CHEN Xiaole, LI Wenwen, CHEN Qiang, et al. Structure Analysis and Anti-inflammatory Activity Evaluation of Neutral Polysaccharides from Arctium lappa L. DOI: 10.13386/j.issn1002-0306.2022080225
Citation: CHEN Xiaole, LI Wenwen, CHEN Qiang, et al. Structure Analysis and Anti-inflammatory Activity Evaluation of Neutral Polysaccharides from Arctium lappa L. DOI: 10.13386/j.issn1002-0306.2022080225

Structure Analysis and Anti-inflammatory Activity Evaluation of Neutral Polysaccharides from Arctium lappa L.

More Information
  • Received Date: August 22, 2022
  • Available Online: April 20, 2023
  • A neutral polysaccharide was purified by DEAE-52 cellulose column chromatography from the crude polysaccharide of Arctium lappa L. obtained by hot water extraction and ethanol precipitation, and the structure and anti-inflammatory activity of the neutral polysaccharide were characterized. The structure of Arctium lappa L. neutral polysaccharide were investigated through monosaccharide composition, molecular weight, ultraviolet spectra, infrared spectroscopy analysis, X-ray diffraction spectroscopy, particle size analysis and NMR analysis. The effect of different doses of crude polysaccharide and neutral polysaccharide from Arctium lappa L. on macrophage movement was evaluated in zebrafish acute inflammation model induced by copper sulfate. The mRNA expressions of different inflammatory factors such as nuclear transcription factor activator protein-1 (AP-1), cycloxygenase-2 (COX-2), IKBα, interleukin-1β (IL-1β), interleukin-12 (IL-12) and myeloid differentiation factor (MyD88) were determined by real-time PCR analysis. Results showed that the weight-average molecular weight and number-average molecular weight of Arctium lappa L. neutral polysaccharide were 2682 and 2079 Da, which were mainly composed of fructose and glucose with a molar ratio of 11.32:1. The particle size mainly ranged from 80 nm to 110 nm. The neutral polysaccharide of Arctium lappa L. was mainly composed of furanose with β configuration, with obvious sharp and narrow crystal diffraction peaks and high crystallinity. The NMR analysis showed that its structure was α-D-glucopyranosyl-(1→2)-[β-D-fructofuranosyl-(1→2)]10-β-D-fructofuranosyl. Arctium lappa L. neutral polysaccharide could significantly (P<0.05) reduce the migration number of zebrafish macrophages, and the anti-inflammatory effect was the best at the concentration of 100 µg/mL, as well as the number of macrophages decreased by 41.11% compared with the model group. The Arctium lappa L. neutral polysaccharide may be inhibited the overactivation of TLR4/MyD88/NF-κB signaling pathway by silting the signal transduction of inflammatory cytokines. This study could provide a theoretical basis for the anti-inflammatory activity of neutral polysaccharide from Arctium lappa L. and the development of functional foods.
  • [1]
    李玲玉, 邱志常, 朱姗姗, 等. 响应面法优化牛蒡多糖超声辅助提取工艺与抗氧化活性评价[J]. 食品科技,2020,45(11):197−204, 211. [LI L Y, QIU Z C, ZHU S S, et al. Optimization of polysaccharides from Arctium lappa L. by ultrasound-assisted extraction using response surface methodology and its antioxidant activities[J]. Food Science and Technology,2020,45(11):197−204, 211. doi: 10.13684/j.cnki.spkj.2020.11.032

    LI L Y, QIU Z C, ZHU S S, et al. Optimization of polysaccharides from Arctium lappa L. by ultrasound-assisted extraction using response surface methodology and its antioxidant activities[J]. Food Science and Technology, 2020, 45(11): 197-204, 211. doi: 10.13684/j.cnki.spkj.2020.11.032
    [2]
    朱姗姗, 张斌, 朱文卿, 等. 牛蒡多糖特性分析及对脂多糖诱导巨噬细胞炎症的调节作用[J]. 食品工业科技,2022,43(15):272−278. [ZHU S S, ZHANG B, ZHU W Q, et al. Analysis of properties of burdock polysaccharide and its regulatory effect on lipopolysaccharide-induced macrophage inflammation[J]. Science and Technology of Food Industry,2022,43(15):272−278.

    ZHU S S, ZHANG B, ZHU W Q, et al. Analysis of properties of burdock polysaccharide and its regulatory effect on lipopolysaccharide-induced macrophage inflammation[J]. Science and Technology of Food Industry, 2022, 43(15): 272-278.
    [3]
    RODRIGUEZ J M F, DE SOUZA A R C, KRÜGER R L, et al. Kinetics, composition and antioxidant activity of burdock (Arctium lappa) root extracts obtained with supercritical CO2 and co-solvent[J]. The Journal of Supercritical Fluids,2018,135:25−33. doi: 10.1016/j.supflu.2017.12.034
    [4]
    王禹, 马维红. 牛蒡化学成分及其对心血管疾病保护作用的研究进展[J]. 华夏医学,2020,33(3):178−181. [WANG Y, MA W H. Research progress on the chemical constituents of Arctium lappa L. and its protective effects on cardiovascular disease[J]. Acta Medicinae Sinica,2020,33(3):178−181. doi: 10.19296/j.cnki.1008-2409.2020-03-051

    WANG Y, MA W H. Research progress on the chemical constituents of Arctium lappa L. and its protective effects on cardiovascular disease[J]. Acta Medicinae Sinica, 2020, 33(3): 178-181. doi: 10.19296/j.cnki.1008-2409.2020-03-051
    [5]
    LI L Y, QIU Z C, DONG H J, et al. Structural characterization and antioxidant activities of one neutral polysaccharide and three acid polysaccharides from the roots of Arctium lappa L.: A comparison[J]. International Journal of Biological Macromolecules,2021,182:187−196. doi: 10.1016/j.ijbiomac.2021.03.177
    [6]
    WANG K P, TANG Z H, ZHENG Z M, et al. Protective effects of Angelica sinensis polysaccharide against hyperglycemia and liver injury in multiple low-dose streptozotocin-induced type 2 diabetic BALB/c mice[J]. Food & Function, 2016, 7: 4889−4897.
    [7]
    WANG Y, ZHANG N F, KAN J, et al. Structural characterization of water-soluble polysaccharide from Arctium lappa and its effects on colitis mice[J]. Carbohydrate Polymers,2019,213:89−99. doi: 10.1016/j.carbpol.2019.02.090
    [8]
    ZHANG N F, WANG Y, KAN J, et al. In vivo and in vitro anti-inflammatory effects of water-soluble polysaccharide from Arctium lappa[J]. International Journal of Biological Macromolecules,2019,135:717−724. doi: 10.1016/j.ijbiomac.2019.05.171
    [9]
    MAGHSOUMI-NOROUZABAD L, SHISHEHBOR F, ABED R, et al. Effect of Arctium lappa linne (Burdock) root tea consumption on lipid profile and blood pressure in patients with knee psteoarthritis[J]. Journal of Herbal Medicine, 2019, 17-18: 100266.
    [10]
    YU J B, HU M Q, WANG Y Y, et al. Extraction, partial characterization and bioactivity of polysaccharides from Senecio scandens Buch.-Ham[J]. International Journal of Biological Macromolecules,2018,109:535−543. doi: 10.1016/j.ijbiomac.2017.12.119
    [11]
    XIE Z L, WANG Y, HUANG J Q, et al. Anti-inflammatory activity of polysaccharides from Phellinus linteus by regulating the NF-κB translocation in LPS-stimulated RAW264.7 macrophages[J]. International Journal of Biological Macromolecules,2019,129:61−67. doi: 10.1016/j.ijbiomac.2019.02.023
    [12]
    ZHANG X, ZHANG N F, KAN J, et al. Anti-inflammatory activity of alkali-soluble polysaccharides from Arctium lappa L. and its effect on gut microbiota of mice with inflammation[J]. International Journal of Biological Macromolecules,2020,154:773−787. doi: 10.1016/j.ijbiomac.2020.03.111
    [13]
    ZHU S S, QIU Z C, QIAO X G, et al. Creating burdock polysaccharide-oleanolic acid-ursolic acid nanoparticles to deliver enhanced effects: Fabrication, structural characterization and property evaluation[J]. Food Science and Human Wellness,2023,12(2):454−466. doi: 10.1016/j.fshw.2022.07.047
    [14]
    CHEN S D, GUAN X Y, YONG T Q, et al. Structural characterization and hepatoprotective activity of an acidic polysaccharide from Ganoderma lucidum[J]. Food Chemistry: X,2022,13:100204. doi: 10.1016/j.fochx.2022.100204
    [15]
    LIU M, GONG Z, LIU H, et al. Structural characterization and anti-tumor activity in vitro of a water-soluble polysaccharide from dark brick tea[J]. International Journal of Biological Macromolecules,2022,205:615−625. doi: 10.1016/j.ijbiomac.2022.02.089
    [16]
    ZHU Z P, CHEN J, CHEN Y, et al. Extraction, structural characterization and antioxidant activity of turmeric polysaccharides[J]. LWT,2022,154:112805. doi: 10.1016/j.lwt.2021.112805
    [17]
    MA L Y, XU R, LIN H F, et al. Structural characterization and antioxidant activities of polysaccharides from okra (Abelmoschus esculentus (L.) Moench) pericarp[J]. Bioactive Carbohydrates and Dietary Fibre,2021,26:100277. doi: 10.1016/j.bcdf.2021.100277
    [18]
    汤陈鹏, 吕峰, 王蓉琳. 孔石莼多糖锌结构表征与体外降血糖活性[J]. 食品科学,2020,41(7):52−58. [TANG C P, LÜ F, WANG R L. Structural characterization and hypoglycemic activity in vitro of Ulva pertusa polysaccharides-zinc complex[J]. Food Science,2020,41(7):52−58. doi: 10.7506/spkx1002-6630-20190320-263

    TANG C P, LV F, WANG R L. Structural characterization and hypoglycemic activity in vitro of Ulva pertusa polysaccharides-zinc complex[J]. Food Science, 2020, 41(07): 52-58. doi: 10.7506/spkx1002-6630-20190320-263
    [19]
    ROMANO N, ARAUJO-ANDRADE C, LECOT J, et al. Infrared spectroscopy as an alternative methodology to evaluate the effect of structural features on the physical-chemical properties of inulins[J]. Food Research International,2018,109:223−231. doi: 10.1016/j.foodres.2018.04.032
    [20]
    PATEL M K, TANNA B, MISHRA A, et al. Physicochemical characterization, antioxidant and anti-proliferative activities of a polysaccharide extracted from psyllium (P. ovata) leaves[J]. International Journal of Biological Macromolecules,2018,118:976−987. doi: 10.1016/j.ijbiomac.2018.06.139
    [21]
    朱文卿, 朱姗姗, 何秋霞, 等. 牛蒡多糖与绿原酸对斑马鱼氧化损伤的协同抗氧化作用[J]. 中国食品学报,2022,22(4):95−103. [ZHU W Q, ZHU S S, HE Q X, et al. Synergistic antioxidant effect of burdock polysaccharide and chlorogenic acid on zebrafish oxidative damage[J]. Journal of Chinese Institute of Food Science and Technology,2022,22(4):95−103.

    ZHU W Q, ZHU S S, HE Q X, et al. Synergistic antioxidant effect of burdock polysaccharide and chlorogenic acid on zebrafish oxidative damage[J]. Journal of Chinese Institute of Food Science and Technology, 2022, 22(4): 95-103.
    [22]
    郝林华, 陈靠山, 李光友. 牛蒡菊糖及其制备方法的研究[J]. 中国海洋大学学报(自然科学版),2004(3):423−428. [HAO L H, CHEN K S, LI G Y. Study on great burdock inulin and its extraction technique[J]. Periodical of Ocean University of China (Natural Science Edition),2004(3):423−428.

    HAO L H, CHEN K S, LI G Y. Study on great burdock inulin and its extraction technique[J]. Periodical of Ocean University of China(Natural Science Edition), 2004, (3): 423-428.
    [23]
    LIU W, WANG J J, ZHANG Z Z, et al. In vitro and in vivo antioxidant activity of a fructan from the roots of Arctium lappa L.[J]. International Journal of Biological Macromolecules,2014,65:446−453. doi: 10.1016/j.ijbiomac.2014.01.062
    [24]
    ZHANG J J, TAN W Q, ZHAO P Z, et al. Facile synthesis, characterization, antioxidant activity, and antibacterial activity of carboxymethyl inulin salt derivatives[J]. International Journal of Biological Macromolecules,2022,199:138−149. doi: 10.1016/j.ijbiomac.2021.12.140
    [25]
    EL-KHOLY W M, AAMER R A, ALI A N A. Utilization of inulin extracted from chicory (Cichorium intybus L.) roots to improve the properties of low-fat synbiotic yoghurt[J]. Annals of Agricultural Sciences,2020,65(1):59−67. doi: 10.1016/j.aoas.2020.02.002
    [26]
    胡彦波, 翟丽媛, 刘扬, 等. 薇菜多糖的分离纯化及体外抗氧化活性[J]. 食品科学,2022,43(1):59−66. [HU Y B, ZHAI L Y, LIU Y, et al. Isolation, purification and antioxidant activity of polysaccharides from Osmunda japonica[J]. Food Science,2022,43(1):59−66.

    HU Y B, ZHAI L Y, LIU Y, et al. Isolation, purification and antioxidant activity of polysaccharides from Osmunda japonica[J]. Food Science, 2022, 43(1): 59-66.
    [27]
    PETKOVA N T, SHEROVA G, DENEV P P. Characterization of inulin from dahlia tubers isolated by microwave and ultrasound-assisted extractions[J]. International Food Research Journal,2018,25(5):1876−1884.
    [28]
    LOU X Q, LUO D L, YUE C H, et al. Effect of ultrasound treatment on the physicochemical and structural properties of long-chain inulins[J]. LWT,2022,154:112578. doi: 10.1016/j.lwt.2021.112578
    [29]
    REN Y P, LIU S X. Effects of separation and purification on structural characteristics of polysaccharide from quinoa (Chenopodium quinoa willd)[J]. Biochemical and Biophysical Research Communications,2022,552(2):286−291.
    [30]
    SHAO T L, YUAN P C, ZHANG W Z, et al. Preparation and characterization of sulfated inulin-type fructans from Jerusalem artichoke tubers and their antitumor activity[J]. Carbohydrate Research,2021,509:108422. doi: 10.1016/j.carres.2021.108422
    [31]
    SUN Q L, ZHU L X, LI Y X, et al. A novel inulin-type fructan from Asparagus cochinchinensis and its beneficial impact on human intestinal microbiota[J]. Carbohydrate Polymers,2020,247:116761. doi: 10.1016/j.carbpol.2020.116761
    [32]
    MENG Y, XU Y J, CHANG C, et al. Extraction, characterization and anti-inflammatory activities of an inulin-type fructan from Codonopsis pilosula[J]. International Journal of Biological Macromolecules,2020,163:1677−1686. doi: 10.1016/j.ijbiomac.2020.09.117
    [33]
    CALEFFI E R, KRAUSOVÁ G, HYRŠLOVÁ I, et al. Isolation and prebiotic activity of inulin-type fructan extracted from Pfaffia glomerata (Spreng) Pedersen roots[J]. International Journal of Biological Macromolecules,2015,80:392−399. doi: 10.1016/j.ijbiomac.2015.06.053
    [34]
    ZHANG Y, WANG C, JIA Z L, et al. Isoniazid promotes the anti-inflammatory response in zebrafish associated with regulation of the PPARγ/NF-κB/AP-1 pathway[J]. Chemico-Biological Interactions, 2020, 316: 108928.
    [35]
    ZHAN H Y, CHEN H X, TANG Z Z, et al. SIX1 attenuates inflammation and rheumatoid arthritis by silencing MyD88-dependent TLR1/2 signaling[J]. International Immunopharmacology,2022,106:108613. doi: 10.1016/j.intimp.2022.108613
    [36]
    LIU Y, SHI W D, XIE Q Q, et al. Induction of COX-2 by feline calicivirus via activation of the MEK1-ERK1/2 pathway, and attenuation of feline lung inflammation and injury by MEK1 inhibitor AZD6244 (selumetinib)[J]. Biochemical and Biophysical Research Communications,2022,604:8−13. doi: 10.1016/j.bbrc.2022.02.060
    [37]
    WANG L, SHI H, ZHAO C C, et al. Astragaloside IV protects diabetic cardiomyopathy against inflammation and apoptosis via regulating TLR4/MyD88/NF-κB signaling pathway[J]. Journal of Functional Foods, 2022, 88: 104905.
  • Cited by

    Periodical cited type(2)

    1. 常旭龙,周青霞,马文聪,詹圳铭,姚欣鑫,周爱梅. 不同发酵剂发酵酸奶的风味及理化特性的研究. 食品工业科技. 2025(08): 263-271 . 本站查看
    2. 徐畅,刘天一,刘文佳,张俐敏,莫继先. 微生物胞外多糖的来源、生物合成及功能研究进展. 生物技术进展. 2024(03): 368-376 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (325) PDF downloads (28) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return