JIANG Hedong, HUANG Yi, PAN Xiaojun, et al. Digestibility of Broken Ganoderma lucidum Spores by Simulation in Vitro[J]. Science and Technology of Food Industry, 2023, 44(12): 405−412. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022080229.
Citation: JIANG Hedong, HUANG Yi, PAN Xiaojun, et al. Digestibility of Broken Ganoderma lucidum Spores by Simulation in Vitro[J]. Science and Technology of Food Industry, 2023, 44(12): 405−412. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022080229.

Digestibility of Broken Ganoderma lucidum Spores by Simulation in Vitro

More Information
  • Received Date: August 22, 2022
  • Available Online: April 17, 2023
  • To investigate the digestion and absorption of wall-broken Ganoderma lucidum spores in the oral and gastrointestinal tracts and the effects on the intestinal environment. In this study, wall-broken Ganoderma lucidum spore (GLS) by mechanical milling, microwave and ultrasonic methods were subjected to in vitro simulation of human oral, gastric and small intestinal digestive systems and dialysis models, followed by in vitro fermentation of the digested substrate. The loss rate, release of polysaccharides and triterpenoids, bioacceptability and dialysis rate of Ganoderma lucidum spore at each stage of digestion as well as the pH changes of the small intestine digested substrate during 0, 6, 12, 24 and 48 h in vitro fermentation were measured. The results showed that the stomach and small intestine were the main digestion sites of Ganoderma lucidum spores, and the average mass loss rate of the broken wall group reached 23.84%, among which the mechanically milled group was more easily digested with a mass loss rate of 29.46%. 97% of the polysaccharides were dissolved in the gastrointestinal fluid, and the bioacceptability of polysaccharides in the mechanically milled group had the highest level of 87.33%. Triterpenes were only minimally soluble in the simulated digestion of the small intestine in the wall-breaking group, averaging about 1.50±0.04 mg/g, and 95.2% of the triterpenes entered the colon with the precipitation. The in vitro fermentation results showed that the pH value of the fermentation broth decreased continuously from 0 to 12 h and reached the end of fermentation at 12 h. Comparing the digestive characteristics of the three types of wall-broken Ganoderma lucidum spores, the quality of the mechanical milling method of wall-broken was considerable, and it was a preferable choice for enterprise scale wall-broken production. In conclusion, wall-breaking was conducive to increasing the release and bioacceptability of the active ingredients of Ganoderma lucidum spores in the human digestive environment, promoting colonic fermentation and acid production, and helping to regulate the human intestinal environment.
  • [1]
    郑阳. 灵芝孢子化学成分的研究[D]. 吉林: 延边大学, 2017.

    ZHENG Y. Study on the chemical composition of Ganoderma lucidum spore powder[D]. Jilin: Yanbian University, 2017.
    [2]
    SHI Y J, ZHENG H X, HONG Z P, et al. Antitumor effects of different Ganoderma lucidum spore powder in cell- and zebrafish-based bioassays[J]. Journal of Integrative Medicine,2021(1):43−50.
    [3]
    CHEN Y S, CHEN Q Z, WANG Z J, et al. Anti-inflammatory and hepatoprotective effects of Ganoderma lucidum polysaccharides against carbon tetrachloride-induced liver injury in Kunming mice[J]. Pharmacology,2019,103(3-4):143−150. doi: 10.1159/000493896
    [4]
    ZHU L. Development of Ganoderma lucidum spore powder based proteoglycan and its application in hyperglycemic, antitumor and antioxidant function[J]. Process Biochemistry,2019,84(5):103−111.
    [5]
    沐华, 蔡铭, 徐靖, 等. 破壁与去壁灵芝孢子粉的化学成分与抗氧化活性比较[J]. 食品工业科技,2020,41(10):32−37. [MU H, CAI M, XU J, et al. Comparison of chemical composition and antioxidant activity of broken-wall and de-walled Ganoderma lucidum spore powder[J]. Science and Technology of Food Industry,2020,41(10):32−37.

    MU H, CAI M, XU J, et al. Comparison of chemical composition and antioxidant activity of broken-wall and de-walled Ganoderma lucidum spore powder[J]. Science and Technology of Food Industry, 2020, 41(10): 32-37.
    [6]
    包县峰, 徐勇, 刘维明, 等. 灵芝孢子粉生物活性成分及药理作用[J]. 食品工业科技,2020,41(6):325−331. [BAO X F, XU Y, LIU W M, et al. Bioactive components and pharmacological effects of Ganoderma lucidum spore powder[J]. Science and Technology of Food Industry,2020,41(6):325−331.

    BAO X F, XU Y, LIU W M, et al. Bioactive components and pharmacological effects of Ganoderma lucidum spore powder[J]. Science and Technology of Food Industry, 2020, 41(6): 325-331.
    [7]
    张红雷. 灵芝孢子粉抑制小鼠脾脏淋巴细胞凋亡的研究[D]. 福建: 福建农林大学, 2009.

    ZHANG H L. Study on the inhibition of apoptosis of mouse spleen lymphocytes by Ganoderma lucidum spore powder[D]. Fujian: Fujian Agriculture and Forestry University, 2009.
    [8]
    王方. 灵芝孢子粉破壁前后质量评价及药效学研究[D]. 长春: 长春中医药大学, 2020.

    WANG F. Quality evaluation and pharmacodynamic study of Ganoderma lucidum spore powder before and after breaking the wall[D]. Changchun: Changchun University of Traditional Chinese Medicine, 2020.
    [9]
    方欢乐, 张洁, 赵玉文, 等. 破壁油菜花粉的抗氧化及抗衰老作用[J]. 食品工业科技,2022,43(14):378−384. [FANG H L, ZHANG J, ZHAO Y W, et al. Antioxidant and anti-aging effects of broken wall rape pollen[J]. Science and Technology of Food Industry,2022,43(14):378−384.

    FANG H L, ZHANG J, ZHAO Y W, et al. Antioxidant and anti-aging effects of broken wall rape pollen[J]. Science and Technology of Food Industry, 2022, 43(14): 378-384.
    [10]
    郑慧, 杨思琪, 孙艳, 等. 油菜蜂花粉破壁技术研究进展[J]. 食品与机械,2021,37(8):231−238. [ZHENG H, YANG S Q, SUN Y, et al. Research progress on wall-breaking technology of rape bee pollen[J]. Food and Machinery,2021,37(8):231−238.

    ZHENG H, YANG S Q, SUN Y, et al. Research progress on wall-breaking technology of rape bee pollen[J]. Food and Machinery, 2021, 37(8): 231-238.
    [11]
    杨杭, 刘凤, 练心洁, 等. 灵芝孢子的破壁方法及其药理作用研究进展[J]. 成都大学学报(自然科学版),2017,36(4):364−368. [YANG H, LIU F, LIAN X J, et al. Progress in the research of wall-breaking method of Ganoderma lucidum spores and its pharmacological effects[J]. Journal of Chengdu University (Natural Science Edition),2017,36(4):364−368.

    YANG H, LIU F, LIAN X J, et al. Progress in the research of wall-breaking method of Ganoderma lucidum spores and its pharmacological effects[J]. Journal of Chengdu University (Natural Science Edition), 2017, 36(4): 364-368.
    [12]
    王欣宇, 车成来, 林花, 等. 灵芝孢子粉破壁技术的研究进展[J].中国林副特产, 2022(6): 23-29.

    WANG X Y, CHE C L, LIN H, et al. Research progress of wall-breaking technology of Ganoderma lucidum spore powder[J].Forest By-product and Speciality in China, 2022(6): 23-29.
    [13]
    李诺, 张东杰, 张桂芳, 等. 体外模拟消化技术研究进展[J]. 食品与机械,2021,37(3):201−206. [LI N, ZHANG D J, ZHANG G F, et al. Advances in in vitro simulated digestion technology[J]. Food and Machinery,2021,37(3):201−206.

    LI N, ZHANG D J, ZHANG G F, et al. Advances in in vitro simulated digestion technology[J]. Food and Machinery, 2021, 37(3): 201-206.
    [14]
    訾鸿威. 超高压提取灵芝多糖及灵芝三萜的工艺研究[D]. 大连: 大连理工大学, 2020.

    ZI H W. Process research on the extraction of Ganoderma lucidum polysaccharides and Ganoderma lucidum triterpenes by ultra-high pressure[D]. Dalian: Dalian University of Technology, 2020.
    [15]
    范彬. 人肠道菌群体外模型及潜在应用研究[D]. 北京: 中国人民解放军医学院, 2016.

    FAN B. Research on the in vitro model of human intestinal bacteria and potential applications[D]. Beijing: Chinese People's Liberation Army Medical College, 2016.
    [16]
    唐永康. 基于超声波与机械粉碎破壁技术的榛子蛋白提取工艺研究[D]. 无锡: 江南大学, 2021.

    TANG Y K. Study on the extraction process of hazelnut protein based on ultrasonic and mechanical crushing and wall-breaking technology[D]. Wuxi: Jiangnan University, 2021.
    [17]
    羌校君, 胡丹, 黄甜甜, 等. 灵芝孢子粉加工工艺研究进展[J]. 中国食用菌,2022,41(9):1−6,15. [QIANG X J, HU D, HUANG T T, et al. Research progress on the processing of Ganoderma lucidum spore powder[J]. China Edible Mushroom,2022,41(9):1−6,15.

    QIANG X J, HU D, HUANG T T, et al. Research progress on the processing of Ganoderma lucidum spore powder[J]. China Edible Mushroom, 2022, 41(9): 1-6, 15.
    [18]
    马超, 马传贵, 戚俊, 等. 灵芝孢子粉破壁技术及灵芝类保健食品开发研究进展[J]. 中国食用菌,2020,39(12):8−12,17. [MA C, MA C G, QI J, et al. Research progress on wall-breaking technology of Ganoderma lucidum spore powder and development of Ganoderma lucidum-based health food[J]. China Edible Mushroom,2020,39(12):8−12,17.

    MA C, MA C G, QI J, et al. Research progress on wall-breaking technology of Ganoderma lucidum spore powder and development of Ganoderma lucidum-based health food[J]. China Edible Mushroom, 2020, 39(12): 8-12, 17.
    [19]
    汪芙蓉. 体外模拟消化对酚类化合物稳定性和抗氧化活性的影响[D]. 南昌: 南昌大学, 2020.

    WANG F R, Effect of in vitro simulated digestion on the stability and antioxidant activity of phenolic compounds[D]. Nanchang: Nanchang University, 2020.
    [20]
    陈月. 体外模拟消化对苦荞酚类化合物生物利用率的影响[D]. 贵阳: 贵州大学, 2021.

    CHEN Y. Effect of in vitro simulated digestion on the bioavailability of buckwheat phenolic compounds[D]. Guiyang: Guizhou University, 2021.
    [21]
    杨瑞丽, 郭卓钊, 施奕乔, 等. 青梅酚类物质在体外模拟消化过程中生物接受率和抗氧化活性的变化[J]. 食品与发酵工业,2022,25(9):1−8. [YANG R L, GUO Z Z, SHI Y Q, et al. Changes in bioacceptance and antioxidant activity of phenolics of plum during simulated digestion in vitro[J]. Food and Fermentation Industry,2022,25(9):1−8.

    YANG R L, GUO Z Z, SHI Y Q, et al. Changes in bioacceptance and antioxidant activity of phenolics of plum during simulated digestion in vitro[J]. Food and Fermentation Industry, 2022, 25(9): 1-8.
    [22]
    江和栋, 牛仙, 万仁口, 等. 灵芝孢子多糖的提取工艺优化及单糖组成、抗氧化活性分析[J]. 中国食品学报,2021,21(4):159−167. [JIANG H D, NIU X, WAN R K, et al. Optimization of extraction process and analysis of monosaccharide composition and antioxidant activity of Ganoderma lucidum spores polysaccharide[J]. Chinese Journal of Food Science,2021,21(4):159−167.

    JIANG H D, NIU X, WAN R K, et al. Optimization of extraction process and analysis of monosaccharide composition and antioxidant activity of Ganoderma lucidum spores polysaccharide[J]. Chinese Journal of Food Science, 2021, 21(4): 159-167.
    [23]
    罗春萍, 陆友利, 王星星. 苯酚-硫酸法快速测定多糖方法的优化[J]. 化工管理,2021(3):90−94. [LUO C P, RU Y L, WANG X X. Optimization of a rapid method for the determination of polysaccharides by phenol-sulfuric acid[J]. Chemical Management,2021(3):90−94.

    LUO C P, RU Y L, WANG X X. Optimization of a rapid method for the determination of polysaccharides by phenol-sulfuric acid[J]. Chemical Management, 2021(3): 90-94.
    [24]
    江和栋, 李广焱, 牛仙, 等. 破壁对灵芝孢子粉品质的影响[J]. 食品工业科技,2020,41(23):51−56. [JIANG H D, LI G Y, NIU X, et al. Effect of wall breaking on the quality of Ganoderma lucidum spore powder[J]. Science and Technology of Food Industry,2020,41(23):51−56.

    JIANG H D, LI G Y, NIU X, et al. Effect of wall breaking on the quality of Ganoderma lucidum spore powder[J]. Science and Technology of Food Industry, 2020, 41(23): 51-56.
    [25]
    秦永. 平卧菊三七二聚绿原酸的提取纯化、消化和代谢及其固体饮料开发[D]. 南昌: 南昌大学, 2017.

    QIN Y. Extraction and purification, digestion and metabolism of dimeric chlorogenic acid from Ping Wol chrysanthemum tragacanth and its solid beverage development[D]. Nanchang: Nanchang University, 2017.
    [26]
    YU Y F, ZHANG B, XIA Y, et al. Bioaccessibility and transformation pathways of phenolic compounds in processed mulberry (Morus alba L.) leaves after in vitro gastrointestinal digestion and faecal fermentation[J]. Journal of Functional Foods,2019,60(8):103−106.
    [27]
    舒阳. 不同粒径绿茶粉理化性质及体外消化研究[D]. 武汉: 华中农业大学, 2016.

    SHU Y. Research on physicochemical properties and in vitro digestion of green tea powder with different particle sizes[D]. Wuhan: Huazhong Agricultural University, 2016.
    [28]
    HU J L, NIE S P, LI C, et al. Microbial short-chain fatty acid production and extracellular enzymes activities during in vitro fermentation of polysaccharides from the seeds of Plantago asiatica L. treated with microwave irradiation[J]. Journal of Agricultural and Food Chemistry,2013,61(25):6092−6101. doi: 10.1021/jf401877j
    [29]
    MA B, REN W, ZHOU Y, et al. Triterpenoids from the spores of Ganoderma lucidum[J]. N Am J Med,2011,3(11):495−498.
    [30]
    马才仁卓玛. 蜂花粉破壁前后营养成分及其胃肠消化特性分析[J]. 农业科学,2018(7):101−103. [MA Cairen Drolma. Analysis of nutrient composition and its gastrointestinal digestive characteristics of bee pollen before and after breaking the wall[J]. Agricultural Science,2018(7):101−103.

    MA Cairen Drolma. Analysis of nutrient composition and its gastrointestinal digestive characteristics of bee pollen before and after breaking the wall[J]. Agricultural Science, 2018(7): 101-103.
    [31]
    肖兴英, 张红城. 破壁对五种蜂花粉消化的影响[C]. 中国食品科学技术学会第十六届年会暨第十届中美食品业高层论坛. 武汉. 2019: 10-13.

    XIAO X Y, ZHANG H C. Effect of wall breaking on the digestion of five bee pollen species[C]. The 16th Annual Conference of the Chinese Society of Food Science and Technology and the 10th China-US High Level Forum on Food Industry. Wuhan. 2019: 10-13.
    [32]
    吴伟. 破壁对五种蜂花粉的营养素释放和消化的影响[D]. 北京: 中国农业科学院, 2019.

    WU W. Effect of wall breaking on nutrient release and digestion of five bee pollen species[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019.
    [33]
    丁玉峰, 马艳莉, 李素萍, 等. 体外模拟消化对葡萄酵素多酚生物利用度及抗氧化活性的影响[J]. 食品科学,2021(3):1−14. [DING Y F, MA Y L, LI S P, et al. Effect of in vitro simulated digestion on bioavailability and antioxidant activity of grape enzyme polyphenols[J]. Food Science,2021(3):1−14.

    DING Y F, MA Y L, LI S P, et al. Effect of in vitro simulated digestion on bioavailability and antioxidant activity of grape enzyme polyphenols[J]. Food Science, 2021(3): 1-14.
    [34]
    郑慧, 郑淘, 王睿捷, 等. 粉碎粒径对油菜蜂花粉在体外模拟消化中多酚含量及发酵产酸的影响[J]. 食品与发酵工业,2019,45(7):59−64. [ZHENG H, ZHENG T, WANG R J, et al. Effects of crushed particle size on polyphenol content and fermentation acid production of rape bee pollen in simulated digestion in vitro[J]. Food and Fermentation Industry,2019,45(7):59−64.

    ZHENG H, ZHENG T, WANG R J, et al. Effects of crushed particle size on polyphenol content and fermentation acid production of rape bee pollen in simulated digestion in vitro[J]. Food and Fermentation Industry, 2019, 45(7): 59-64.
    [35]
    SANG T, GUO C, GUO D, et al. Suppression of obesity and inflammation by polysaccharide from sporoderm-broken spore of Ganoderma lucidum via gut microbiota regulation[J]. Carbohydrate Polymers,2021,256(2):1019−1025.
    [36]
    赵晓彤. 体外模拟冬枣发酵前后小分子糖的变化及对肠道细菌的影响[D]. 天津: 天津农学院, 2019.

    ZHAO X T. Changes in small molecule sugars and effects on intestinal bacteria before and after fermentation of simulated winter dates in vitro[D]. Tianjin: Tianjin Agricultural College, 2019.
    [37]
    苗晶囡, 王勇, 杨柳, 等. 食药用真菌多糖调节肠道菌群研究进展[J]. 食品安全质量检测学报,2021,12(13):5341−5348. [MIAO J N, WANG Y, YANG L, et al. Research progress on the regulation of intestinal flora by fungal polysaccharides for food and medicine[J]. Journal of Food Safety and Quality Testing,2021,12(13):5341−5348.

    MIAO J N, WANG Y, YANG L, et al. Research progress on the regulation of intestinal flora by fungal polysaccharides for food and medicine[J]. Journal of Food Safety and Quality Testing, 2021, 12(13): 5341-5348.
    [38]
    WANG Y, CHEN G, PENG Y, et al. Simulated digestion and fermentation in vitro with human gut microbiota of polysaccharides from Coralline pilulifera[J]. LWT,2019(10):167−174.
  • Related Articles

    [1]LIU Changnian, GUO Yan, ZHANG Jiaxin, YU Xiuzhu, LI Qi. Research Progress of Protein/Lipid-Starch Interactions and Their Effect in Slowing Down Starch Digestion Rate[J]. Science and Technology of Food Industry, 2025, 46(9): 1-10. DOI: 10.13386/j.issn1002-0306.2024070226
    [2]ZHANG Yun, ZHANG Kangyi, ZHAO Di, GUO Dongxu, ZHANG Guozhi. Structure and in Vitro Digestion Properties of Waxy Wheat Starch-Lipid Complexes[J]. Science and Technology of Food Industry, 2022, 43(20): 97-106. DOI: 10.13386/j.issn1002-0306.2022010171
    [3]YUAN Lu, HU Jie-lun, YIN Jun-yi. Progress on the Effect of Microwave Irradiation on Structural Characteristics of Starch and Its Application in Starch Derived Food Processing[J]. Science and Technology of Food Industry, 2020, 41(18): 330-337,343. DOI: 10.13386/j.issn1002-0306.2020.18.052
    [4]MIAO Lan-ge, XU Yan, ZHAO Si-ming, JIA Cai-hua, NIU Meng, LIN Qin-lu. Effects of Anthocyanin on Physicochemical Properties of Starches with Different Amylose Contents[J]. Science and Technology of Food Industry, 2020, 41(14): 22-28. DOI: 10.13386/j.issn1002-0306.2020.14.004
    [5]CAO Ying, XIA Wen, WANG Fei, LI Ji-hua, LIN Yan-yun. Research Progress on the Effect of Physical Modification on Starch Properties[J]. Science and Technology of Food Industry, 2019, 40(21): 315-319,325. DOI: 10.13386/j.issn1002-0306.2019.21.051
    [6]ZHANG Yu, ZHANG Kang-yi, ZHANG Guo-zhi. Research Progress on Starch Retrogradation Process Mechanism and Application of Starch Anti-retrogradation Agent[J]. Science and Technology of Food Industry, 2019, 40(13): 316-321. DOI: 10.13386/j.issn1002-0306.2019.13.053
    [7]WEI Ping, YOU Xiang-rong, ZHANG Ya-yuan, SUN Jian, HUANG Cheng-zu, LI Ming-juan, WANG Ying, ZHOU Kui, XIE Xiao-qiang. Influences of Adding Starch on Potato Rice Noodle Quality[J]. Science and Technology of Food Industry, 2019, 40(11): 79-84. DOI: 10.13386/j.issn1002-0306.2019.11.014
    [8]HUANG Jun- rong, LI Yan-fang, PU Hua-yin, LI Hong-liang. Research progress on application of texture analyzer in quality of starch and starch- based food[J]. Science and Technology of Food Industry, 2017, (04): 390-395. DOI: 10.13386/j.issn1002-0306.2017.04.065
    [9]LI Xue-hong, CHEN Zhi-jing, LU Yong, NIE Yu-hong. Research on the factors and characterization methods of starch digestibility[J]. Science and Technology of Food Industry, 2015, (22): 376-378. DOI: 10.13386/j.issn1002-0306.2015.22.069
    [10]WU Li- jing, CHE Li- ming, CHEN Xiao-dong. Effect of tea polyphenols on the retrogradation of sweet potato starch[J]. Science and Technology of Food Industry, 2014, (21): 123-127. DOI: 10.13386/j.issn1002-0306.2014.21.018

Catalog

    Article Metrics

    Article views (180) PDF downloads (19) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return