YUAN Songzhu, WANG Bin, ZHOU Xuan, et al. Research Progress on the Biotransformation of Rare Ginsenosides[J]. Science and Technology of Food Industry, 2023, 44(12): 480−489. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022080204.
Citation: YUAN Songzhu, WANG Bin, ZHOU Xuan, et al. Research Progress on the Biotransformation of Rare Ginsenosides[J]. Science and Technology of Food Industry, 2023, 44(12): 480−489. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022080204.

Research Progress on the Biotransformation of Rare Ginsenosides

More Information
  • Received Date: August 21, 2022
  • Available Online: April 13, 2023
  • As the main active component in ginseng, ginsenoside is widely used in food and medicine. Ginsenosides have different properties and functions due to their different chemical structures. The content of rare ginsenosides with high activity is very low in nature, which limits the utilization. It is an important way to obtain rare ginsenosides by transforming high content ginsenosides into rare ginsenosides through different methods. Based on the structure and pharmacology of ginsenosides, this paper reviews the effects of biotransformation on the glycosyl hydrolysis and parent nucleus structure of ginsenosides, and it analyzes the application status and future development trend of rare ginsenosides in food and medicine, providing a theoretical basis for improving the application of ginsenosides resources.
  • [1]
    JIN HEE K, MISEON K, SUN-MI Y, et al. Ginsenoside Rh2 induces apoptosis and inhibits epithelial-mesenchymal transition in HEC1A and Ishikawa endometrial cancer cells[J]. Biomedicine & Pharmacotherapy,2017,96:871−876.
    [2]
    JIANG Z, YANG Y , YANG Y , et al. Ginsenoside Rg3 attenuates cisplatin resistance in lung cancer by downregulating PD-L1 and resuming immune[J]. Biomed Pharm, 2017, 96. 378–383.
    [3]
    YAO W, GUAN Y. Ginsenosides in cancer: A focus on the regulation of cell metabolisms[J]. Biomed Pharmacother, 2022, Oct 10;156: 113756.
    [4]
    YU H, WANG Y, LIU C, et al. Conversion of ginsenoside Rb1 into six types of highly bioactive ginsenoside Rg3 and its derivatives by FeCl3 catalysis[J]. Chem Pharm Bull (Tokyo),2018,66(9):901−906. doi: 10.1248/cpb.c18-00426
    [5]
    ZHANG J, AI Z, HU Y, et al. Remarkable impact of commercial sterilizing on ginsenosides transformation in fresh ginseng pulp based on widely targeted metabolomics analysis[J]. Food Chem X, 2022(Aug 9),15: 100415.
    [6]
    HASEGAWA H, SUNG J H, MATSUMIYAS S, et al. Main ginseng saponin metabolites formed by intestinal bacteria[J]. Planta Medica,1998,62(5):453−457.
    [7]
    HASEGAWA H, SUNG J H, BENNO Y. Role of human intestinal prevotella oris in hydrolyzing ginseng saponins[J]. Planta Medica,1997,63(5):436−440. doi: 10.1055/s-2006-957729
    [8]
    上官棣华, 刘国诠. 人参成分的代谢研究进展[J]. 中草药,1999(11):865−870. [SHANGGUAN L H, LIU G Q. Research progress in the metabolism of ginseng components[J]. Chinese Traditional and Herbal Drugs,1999(11):865−870. doi: 10.3321/j.issn:0253-2670.1999.11.028

    SHANGGUAN L H, LIU G Q. Research progress in the metabolism of ginseng components [J]. Chinese Traditional and Herbal Drugs, 1999(11): 865-870. doi: 10.3321/j.issn:0253-2670.1999.11.028
    [9]
    LEE BYUNG-HOON, LEE, SANG-JUN HUI, et al. In vitro antigenotoxic activity of novel ginseng saponin metabolites formed by intestinal bacteria[J]. Planta Medica,1998,64(6):500−503. doi: 10.1055/s-2006-957501
    [10]
    YOSHIMASA Y, MASAYA H, HIDESHI K. Effects of ginsenosides on impaired performance caused by scopolamine in rats[J]. European Journal of Pharmacology,1996,312(2):149−151. doi: 10.1016/0014-2999(96)00597-3
    [11]
    KIM W Y, KIM J M, HAN S B, et al. Steaming of ginseng at hightemperature enhances biological activity[J]. J Nat Prod,2000,63(12):1702−1704. doi: 10.1021/np990152b
    [12]
    GUO H Y, XING Y, SUN Y Q, et al. Ginsengenin derivatives synthesized from 20(R)-panaxotriol: Synthesis, characterization, and antitumor activity targeting HIF-1 pathway[J]. Ginseng Res,2022,Nov;46(6):738−749.
    [13]
    KIM GO, KIM N, SONG GY, et al. Inhibitory activities of rare ginsenoside Rg4 on cecal ligation and puncture-induced sepsis[J]. Int J Mol Sci, 2022 16; 23(18): 10836. doi: 10.3390/ijms231810836.
    [14]
    CHEN Z, WANG G, XIE X, et al. Ginsenoside Rg5 allosterically interacts with P2RY12 and ameliorates deep venous thrombosis by counteracting neutrophil NETosis and inflammatory response[J]. Front Immunol, 2022 Aug 12;13: 918476.
    [15]
    刘彦楠. 人参皂苷Rg5的制备及其抗胃癌和乳腺癌活性研究[D]. 西安: 西北大学, 2019

    LIU Y N. Preparation of ginsenoside Rg5 and its anti gastric and breast cancer activity[D].Xi’an: Northwest University, 2019.
    [16]
    DENG J J, LIU Y, DUAN Z G, et al. Protopanaxadiol and protopanaxatriol-type saponins ameliorate glucose and lipid metabolism in type 2 diabetes mellitus in high-fat diet /streptozocin-induced mice[J]. Front Pharmacol,2017,8:506. doi: 10.3389/fphar.2017.00506
    [17]
    MAENG Y S, MAHARJAN S, KIM J H, et al. Rk1, a ginsenoside, is a new blocker of vascular leakage acting through actin structure remodeling[J], PLoS One, 2013, 8(7) : e68659.
    [18]
    RYOO N, RAHMAN M A, HWANG H, et al. Ginsenoside Rk1 is a novel inhibitor of NMDA receptors in cultured rat hippocampal neurons[J]. J Ginseng Res,2020,44(3):490−495. doi: 10.1016/j.jgr.2019.04.002
    [19]
    OH J M, LEE J, IM W T, et al. Ginsenoside Rk1 induces apoptosis in neuroblastoma cells through loss of mitochondrial membrane potential and activation of caspases[J]. Int J Mol Sci,2019,20(5):1213. doi: 10.3390/ijms20051213
    [20]
    SIDDIQI M H, SIDDIQI M Z, AHN S, et al. Stimulative effect of ginsenosides Rg5: Rk1 on murine osteoblastic MC3T3-E1 cells[J]. Phytother Res,2014,28(10):1447−1455. doi: 10.1002/ptr.5146
    [21]
    KRISHIKA S, RAHUL VIKRAM S. Production aspects of testosterone by microbial biotransformation and future prospects[J]. Steroids, 2020, 159(C).
    [22]
    南博, 游颖, 王雨珊, 等. 微生物法转化人参皂苷的研究进展[J]. 食品研究与开发,2017,38(14):196−199. [NAN B, YOU Y, WANG Y S, et al. Research progress on microbial transformation of ginsenosides[J]. Food Research and Development,2017,38(14):196−199. doi: 10.3969/j.issn.1005-6521.2017.14.042

    NAN B, YOU Y, WANG Y S, et al. Research Progress on Microbial Transformation of Ginsenosides[J]. Food Research And Development, 2017, 38(14): 196-199 doi: 10.3969/j.issn.1005-6521.2017.14.042
    [23]
    周中流, 李春燕, 陈林浩, 等. 天然产物皂苷类化合物生物转化的研究进展[J]. 中国实验方剂学杂志,2019,25(16):173−192. [ZHOU Z L, LI C Y, CHEN L H, et al. Biotransformation of natural saponins[J]. Chinese Journal of Experimental Traditional Medical Formulae,2019,25(16):173−192. doi: 10.13422/j.cnki.syfjx.20190815

    ZHOU Z L, LI C Y, CHEN L H, et al. Biotransformation of Natural Saponins[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2019, 25(16): 173-192. doi: 10.13422/j.cnki.syfjx.20190815
    [24]
    BAE E A , HAN M J,CHOO M K, et al. Metabolism of 20(S)- and 20(R)-Ginsenoside Rg3 by human intestinal bacteria and its relation to in vitro biological activities[J]. Biol Pharm Bull,2002,25(1):58−63. doi: 10.1248/bpb.25.58
    [25]
    韩铭鑫, 李方彤, 张琰, 等. 稀有原人参二醇型皂苷的人肠道菌群生物转化[J]. 高等学校化学学报,2019,40(7):1390−1396. [HAN M X, LI F T, ZHANG Y, et al. Biotransformation of rare protopanaxadiol saponinby human intestinal microflora[J]. Chemical Journal of Chinese Universities,2019,40(7):1390−1396. doi: 10.7503/cjcu20180812

    HAN M X, LI F T, ZHANG Y, et al. Biotransformation of Rare Protopanaxadiol Saponinby Human Intestinal Microflora[J]. Chemical Journal of Chinese Universities, 2019, 40(07): 1390-1396. doi: 10.7503/cjcu20180812
    [26]
    张琰, 李方彤, 韩铭鑫, 等. 通过RRLC-Q-TOF MS和UPLC-QQQ MS分析原人参三醇型皂苷在人肠道菌群中的代谢产物[J]. 质谱学报,2020,41(1):66−75. [ZHANG Y, LI F T, HAN M X, et al. Analysis of metabolites of protopanaxatriol saponins in human intestinal flora by RRLC-Q-TOF MS and UPLC-QQQ MS[J]. Journal of Chinese Mass Spectrometry Society,2020,41(1):66−75. doi: 10.7538/zpxb.2019.0046

    ZHANG Y, LI F T, HAN M X, et al. Analysis of Metabolites of Protopanaxatriol Saponins in Human Intestinal Flora by RRLC-Q-TOF MS and UPLC-QQQ MS[J]. Journal of Chinese Mass Spectrometry Society, 2020, 41(01): 66-75. doi: 10.7538/zpxb.2019.0046
    [27]
    唐岚, 傅璐璐, 沈丽婷, 等. 大鼠肠道菌群对三七总皂苷体外降解的研究[J]. 中草药,2018,49(2):396−399. [TANG L, FU L L, SHEN L T, et al. Degradation of total saponins of Panax notoginseng by intestinal flora of ratsi n vitro[J]. Chinese Traditional and Herbal Drugs,2018,49(2):396−399. doi: 10.7501/j.issn.0253-2670.2018.02.020

    TANG L, FU L L, SHEN L T, et al. Degradation of total saponins of Panax notoginseng by intestinal flora of rats in vitro[J]. Chinese Traditional and Herbal Drugs, 2018, 49(02): 396-399. doi: 10.7501/j.issn.0253-2670.2018.02.020
    [28]
    GUO Y P, CHEN M Y, SHAO L, et al. Quantification of panax notoginseng saponins metabolites in rat plasma with in vivo gut microbiota-mediated biotransformation by HPLC-MS/MS[J]. Chinese Journal of Natural Medicines,2019,17(3):231−240. doi: 10.1016/S1875-5364(19)30026-3
    [29]
    陈思键, 吴冬雪, 刘淑莹, 等. 人参皂苷化学转化与生物转化研究进展[J]. 中成药,2022,44(5):1539−1545. [CHEN S J, WU D X, LIU S Y, et al. Advances in chemical and biological transformation of ginsenoside[J]. Chinese Traditional Patent Medicine,2022,44(5):1539−1545. doi: 10.3969/j.issn.1001-1528.2022.05.031

    CHEN S J, WU D X, LIU S Y, et al. Advances in chemical and biological transformation of ginsenoside[J]. Chinese Traditional Patent Medicine, 2022, 44(5): 1539-1545. doi: 10.3969/j.issn.1001-1528.2022.05.031
    [30]
    王珊珊, 胡萍, 余少文. 天然产物微生物转化的研究进展[J]. 中国新药杂志,2016,25(1):71−75. [WANG S S, HU P, YU S W. Progress in research of biotransformation of natural products[J]. Chinese Journal of New Drugs,2016,25(1):71−75.

    WANG S S, HU P, YU S W. Progress in research of biotransformation of natural products [J]. Chinese Journal of New Drugs, 2016, 25(1): 71-75.
    [31]
    高娟, 周安东, 原野, 等. 黑曲霉降解人参皂苷Rb1制备稀有皂苷Compound K[J]. 生物技术进展,2016,6(2):98−104. [GAO J, ZHOU A D, YUAN Y, et al. Enzymatic degradation of ginsenoside Rb1 for preparation of compound K by Aspergillus niger sp. J7[J]. Current Biotechnology,2016,6(2):98−104. doi: 10.3969/j.issn.2095-2341.2016.02.04

    GAO J, ZHOU A D, YUAN Y, et al. Enzymatic Degradation of Ginsenoside Rb1 for Preparation of Compound K by Aspergillus niger sp. J7[J]. Current Biotechnology, 2016, 6(02): 98-104. doi: 10.3969/j.issn.2095-2341.2016.02.04
    [32]
    LIU C Y, ZUO K Z, YU H S, et al. Preparation of minor ginsenosides C-Mx and C-K from notoginseng leaf ginsenosides by a special ginsenosidase type-I[J]. Process Biochemistry,2015,50(12):2158−2167. doi: 10.1016/j.procbio.2015.10.011
    [33]
    SONG X L, WU H, PIAO X C, et al. Microbial transformation of ginsenosides extracted from Panax ginseng adventitious roots in an airlift bioreactor[J]. Electronic Journal of Biotechnology,2017,26:20−26. doi: 10.1016/j.ejbt.2016.12.005
    [34]
    YAN Q, ZHOU W, SHI X L, et al. Biotransformation pathways of ginsenoside Rb1 to compound K by β-glucosidases in fungus Paecilomyces bainier sp. 229[J]. Process Biochemistry, 2010, 45(9): 1550-1556.
    [35]
    YAN Q, ZHOU W, SHI X L, et al. Biotransformation pathways of ginsenoside Rb1 to compound K by β-glucosidases in fungus Paecilomyces bainier sp. 229[J]. Process Biochemistry,2010,45(9):1550−1556. doi: 10.1016/j.procbio.2010.06.007
    [36]
    陈旸, 张美萍, 王义, 等. 枯草芽孢杆菌转化人参总苷为Rg3的研究[J]. 时珍国医国药,2014,25(11):2676−2678. [CHEN Y, ZHANG M P, WANG Y, et al. Microbial transformed ginsenoside Rg3 from total saponins of Panax ginseng by Bacillus subtilis[J]. Lishizhen Medicine and Materia Medica Research,2014,25(11):2676−2678.

    CHEN Y, ZHANG M P, WANG Y, et al. Microbial transformed ginsenoside Rg3 from total saponins of Panax ginseng by Bacillus subtilis [J]. Lishizhen Medicine and Materia Medica Research, 2014, 25(11): 2676-2678.
    [37]
    ZHANG R, HUANG X M, YAN H J, et al. Highly selective production of compound k from ginsenoside Rd by hydrolyzing glucose at C-3 glycoside using β-glucosidase of bfidobacterium breve ATCC 15700[J]. Journal of Microbiology and Biotechnology,2019,29(3):410−418. doi: 10.4014/jmb.1808.08059
    [38]
    ALMANDO G, NI M, FATIMAHAB, al. Enzymatic biotransformation of ginsenoside Rb1 by recombinant β-glucosidase of bacterial isolates from Indonesia[J]. Biocatalysis and Agricultural Biotechnology,2020,23(C):101449−101449.
    [39]
    LI L, LEE SOO JIN, YUAN Q P, et al. Production of bioactive ginsenoside Rg3(S) and compound K using recombinant Lactococcus lactis[J]. Journal of Ginseng Research,2017,42(4):412−418.
    [40]
    PEI J J, XIE J C, YIN R, et al. Enzymatic transformation of ginsenoside Rb1 to ginsenoside 20(S)-Rg3 by GH3 β-glucosidase from Thermotoga thermarum DSM 5069 T[J]. Journal of Molecular Catalysis B:Enzymatic,2015,113:104−109. doi: 10.1016/j.molcatb.2014.12.012
    [41]
    ZHANG S H, XIE J C, ZHAO L G. Cloning, overexpression and characterization of a thermostable β-xylosidase fromThermotoga petrophila and cooperated transformation of ginsenoside extract to ginsenoside 20(S)-Rg3 with a β-glucosidase[J]. Bioorganic Chemistry,2019,85:159−167. doi: 10.1016/j.bioorg.2018.12.026
    [42]
    李琦, 童欣怡, 蒋玉洁, 等. 全细胞催化剂pelB-Xln-DT构建及其在水解三七皂苷R1中的应用[J]. 林业工程学报,2020,5(4):114−120. [LI Q, TONG X Y, JIANG Y J, et al. Construction of whole cell catalyst pelB-Xln-DT and its application in biotransformation of Panax notoginsenoside R1[J]. Journal of Forestry Engineering,2020,5(4):114−120.

    LI Q, TONG X Y, JIANG Y J, et al. Construction of whole cell catalyst pelB-Xln-DT and its application in biotransformation of Panax notoginsenoside R1[J]. Journal of Forestry Engineering, 2020, 5(04): 114-120.
    [43]
    MIN-JI KIM, JITENDRA UPADH A Y, MIN-SUNYOON, et al. Highly regioselective biotransformation of ginsenoside Rb2 into compound Y and compound K by β-glycosidase purified from armillaria mellea mycelia[J]. Journal of Ginseng Research,2017,42(4):504−511.
    [44]
    钟雅婷. 人参皂苷转化菌株 GsBt3 的筛选及其转化西洋参总皂苷的研究[D]. 上海: 上海师范大学, 2012

    ZHONG Y T. Screening of ginseng saponin transforming strain GsBt3 and its transformation into total saponins of Panax quinquefolium[D]. Shanghai: Shanghai Normal University, 2012.
    [45]
    丛悦怡, 孙佳, 于恩, 等. 红曲霉发酵转化人参皂苷Rg3的研究[J]. 中草药,2018,49(6):1298−1303. [CONG Y Y, SUN J, YU E, et al. Study on transformation of ginsenoside Rg3 fermented by Monascus purpureus[J]. Chinese Traditional and Herbal Drugs,2018,49(6):1298−1303. doi: 10.7501/j.issn.0253-2670.2018.06.010

    CONG Y Y, SUN J, YU en, et al. Study on transformation of ginsenoside Rg3 fermented by Monascus purpureus[J]. Chinese Traditional and Herbal Drugs, 2018, 49(06): 1298-1303. doi: 10.7501/j.issn.0253-2670.2018.06.010
    [46]
    蒋磊, 赵寿经, 李然, 等. 酶法转化人参皂苷Re为Rg1的研究[J]. 特产研究,2006(2):28−31. [JIANG L, ZAO S J, LI R, et al. A research of converting ginsenoside Re to Rg1 in enzyme reaction[J]. Special Wild Economic Animal and Plant,2006(2):28−31.

    JIANG L, ZAO S J, LI R, et al. A research of converting ginsenoside Re to Rg1 in enzyme reaction[J] Special Wild Economic Animal and Plant, 2006(2):28-31
    [47]
    ZHUANG Y, YANG G Y, CHEN X H, et al. Biosynthesis of plant-derived ginsenoside Rh2 in yeast via repurposing a key promiscuous microbial enzyme[J]. Metabolic Engineering,2017,42:25−32. doi: 10.1016/j.ymben.2017.04.009
    [48]
    BYEONG-MIN JEON, JONG-IN BAEK, MIN-SUNG KIM, et al. Characterization of a novel ginsenoside MT1 produced by an enzymatic transrhamnosylation of protopanaxatriol-type ginsenosides Re[J]. Biomolecules,2020,10(4):525−525. doi: 10.3390/biom10040525
    [49]
    MUHAMMAD ZUBAIR SIDDIQI, HIPOLITO AMARAL XIMENES, BONG-KYU SONG, et al. Enhanced production of ginsenoside Rh2(S) from PPD-type major ginsenosides using BglSk cloned from Saccharibacillus kuerlensis together with two glycosidase in series[J]. Saudi Journal of Biological Sciences,2021,04:079.
    [50]
    JITENDRA UPADHYAYA, MIN-JI KIM, YOUNG-HOI KIM, et al. Enzymatic formation of compound-K from ginsenoside Rb1 by enzyme preparation from cultured mycelia of Armillaria mellea[J]. Journal of Ginseng Research,2016,40(2):105−112. doi: 10.1016/j.jgr.2015.05.007
    [51]
    HYOJIN L, SEUNG I A, BYUNG WOOK YANG, et al. Biotransformation of ginsenosides by eoyukjang-derived lactic acid bacteria in mountain-cultivated ginseng[J]. Microbiology and Biotechnology Letters,2019,47(2):201−210. doi: 10.4014/mbl.1810.10003
    [52]
    YE L, ZHOU C Q, ZHOU W, et al. Biotransformation of ginsenoside Rb1 to ginsenoside Rd by highly substrate-tolerant Paecilomyces bainier 229-7[J]. Bioresource Technology,2010,101(20):7872−7876. doi: 10.1016/j.biortech.2010.04.102
    [53]
    杨元超, 王英平, 闫梅霞, 等. 人参皂苷compound K转化菌株的筛选[J]. 中国中药杂志,2011,36(12):1596−1598. [YANG Y C, WANGY P, YAN M X, et al. Screening of plant pathogenic fungi by ginsenoside compound K production[J]. China Journal of Chinese Materia Medica,2011,36(12):1596−1598.

    YANG Y C, WANGY P, YAN M X, et al. Screening of plant pathogenic fungi by ginsenoside compound K production[J]. China Journal of Chinese Materia Medica, 2011, 36(12): 1596-1598.
    [54]
    HU Y B, WANG N, YAN X C, et al. Ginsenoside Re impacts on biotransformation products of ginsenoside Rb1 by Cellulosimicrobium cellulans sp. 21 and its mechanisms[J]. Process Biochemistry, 2019, 77: 57-62.
    [55]
    金艳, 金香梅, 尹成日. 鞘氨醇单胞菌2-F2将人参主皂苷Re转化为人参稀有皂苷Rh1[J]. 延边大学农学学报,2011,33(2):103−107. [JIN Y, JIN X M, YIN C R. Biotransformation of major ginsenoside Re to minor ginsenoside Rh1 by Sphingomonas sp. 2-F2[J]. Agricultural Science Journal of Yanbian University,2011,33(2):103−107. doi: 10.3969/j.issn.1004-7999.2011.02.006

    JIN Y, JIN X M, YIN C R. Biotransformation of major ginsenoside Re to minor ginsenoside Rh1by Sphingomonas sp. 2-F2[J]. Agricultural Science Journal of Yanbian University, 2011, 33(02): 103-107. doi: 10.3969/j.issn.1004-7999.2011.02.006
    [56]
    梁志齐, 张京楼, 金海珠, 等. 人参皂苷Rg3生物转化法制备Rh2[J]. 人参研究,2018,30(3):6−10. [LIANG Z Q, ZHANG J L, JING H Z, et al. Microbiological transformation of ginsenoside Rg3 into Rh2[J]. Ginseng Research,2018,30(3):6−10. doi: 10.19403/j.cnki.1671-1521.2018.03.002

    LIANG Z Q, ZHANG J L, JING H Z, et al. Microbiological Transformation of Ginsenoside Rg3 into Rh2[J]. Ginseng Research, 2018, 30(03): 6-10. doi: 10.19403/j.cnki.1671-1521.2018.03.002
    [57]
    SU J H, XU J H, LU W Y, et al. Enzymatic transformation of ginsenoside Rg3 to Rh2 using newly isolatedFusarium proliferatum ECU2042[J]. Journal of Molecular Catalysis B Enzymatic,2006,38(2):113−118. doi: 10.1016/j.molcatb.2005.12.004
    [58]
    陈小春, 戴柱, 傅荣昭. 生物转化法制备稀有人参皂苷Rh2[J]. 江西化工,2019(2):55−57. [CHEN X C, DAI Z, FU R Z. Biocatalytic synthesis of rare ginsenoside Rh2[J]. Jiangxi Chemical Industry,2019(2):55−57. doi: 10.3969/j.issn.1008-3103.2019.02.016

    CHEN X C, DAI Z, FU R Z. Biocatalytic Synthesis of rare ginsenoside Rh2[J]. Jiangxi Chemical Industry, 2019(02): 55-57. doi: 10.3969/j.issn.1008-3103.2019.02.016
    [59]
    SU J H, XU J H, YU H L, et al. Properties of a novel β-glucosidase from Fusarium proliferatum ECU2042 that converts ginsenoside Rg3 into Rh2[J]. Journal of Molecular Catalysis B Enzymatic,2009,57(1-4):278−283. doi: 10.1016/j.molcatb.2008.09.017
    [60]
    吴秀丽, 王艳, 赵文倩, 等. 一种真菌对人参皂苷Rg3的转化[J]. 微生物学报,2008(9):1181−1185. [WU X L, WANG Y, ZHAO W Q, et al. Fungal biotransformation of ginsenoside Rg3[J]. Acta Microbiologica Sinica,2008(9):1181−1185. doi: 10.3321/j.issn:0001-6209.2008.09.008

    WU X L, WANG Y, ZHAO W Q, et al. Fungal biotransformation of ginsenoside Rg3[J]. Acta Microbiologica Sinica, 2008(09): 1181-1185. doi: 10.3321/j.issn:0001-6209.2008.09.008
    [61]
    CHEN H, DONG, ZHI F, et al. Discovery, synthesis, and structure-activity relationships of 20S-dammar-24-en-2α, 3β, 12β, 20-tetrol (GP) derivatives as a new class of AMPKα2β1γ1 activators[J]. Bioorganic & medicinal chemistry,2016,24(12):2688−96.
    [62]
    XIN S, JL A, YU X A, et al. Highly regioselective biotransformation of ginsenoside Rg1 to 25-OH derivatives of 20(S/R)-Rh1 by cordyceps sinensis-science direct[J]. Bioorganic & Medicinal Chemistry Letters,2020,30(21):127−504.
    [63]
    LIU J S, YU X N, QIU Z D, et al. Cordyceps sinensis-mediated biotransformation of notoginsenoside R1 into 25-OH-20(S/R)-R2 with elevated cardioprotective effect against DOX induced cell injury[J]. RSC Advances,2022,12:129−38. doi: 10.1039/D1RA08249C
    [64]
    CHEN G T, GE H J, SONG Y, et al. Biotransformation of 20(S)-protopanaxatriol by Mucor racemosus and the anti-cancer activities of some products[J]. Biotechnology Letters,2015,37(10):2005−2009. doi: 10.1007/s10529-015-1877-2
    [65]
    KIM M Y, CHO J Y. 20S-dihydroprotopanaxadiol, a ginsenoside derivative, boosts innate immune responses of monocytes and macrophages[J]. Journal of Ginseng Research,2013,Jul,37(3):293−9.
    [66]
    AKANAKA M, ZHU P, BO Z, et al. Intravenous infusion of dihydroginsenoside Rb1 prevents compressive spinal cord injury and ischemic brain damage through upregulation of VEGF and Bcl-XL[J]. J Neurotrauma,2007,24(6):1037−1054. doi: 10.1089/neu.2006.0182
    [67]
    CHEN F, ZHENG S L, HU J N, et al. Octyl ester of ginsenoside Rh2 induces apoptosis and G1 cell cycle arrest in human HepG2 cells by activating the extrinsic apoptotic pathway and modulating the Akt/p38 MAPK signaling pathway[J]. Journal of Agricultural & Food Chemistry,2016,acs.jafc.:6b03519.
    [68]
    DU G J, DAI Q, WILLIAMS S, et al. Synthesis of protopanaxadiol derivatives and evaluation of their anticancer activities[J]. Anti-cancer Drugs,2011,22(1):35. doi: 10.1097/CAD.0b013e32833fde29
    [69]
    XU D, TAO L, YAN L, et al. 2-Pyrazine-PPD, a novel dammarane derivative, showed anticancer activity by reactive oxygen species-mediate apoptosis and endoplasmic reticulum stress in gastric cancer cells[J]. European Journal of Pharmacology, 2020, 881.
    [70]
    XU D, YUAN Y, FAN Z, et al. 4-XL-PPD, a novel ginsenoside derivative, as potential therapeutic agents for gastric cancer shows anti-cancer activity via inducing cell apoptosis medicated generation of reactive oxygen species and inhibiting migratory and invasive[J]. Biomedicine & Pharmacotherapy,2019(118):108.
    [71]
    LI Y, BALDAUF S, LIM E K, et al. Phylogenetic analysis of the UDP-glycosyltransferase multigene family of Arabidopsis thaliana[J]. Journal of Biological Chemistry,2001,276(6):4338. doi: 10.1074/jbc.M007447200
    [72]
    CHRISTENSEN L P. Ginsenosides: Chemistry, biosynthesis, analysis and potential health effects (Chapter 1)[J]. Adv Food Nutr Res,2008,55(55):1−99.
    [73]
    WANG D D, YEON-JU KIM, NAM BAEK, et al. Glycosyltransformation of ginsenoside Rh2 into two novel ginsenosides using recombinant glycosyltransferase from Lactobacillus rhamnosus and its in vitro applications[J]. Journal of Ginseng Research,2021,45(1):48−57. doi: 10.1016/j.jgr.2019.11.004
    [74]
    HU Y, XUE J, MIN J, et al. Biocatalytic synthesis of ginsenoside Rh2 using Arabidopsis thaliana glucosyltransferase-catalyzed coupled reactions[J]. Journal of Biotechnology,2020,309:107−112. doi: 10.1016/j.jbiotec.2020.01.003
    [75]
    JUNG S C, KIM W, PARK S C, et al. Two ginseng UDP-glycosyltransferases synthesize ginsenoside Rg3 and Rd[J]. Plant & cell physiology,2014,55(12):2177−88.
    [76]
    KHOROLRAGCHAA A, KIM Y J, Rahimi Y J, et al. Grouping and characterization of putative glycosyltransferase genes from Panax ginseng Meyer[J]. Gene, 536(1): 186–192.
    [77]
    WARNECKE D, ERDMANN R, FAHL A, et al. Cloning and functional expression of UGT genes encoding sterol glucosyltransferases from Saccharomyces cerevisiae, Candida albicans, Pichia pastorisand dictyostelium discoideum[J]. J Biol Chem,1999,274(19):13048−13059. doi: 10.1074/jbc.274.19.13048
    [78]
    ZHAO J N, WANG R F, ZHAO S J, et al. Advance in glycosyltransferases, the important bioparts for production of diversified ginsenosides[J]. Chinese Journal of Natural Medicines,2020,18(9):643−658. doi: 10.1016/S1875-5364(20)60003-6
  • Cited by

    Periodical cited type(7)

    1. 张智恒,赵维武,孙海誉,孙秋慧,郭山,代舒同. ε-聚赖氨酸复配保鲜剂对蛋糕保鲜效果. 食品工业. 2024(03): 100-105 .
    2. 翟彩宁,陈佩,黄镜源,王玮琨. 迷迭香活性成分的提取工艺、功能及其在动物生产中的应用. 饲料研究. 2024(14): 172-176 .
    3. 唐源,刘梦聪,刘燕,李富华,赵吉春,明建. 香辛料提取物改善水产品蛋白质过氧化研究进展. 食品科学. 2024(20): 290-298 .
    4. 马丹凤,朱梓康,王雨旺,杨金铭,顾诗雨,黄志炜. 迷迭香在植物生产中的应用研究进展. 黑龙江农业科学. 2023(07): 113-121 .
    5. 库文娟,杨欢,余丽,徐玉. 从迷迭香中提取天然抗氧化剂的工艺研究进展. 食品工业. 2023(12): 159-161 .
    6. 蒋治国,何莹,林昌华,苏丽娟,黄海权,蒋家霞. 迷迭香提取物降低仔猪断奶氧化应激的机制研究. 饲料研究. 2023(22): 21-25 .
    7. 钟雯雯,杨绍坤,李梓萌,段晓梅. 迷迭香精油GC-MS分析及其体外药理活性研究. 广州化工. 2023(21): 80-84 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (833) PDF downloads (91) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return