DU Guofeng, YIN Mengqi, LIANG Feilong, et al. Preparation of Low-molecular-weight Enteromorpha Polysaccharides by Microwave-assisted Degradation with H2O2/VC[J]. Science and Technology of Food Industry, 2023, 44(12): 37−44. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022080224.
Citation: DU Guofeng, YIN Mengqi, LIANG Feilong, et al. Preparation of Low-molecular-weight Enteromorpha Polysaccharides by Microwave-assisted Degradation with H2O2/VC[J]. Science and Technology of Food Industry, 2023, 44(12): 37−44. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022080224.

Preparation of Low-molecular-weight Enteromorpha Polysaccharides by Microwave-assisted Degradation with H2O2/VC

More Information
  • Received Date: August 22, 2022
  • Available Online: April 21, 2023
  • In order to prepare low-molecular-weight polysaccharides with high antioxidant activity, low-molecular-weight Enteromorpha polysaccharides were prepared by the method of microwave-assisted H2O2/VC degradation using Entermorpha prolifera from the coastal area of Yingkou, Liaoning Province as raw materials. In the present thesis, DEAE-52 and Sephadex G-100 were used for chromatography separation and physicochemical properties and antioxidant activity of Enteromorpha polysaccharide were compared before and after degradation. Then structural characterization of the degraded Enteromorpha polysaccharide was obtained by infrared spectroscopy, and monosaccharide composition of LEPⅢa (obtained by separation) was analyzed by thin layer chromatography (TLC) and high performance liquid chromatography (HPLC). Results showed that low-molecular-weight Entermorpha polysaccharide could be prepared in a short time (15 min) by microwave-assisted degradation with H2O2/VC and three kinds of low-molecular-weight Entermorpha polysaccharide LEPⅠ, LEPⅡ and LEPⅢa with Mw being (23.6±0.5), (24.6±0.6) and (22.9±0.5) kDa respectively were obtained by chromatographic separation. Compared with untreated Enteromorpha polysaccharide, low-molecular-weight polysaccharide obtained by microwave-assisted H2O2/VC degradation were significantly reduced (P<0.05). The antioxidant activity was significantly enhanced (P<0.05). Molecular weight of the degradation products was lower than 30 kDa, with viscosity lower than 2 mPa·s. The total antioxidant capacity of LEPⅢa with a concentration of 8 mg/mL increased from (315.2±10.3) U/mL to (661.8±18.3) U/mL, and reducing capacity of ferric ion increased from 51.3%±1.0% to 83.4%±2.2% after degradation. Infrared spectroscopy of LEPⅢa showed that LEPⅢa was a kind of sulphated polysaccharide with sulfate accounting for 14.6%±0.5%. TLC and HPLC analysis showed that LEPⅢa was a low-molecular-weight polysaccharide containing sulfuric acid group, composed of glucose, rhamnose, uronic acid, etc., with molar ratio of D-(+)-mannose, L-(+)-rhamnose, D-glucuronic acid and D-(+)-glucose being 0.97:4.43:3.13:24.8. Thus, the present thesis concluded that microwave-assisted degradation with H2O2/VC used to prepare low-molecular-weight Enteromorpha polysaccharides could significantly improve physicochemical properties and antioxidant capacity of polysaccharide, and the prepared Enteromorpha polysaccharides could be used as a functional component in antioxidant-related functional foods and health care products.
  • [1]
    刘欢, 陈胜军, 杨贤庆. 海藻多糖的提取、分离纯化与应用研究进展[J]. 食品工业科技,2018,39(12):341−346. [LIU H, CHEN S J, YANG X Q. Advances of extraction, purification and application of polysaccharides from seaweeds[J]. Science and Technology of Food Industry,2018,39(12):341−346.

    LIU H, CHEN S J, YANG X Q. Advances of extraction, purification and application of polysaccharides from seaweeds[J]. Science and Technology of Food Industry, 2018, 39(12): 341-346.
    [2]
    SWATHI N, KUMAR A G, PARTHASARATHY V, et al. Isolation of Enteromorpha species and analyzing its crude extract for the determination of in vitro antioxidant and antibacterial activities[J]. Biomass Conversion and Biorefinery,2022,23:1−10.
    [3]
    TANG Z H, GAO H W, WANG S, et al. Hypolipidemic and antioxidant properties of a polysaccharide fraction from Enteromorpha prolifera[J]. International Journal of Biological Macromolecules,2013,58:186−189. doi: 10.1016/j.ijbiomac.2013.03.048
    [4]
    NING L M, YAO Z, ZHU B W. Ulva (Enteromorpha) polysaccharides and oligosaccharides: A potential functional food source from green-tide-forming macroalgae[J]. Marine Drugs,2022,20(3):202. doi: 10.3390/md20030202
    [5]
    KIDGELL J T, MAGNUSSON M, DE NYS R, et al. Ulvan: A systematic review of extraction, composition and function[J]. Algal Research,2019,39:101422. doi: 10.1016/j.algal.2019.101422
    [6]
    JIAO L L, LI X, LI T B, et al. Characterization and anti-tumor activity of alkali-extracted polysaccharide from Enteromorpha intestinalis[J]. International Immunopharmacology,2009,9(3):324−329. doi: 10.1016/j.intimp.2008.12.010
    [7]
    ESSA H L, GUIRGUIS H A, EL-SAYED M M H, et al. Ultrasonically-extracted marine polysaccharides as potential green antioxidant alternatives[J]. Proceedings,2020,67(1):23.
    [8]
    MANLUSOC J K T, HSIEH C L, HSIEH C Y, et al. Pharmacologic application potentials of sulfated polysaccharide from marine algae[J]. Polymers (Basel),2019,11(7):1163. doi: 10.3390/polym11071163
    [9]
    WASSIE T, NIU K M, XIE C Y, et al. Extraction techniques, biological activities and health benefits of marine algae Enteromorpha prolifera polysaccharide[J]. Frontiers in Nutrition,2021,8:747928. doi: 10.3389/fnut.2021.747928
    [10]
    李霞, 张国柱, 刘志飞, 等. 肠浒苔多糖降血糖活性研究[J]. 食品工业科技,2021,42(15):321−326. [LI X, ZHANG G Z, LIU Z F, et al. Hypoglycemic activity of Enteromorpha intestinalis polysaccharide[J]. Science and Technology of Food Industry,2021,42(15):321−326.

    LI X, ZHANG G Z, LIU Z F, et al. Hypoglycemic activity of Enteromorpha intestinalis polysaccharide[J]. Science and Technology of Food Industry, 2021, 42(15): 321-326.
    [11]
    HAO H L, HAN Y, YANG L H, et al. Structural characterization and immunostimulatory activity of a novel polysaccharide from green alga Caulerpa racemosa var peltata[J]. International Journal of Biological Macromolecules,2019,134:891−900. doi: 10.1016/j.ijbiomac.2019.05.084
    [12]
    QIU S M, AWEYA J J, LIU X J, et al. Bioactive polysaccharides from red seaweed as potent food supplements: A systematic review of their extraction, purification, and biological activities[J]. Carbohydrate Polymers,2022,275:118696. doi: 10.1016/j.carbpol.2021.118696
    [13]
    胡馨月, 张维, 赵行, 等. 浒苔低聚糖的制备及抗氧化活性研究[J]. 食品研究与开发,2021,42(12):123−129. [HU X Y, ZHANG W, ZHAO H, et al. Preparation and antioxidant activities of oligosaccharides from Enteromorpha prolifera[J]. Food Research and Development,2021,42(12):123−129.

    HU X Y, ZHANG W, ZHAO H, et al. Preparation and antioxidant activities of oligosaccharides from Enteromorpha prolifera[J]. Food Research and Development, 2021, 42(12): 123-129.
    [14]
    QIN C Q, DU Y M, XIAO L, et al. Effect of hydrogen peroxide treatment on the molecular weight and structure of chitosan[J]. Polymer Degradation and Stability,2002,76(2):211−218. doi: 10.1016/S0141-3910(02)00016-2
    [15]
    CIKOŠ A M, JOKIĆ S, ŠUBARIĆ D, et al. Overview on the application of modern methods for the extraction of bioactive compounds from marine macroalgae[J]. Marine Drugs,2018,16(10):348. doi: 10.3390/md16100348
    [16]
    LE B, GOLOKHVAST K S, YANG S H, et al. Optimization of microwave-assisted extraction of polysaccharides from Ulva pertusa and evaluation of their antioxidant activity[J]. Antioxidants,2019,8(5):129.
    [17]
    杨君, 黄芳芳, 秦敏朴, 等. 裂片石莼多糖微波辅助提取工艺优化及其卷烟保润应用[J]. 河南农业大学学报,2015,49(5):688−695. [YANG J, HUANG F F, QIN M P, et al. Microwave-assisted extraction of polysaccharides from Ulva fasciata and its moisture retention[J]. Journal of Henan Agricultural University,2015,49(5):688−695.

    YANG J, HUANG F F, QIN M P, et al. Microwave-assisted extraction of polysaccharides from Ulva fasciata and its moisture retention[J]. Journal of Henan Agricultural University, 2015, 49(5): 688-695.
    [18]
    CUI J F, LI Y P, YU P, et al. A novel low molecular weight Enteromorpha polysaccharide-iron (III) complex and its effect on rats with iron deficiency anemia (IDA)[J]. International Journal of Biological Macromolecules,2018,108:412−418. doi: 10.1016/j.ijbiomac.2017.12.033
    [19]
    ZHOU M Y, NIE S P, YING J Y, et al. Ascorbic acid induced degradation of polysaccharide from natural products: A review[J]. International Journal of Biological Macromolecules,2020,151:483−491. doi: 10.1016/j.ijbiomac.2020.02.193
    [20]
    谭诗敏, 罗志刚, 程建华. H2O2-VC降解对香水莲花多糖结构与活性的影响[J]. 食品科学,2021,42(24):48−53. [TAN S M, LUO Z G, CHENG J H. Effect of H2O2-VC Degradation system on the structure and activity of polysaccharides from Nymphaea hybrid[J]. Food Science,2021,42(24):48−53. doi: 10.7506/spkx1002-6630-20201202-036

    TAN S M, LUO Z G, CHENG J H. Effect of H2O2-Vc Degradation system on the structure and activity of polysaccharides from Nymphaea hybrid[J]. Food Science, 2021, 42(24): 48-53. doi: 10.7506/spkx1002-6630-20201202-036
    [21]
    WU T C, HONG Y H, TSAI Y H, et al. Degradation of Sargassum crassifolium fucoidan by ascorbic acid and hydrogen peroxide, and compositional, structural, and in vitro anti-lung cancer analyses of the degradation products[J]. Marine Drugs,2020,18(6):334. doi: 10.3390/md18060334
    [22]
    刘欢. 舌状蜈蚣藻多糖的提取、降解及抗氧化活性研究[D]. 上海: 上海海洋大学, 2019.

    LIU H. Study on extraction, degradation and antioxidant activity of polysaccharide from Grateloupia livida[D]. Shanghai: Shanghai Ocean University, 2019.
    [23]
    杜国丰, 陈红漫, 阚国仕, 等. 苦瓜多糖铁的制备及其对小鼠降血糖活性研究[J]. 食品工业科技,2017,38(9):353−356. [DU G F, CHEN H M, KAN G S, et al. Study on preparation of Momordica charantia polysaccharide-iron complex and its hypoglycemic activities in diabetic mice[J]. Science and Technology of Food Industry,2017,38(9):353−356.

    DU G F, CHEN H M, KAN G S, et al. Study on preparation of Momordica charantia polysaccharide-iron complex and its hypoglycemic activities in diabetic mice[J]. Science and Technology of Food Industry, 2017, 38(9): 353-356.
    [24]
    张龙翔, 张庭芳, 孔令媛. 生物化学实验方法与技术[M]. 北京: 高等教育出版社, 1997: 136−137.

    ZHANG L X, ZHANG T F, KONG L Y. Biochemical experimental methods and techniques[M]. Beijing: Higher Education Press, 1997: 136−137.
    [25]
    XU J, XU L L, ZHOU Q W, et al. Isolation, purification, and antioxidant activities of degraded polysaccharides from Enteromorpha prolifera[J]. International Journal of Biological Macromolecules,2015,81:1026−1030. doi: 10.1016/j.ijbiomac.2015.09.055
    [26]
    ZHAO S F, HE Y, WANG C G, et al. Isolation, characterization and bioactive properties of alkali-extracted polysaccharides from Enteromorpha prolifera[J]. Marine Drugs,2020,18(11):552. doi: 10.3390/md18110552
    [27]
    向维, 丁馨, 张薛磊, 等. 彩虹明樱蛤酸性多糖的提取与纯化[J]. 浙江大学学报(医学版),2012,41(5):569−575. [XIANG W, DING X, ZHANG X L, et al. Extraction and purification of acidic polysaccharide from Moerella iridescens[J]. Journal of Zhejiang University (Medical Sciences),2012,41(5):569−575.

    XIANG W, DING X, ZHANG X L, et al. Extraction and purification of acidic polysaccharide from Moerella iridescens[J]. Journal of Zhejiang University(Medical Sciences), 2012, 41(5): 569 -575.
    [28]
    WANG Y F, MAO F F, WEI X L. Characterization and antioxidant activities of polysaccharides from leaves, flowers and seeds of green tea[J]. Carbohydrate Polymers,2012,88(1):146−153. doi: 10.1016/j.carbpol.2011.11.083
    [29]
    DODGSON K S, PRICE R G. A note on the determination of the ester sulphate content of sulphated polysaccharides[J]. Biochemical Journal,1962,84:106−110. doi: 10.1042/bj0840106
    [30]
    JOHANSSON A, JASSON P E, WIDMALM G. Structure of the polysaccharide Zanflo elaborated by Erwinia tahitica ATCC 21711[J]. Carbohydrate Research,1994,264(1):129−134. doi: 10.1016/0008-6215(94)00184-7
    [31]
    SUN H H, MAO W J, CHEN Y, et al. Isolation, chemical characteristics and antioxidant properties of the polysaccharides from marine fungus Penicillium sp F23-2[J]. Carbohydrate Polymers,2009,78(1):117−124. doi: 10.1016/j.carbpol.2009.04.017
    [32]
    CHI Y Z, LI Y P, ZHANG G L, et al. Effect of extraction techniques on properties of polysaccharides from Enteromorpha prolifera and their applicability in iron chelation[J]. Carbohydrate Polymers,2018,181:616−623. doi: 10.1016/j.carbpol.2017.11.104
    [33]
    SEEDEVI P, MOOVENDHAN M, VIRAMANI S, et al. Bioactive potential and structural chracterization of sulfated polysaccharide from seaweed (Gracilaria corticata)[J]. Carbohydrate Polymers,2017,155:516−524. doi: 10.1016/j.carbpol.2016.09.011
    [34]
    QI H Y, ZHANG Z P, LIU J Q, et al. Comparisons of isolation methods, structural features, and bioactivities of the polysaccharides from three common panax species: A review of recent progress[J]. Molecules,2021,26(16):4997. doi: 10.3390/molecules26164997
    [35]
    KHAN B M, ZHENG L X, KHAN W, et al. Antioxidant potential of physicochemically characterized Gracilaria blodgettii sulfated polysaccharides[J]. Polymers,2021,13(3):442.
    [36]
    REZAZADEH N H, BUAZAR F, MATROODI S. Synergistic effects of combinatorial chitosan and polyphenol biomolecules on enhanced antibacterial activity of biofunctionalaized silver nanoparticles[J]. Scientific Reports,2020,10(1):19615. doi: 10.1038/s41598-020-76726-7
    [37]
    崔洁芬, 杜春影, 迟永洲, 等. 浒苔多糖铁的制备工艺优化及其结构表征[J]. 食品工业科技,2018,39(5):161−165,170. [CUI J F, DU C Y, CHI Y Z, et al. Optimization of preparation process of Enteromorpha prolifera polysaccharide-iron and its structure characterization[J]. Science and Technology of Food Industry,2018,39(5):161−165,170.

    CUI J F, DU C Y, CHI Y Z, et al. Optimization of preparation process of Enteromorpha prolifera polysaccharide-iron and its structure characterization[J]. Science and Technology of Food Industry, 2018, 39(5): 161-165, 170.
    [38]
    吕海涛, 肖宝石, 高玉杰. 浒苔多糖的酶法提取、纯化及初步结构鉴定[J]. 食品研究与开发,2013,34(8):33−36. [LÜ H T, XIAO B S, GAO Y J. Study on the extraction, purification and structural characterization of polysaccharide from Enteromorpha[J]. Food Research and Development,2013,34(8):33−36.

    LV H T, XIAO B S, GAO Y J. Study on the extraction, purification and structural characterization of polysaccharide from Enteromorpha[J]. Food Research and Development, 2013, 34(8): 33-36.
    [39]
    CHEN S, SATHUVAN M, ZHANG X, et al. Characterization of polysaccharides from different species of brown seaweed using saccharide mapping and chromatographic analysis[J]. BMC Chemistry,2021,15(1):1. doi: 10.1186/s13065-020-00727-w
    [40]
    GARFIAS SILVA V, CORDOVA AGUILAR M S, ASCANIO G, et al. Acid hydrolysis of pectin and mucilage from Cactus (Opuntia ficus) for identification and quantification of monosaccharides[J]. Molecules,2022,27(18):5830. doi: 10.3390/molecules27185830
    [41]
    KIM S Y, KIM E A, KIM Y S, et al. Protective effects of polysaccharides from Psidium guajava leaves against oxidative stresses[J]. International Journal of Biological Macromolecules,2016,91:804−811. doi: 10.1016/j.ijbiomac.2016.05.111
    [42]
    LI W, JIANG N, LI B, et al. Antioxidant activity of purified ulvan in hyperlipidemic mice[J]. International Journal of Biological Macromolecules,2018,113:971−975. doi: 10.1016/j.ijbiomac.2018.02.104
  • Cited by

    Periodical cited type(5)

    1. 吴雯雯,蒲龙林,朱德全,邹大江,姚秋萍. H_2O_2制备皂角米多糖及其结构表征和抗氧化活性研究. 粮食与油脂. 2025(02): 139-145+151 .
    2. 胡云飞,周德,曾青兰,和劲松,赵明,唐卿雁. 天麻多糖酶解工艺优化、结构表征及其抗氧化活性分析. 食品工业科技. 2025(04): 205-214 . 本站查看
    3. 杜国丰,陈红漫,姜宁,尹梦琪,刘凤翊. 海藻硫酸多糖对铜绿假单胞菌感染的凡纳滨对虾抗氧化防御系统的影响. 黑龙江畜牧兽医. 2024(14): 95-101+126-127 .
    4. 范佳倩,宫春宇,王岩,吴红艳,王拓一. 液态发酵制备玉米须粗多糖的理化特性及其抗氧化活性分析. 食品与发酵工业. 2024(21): 128-135 .
    5. 朱阳东,丁金铭,于斋卓,尹秋燕,闫滨. 低相对分子质量海藻多糖的分离纯化、结构鉴定及其生物活性研究. 药物评价研究. 2024(12): 2806-2815 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (164) PDF downloads (17) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return