573. doi: 10.1080/10715762.2019.1613534
    [21]
    王高坚, 王珍珍, 李嘉嘉, 等. 蓝莓酵素的体外抗氧化及对秀丽隐杆线虫的氧化应激保护作用[J]. 食品工业科技,2021,42(15):343−350. [WANG G J, WANG Z Z, LI J J, et al. In vitro antioxidant and protective effects of blueberry enzymes against oxidative stress in Caenorhabditis elegans[J]. Food Industry Science and Technology,2021,42(15):343−350.

    WANG G J, WANG Z Z, LI J J, et al. In vitro antioxidant and protective effects of blueberry enzymes against oxidative stress in Caenorhabditis elegans[J]. Food Industry Science and Technology, 2021, 42(15): 343-350.
    [22]
    王钰, 王磊, 张东星, 等. 高效液相色谱法测定木姜叶柯中根皮苷、三叶苷和根皮素的含量[J]. 天津科技,2019,46(7):66−68,70. [WANG Y, WANG L, ZHANG D Xngxing, et al. Determination of phloridzin, trilobatin and phloretin in Lithocarpus litseifolius folium by high performance liquid chromatography[J]. Tianjin Science and Technology,2019,46(7):66−68,70. doi: 10.3969/j.issn.1006-8945.2019.07.023

    WANG Y, WANG L, ZHANG D Xngxing, et al. Determination of phloridzin, trilobatin and phloretin in Lithocarpus litseifolius folium by high performance liquid chromatography[J]. Tianjin Science and Technology, 2019, 46(7): 66-68, 70. doi: 10.3969/j.issn.1006-8945.2019.07.023
    [23]
    赵艳敏, 王皎, 宋光明, 等. 苹果树枝和叶中根皮苷及根皮素含量变化研究[J]. 食品研究与开发,2013,34(7):95−98. [ZHAO Y M, WANG J, SONG G M, et al. Study on the variation of root phloridzin and phloretin content in branches and leaves of apple trees[J]. Food Research and Development,2013,34(7):95−98.

    ZHAO Y M, WANG J, SONG G M, et al. Study on the variation of root phloridzin and phloretin content in branches and leaves of apple trees[J]. Food Research and Development, 2013, 34(07): 95-98.
    [24]
    GUTIERREZ B L, ZHONG G Y, BROWN S K. Increased phloridzin content associated with russeting in apple (Malus domestica (Suckow) Borkh. ) fruit[J]. Genetic Resources and Crop Evolution,2018,65(8):2135−2149. doi: 10.1007/s10722-018-0679-5
    [25]
    迟东泽, 何源, 刘芳芳, 等. 鹿鞭醇提物对秀丽隐杆线虫衰老的影响[J]. 食品工业科技,2021,42(10):327−335. [CHI D Z, HE Y, LIU F F, et al. Effect of alcoholic extract of deer whip on senescence of Caenorhabditis elegans[J]. Food Industry Science and Technology,2021,42(10):327−335.

    CHI D Z, HE Y, LIU F F, et al. Effect of alcoholic extract of deer whip on senescence of Caenorhabditis elegans[J]. Food Industry Science and Technology, 2021, 42(10): 327-335.
    [26]
    OLIVEIRA B F, NOGUEIRA-MACHADO J A, CHAVES M M. The role of oxidative stress in the aging process[J]. The Scientific World Journal,2010,10:1121−1128. doi: 10.1100/tsw.2010.94
    [27]
    CAÑUELO A, GILBERT-LÓPEZ B, PACHECO-LIÑÁN P, et al. Tyrosol, a main phenol present in extra virgin olive oil, increases lifespan and stress resistance in Caenorhabditis elegans[J]. Mechanisms of Ageing and Development,2012,133(8):563−574. doi: 10.1016/j.mad.2012.07.004
    [28]
    仵菲, 蒲云峰, 雷晓钰, 等. 库尔勒香梨果实发育过程中酚类物质及抗氧化活性研究[J]. 果树学报,2022,39(4):574−583. [WU F, PU Y F, LEI X Y, et al. Phenolic substances and antioxidant activity in fruit development of Kulle balsam pear[J]. Journal of Fruit Trees,2022,39(4):574−583. doi: 10.13925/j.cnki.gsxb.20210320

    WU F, PU Y F, LEI X Y, et al. Phenolic substances and antioxidant activity in fruit development of Kulle balsam pear[J]. Journal of Fruit Trees, 2022, 39(4): 574-583. doi: 10.13925/j.cnki.gsxb.20210320
    [29]
    王猛, 关思宇, 于杰, 等. 褐藻多糖的体外抗氧化活性及其延长秀丽隐杆线虫的寿命[J]. 现代食品科技,2022,38(4):1−9. [WANG M, GUAN S Y, YU J, et al. In vitro antioxidant activity of brown algae polysaccharides and their prolongation of life span in Caenorhabditis elegans[J]. Modern Food Science and Technology,2022,38(4):1−9.

    WANG M, GUAN S Y, YU J, et al. In vitro antioxidant activity of brown algae polysaccharides and their prolongation of life span in Caenorhabditis elegans[J]. Modern Food Science and Technology, 2022, 38(4): 1-9.
    [30]
    LI N, LI X, SHI Y L, et al. Trilobatin, a component from Lithocarpus polystachyrus Rehd., increases longevity in C. elegans through activating SKN1/SIRT3/DAF16 signaling pathway[J]. Frontiers in Pharmacology,2021,12:655045. doi: 10.3389/fphar.2021.655045
    [31]
    LIU Z, REN Z, ZHANG J, et al. Role of ROS and nutritional antioxidants in human diseases[J]. Frontiers in physiology,2018,9:477. doi: 10.3389/fphys.2018.00477
    [32]
    FINKEL T, HOLBROOK N J. Oxidants, oxidative stress and the biology of ageing[J]. nature,2000,408(6809):239−247. doi: 10.1038/35041687
    [33]
    付敏, 张旭光, 杨柳, 等. 虾青素调控ROS介导的自噬延长秀丽隐杆线虫寿命作用[J]. 食品工业科技,2022,43(4):373−378. [FU M, ZHANG X G, YANG L, et al. Astaxanthin regulates ROS-mediated autophagy to extend the lifespan of Caenorhabditis elegans[J]. Food Industry Science and Technology,2022,43(4):373−378.

    FU M, ZHANG X G, YANG L, et al. Astaxanthin regulates ROS-mediated autophagy to extend the lifespan of Caenorhabditis elegans[J]. Food Industry Science and Technology, 2022, 43(4): 373-378.
    [34]
    LOU Z R, LI P, HAN K L. Fluorescent probes for mitochondrial reactive oxygen species in biological systems[J]. Acta Physico-Chimica Sinica,2017,33(8):1573−1588.
    [35]
    刘星雨, 曹素芳, 朱秋轶, 等. 牛乳源促睡眠肽的体外抗氧化活性评价及对秀丽隐杆线虫的体内抗氧化作用[J]. 食品科学,2022,43(5):151−157. [LIU X Y, CAO S F, ZHU Q Y, et al. Evaluation ofin vitro antioxidant activity of bovine milk-derived sleep-promoting peptides and in vivo antioxidant effects on Caenorhabditis elegans[J]. Food Science,2022,43(5):151−157. doi: 10.7506/spkx1002-6630-20201211-121

    LIU X Y, CAO S F, ZHU Q Y, et al. Evaluation of in vitro antioxidant activity of bovine milk-derived sleep-promoting peptides and in vivo antioxidant effects on Caenorhabditis elegans[J]. Food Science, 2022, 43(5): 151-157. doi: 10.7506/spkx1002-6630-20201211-121
    [36]
    谭翠. 发酵大麦β-葡聚糖的抗氧化作用研究[D]. 镇江: 江苏大学, 2021.

    TAN C. Study on the antioxidant effect of fermented barley β-glucan [D]. Zhenjiang: Jiangsu University, 2021.
    [37]
    黄少杰, 陈宏著, 钟淳菲, 等. 铁皮石斛叶多糖对秀丽隐杆线虫体内抗衰老作用[J]. 食品科学,2022,43(21):203−208. [HUANG S J, CHEN H Z, ZHONG C F, et al. Anti-aging effect of Dendrobium ferruginum leaf polysaccharide on Caenorhabditis elegans in vivo[J]. Food Science,2022,43(21):203−208.

    HUANG S J, CHEN H Z, ZHONG C F, et al. Anti-aging effect of Dendrobium ferruginum leaf polysaccharide on Caenorhabditis elegans in vivo[J]. Food Science, 2022,43(21):203-208.
    [38]
    ZHAO W, MA Z, LIU S, et al. Transcriptome profiling reveals potential genes and pathways supporting Ananas comosus L. Merr’s high temperature stress tolerance[J]. Tropical Plant Biology,2021,14(2):132−142. doi: 10.1007/s12042-021-09287-2
    [39]
    阎芙洁. 桑葚花色苷对糖代谢的调控作用及其机制研究[D]. 杭州: 浙江大学, 2018.

    YAN F J. Study on the regulatory role of mulberry anthocyanin on glucose metabolism and its mechanism[D]. Hangzhou: Zhejiang University, 2018.
    [40]
    AHLUWALIA R, LO H E, POLINO H, et al. Effect of increasing hydrogen peroxide concentrations on head oscillations of Caenorhabditis elegans[J]. The Expedition, 2015, 5.
    [41]
    马娜, 申婷婷, 吕晓玲, 等. 黑米对高脂膳食饲喂雄性小鼠抗氧化相关基因的调控[J]. 中国食品添加剂,2014(8):55−60. [MA N, SHEN T T, LÜ X L, et al. Modulation of antioxidant-related genes by black rice in high-fat diet-fed male mice[J]. China Food Additives,2014(8):55−60.

    MA N, SHEN T T, LÜ X L, et al. Modulation of antioxidant-related genes by black rice in high-fat diet-fed male mice[J]. China Food Additives, 2014(8): 55-60.
  • Cited by

    Periodical cited type(5)

    1. 张惠琪,陈晓,金雪玲,黎晶晶,袁娟丽,高金燕,陈红兵,武涌. 发芽粟米活性肽减轻铜诱导秀丽隐杆线虫氧化损伤及其分子机制. 食品工业科技. 2025(01): 384-393 . 本站查看
    2. 陈思羽,李晓,杜文珍,耿月华,刘刚,谢宁. 丝状真菌Podospora anserina中光敏色素基因的鉴定及功能分析. 微生物学报. 2024(02): 443-460 .
    3. 刘鸿基,曾琛悦,曾霞,黄钰婷,谢炜城,罗丹琪,马鸿雁,汤丹. 甜茶木姜叶柯及其主要活性成分三叶苷药理作用研究进展. 广东药科大学学报. 2024(03): 129-135 .
    4. 赖玉萍,陈颖仪,魏婉娉,安苗青,邹泽斌,杜冰,黎攀. 美藤果叶醇提物对延缓秀丽隐杆线虫衰老的影响. 食品工业科技. 2023(21): 402-411 . 本站查看
    5. 张余威,赵文俊,李伟杰,杜冰,黎攀. 灭活芽孢杆菌DU-106对秀丽隐杆线虫的抗衰老作用. 食品科学. 2023(23): 134-141 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (219) PDF downloads (20) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return