Citation: | YUAN Songzhu, WANG Bin, ZHOU Xuan, et al. Research Progress on the Biotransformation of Rare Ginsenosides[J]. Science and Technology of Food Industry, 2023, 44(12): 480−489. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022080204. |
[1] |
JIN HEE K, MISEON K, SUN-MI Y, et al. Ginsenoside Rh2 induces apoptosis and inhibits epithelial-mesenchymal transition in HEC1A and Ishikawa endometrial cancer cells[J]. Biomedicine & Pharmacotherapy,2017,96:871−876.
|
[2] |
JIANG Z, YANG Y , YANG Y , et al. Ginsenoside Rg3 attenuates cisplatin resistance in lung cancer by downregulating PD-L1 and resuming immune[J]. Biomed Pharm, 2017, 96. 378–383.
|
[3] |
YAO W, GUAN Y. Ginsenosides in cancer: A focus on the regulation of cell metabolisms[J]. Biomed Pharmacother, 2022, Oct 10;156: 113756.
|
[4] |
YU H, WANG Y, LIU C, et al. Conversion of ginsenoside Rb1 into six types of highly bioactive ginsenoside Rg3 and its derivatives by FeCl3 catalysis[J]. Chem Pharm Bull (Tokyo),2018,66(9):901−906. doi: 10.1248/cpb.c18-00426
|
[5] |
ZHANG J, AI Z, HU Y, et al. Remarkable impact of commercial sterilizing on ginsenosides transformation in fresh ginseng pulp based on widely targeted metabolomics analysis[J]. Food Chem X, 2022(Aug 9),15: 100415.
|
[6] |
HASEGAWA H, SUNG J H, MATSUMIYAS S, et al. Main ginseng saponin metabolites formed by intestinal bacteria[J]. Planta Medica,1998,62(5):453−457.
|
[7] |
HASEGAWA H, SUNG J H, BENNO Y. Role of human intestinal prevotella oris in hydrolyzing ginseng saponins[J]. Planta Medica,1997,63(5):436−440. doi: 10.1055/s-2006-957729
|
[8] |
上官棣华, 刘国诠. 人参成分的代谢研究进展[J]. 中草药,1999(11):865−870. [SHANGGUAN L H, LIU G Q. Research progress in the metabolism of ginseng components[J]. Chinese Traditional and Herbal Drugs,1999(11):865−870. doi: 10.3321/j.issn:0253-2670.1999.11.028
SHANGGUAN L H, LIU G Q. Research progress in the metabolism of ginseng components [J]. Chinese Traditional and Herbal Drugs, 1999(11): 865-870. doi: 10.3321/j.issn:0253-2670.1999.11.028
|
[9] |
LEE BYUNG-HOON, LEE, SANG-JUN HUI, et al. In vitro antigenotoxic activity of novel ginseng saponin metabolites formed by intestinal bacteria[J]. Planta Medica,1998,64(6):500−503. doi: 10.1055/s-2006-957501
|
[10] |
YOSHIMASA Y, MASAYA H, HIDESHI K. Effects of ginsenosides on impaired performance caused by scopolamine in rats[J]. European Journal of Pharmacology,1996,312(2):149−151. doi: 10.1016/0014-2999(96)00597-3
|
[11] |
KIM W Y, KIM J M, HAN S B, et al. Steaming of ginseng at hightemperature enhances biological activity[J]. J Nat Prod,2000,63(12):1702−1704. doi: 10.1021/np990152b
|
[12] |
GUO H Y, XING Y, SUN Y Q, et al. Ginsengenin derivatives synthesized from 20(R)-panaxotriol: Synthesis, characterization, and antitumor activity targeting HIF-1 pathway[J]. Ginseng Res,2022,Nov;46(6):738−749.
|
[13] |
KIM GO, KIM N, SONG GY, et al. Inhibitory activities of rare ginsenoside Rg4 on cecal ligation and puncture-induced sepsis[J]. Int J Mol Sci, 2022 16; 23(18): 10836. doi: 10.3390/ijms231810836.
|
[14] |
CHEN Z, WANG G, XIE X, et al. Ginsenoside Rg5 allosterically interacts with P2RY12 and ameliorates deep venous thrombosis by counteracting neutrophil NETosis and inflammatory response[J]. Front Immunol, 2022 Aug 12;13: 918476.
|
[15] |
刘彦楠. 人参皂苷Rg5的制备及其抗胃癌和乳腺癌活性研究[D]. 西安: 西北大学, 2019
LIU Y N. Preparation of ginsenoside Rg5 and its anti gastric and breast cancer activity[D].Xi’an: Northwest University, 2019.
|
[16] |
DENG J J, LIU Y, DUAN Z G, et al. Protopanaxadiol and protopanaxatriol-type saponins ameliorate glucose and lipid metabolism in type 2 diabetes mellitus in high-fat diet /streptozocin-induced mice[J]. Front Pharmacol,2017,8:506. doi: 10.3389/fphar.2017.00506
|
[17] |
MAENG Y S, MAHARJAN S, KIM J H, et al. Rk1, a ginsenoside, is a new blocker of vascular leakage acting through actin structure remodeling[J], PLoS One, 2013, 8(7) : e68659.
|
[18] |
RYOO N, RAHMAN M A, HWANG H, et al. Ginsenoside Rk1 is a novel inhibitor of NMDA receptors in cultured rat hippocampal neurons[J]. J Ginseng Res,2020,44(3):490−495. doi: 10.1016/j.jgr.2019.04.002
|
[19] |
OH J M, LEE J, IM W T, et al. Ginsenoside Rk1 induces apoptosis in neuroblastoma cells through loss of mitochondrial membrane potential and activation of caspases[J]. Int J Mol Sci,2019,20(5):1213. doi: 10.3390/ijms20051213
|
[20] |
SIDDIQI M H, SIDDIQI M Z, AHN S, et al. Stimulative effect of ginsenosides Rg5: Rk1 on murine osteoblastic MC3T3-E1 cells[J]. Phytother Res,2014,28(10):1447−1455. doi: 10.1002/ptr.5146
|
[21] |
KRISHIKA S, RAHUL VIKRAM S. Production aspects of testosterone by microbial biotransformation and future prospects[J]. Steroids, 2020, 159(C).
|
[22] |
南博, 游颖, 王雨珊, 等. 微生物法转化人参皂苷的研究进展[J]. 食品研究与开发,2017,38(14):196−199. [NAN B, YOU Y, WANG Y S, et al. Research progress on microbial transformation of ginsenosides[J]. Food Research and Development,2017,38(14):196−199. doi: 10.3969/j.issn.1005-6521.2017.14.042
NAN B, YOU Y, WANG Y S, et al. Research Progress on Microbial Transformation of Ginsenosides[J]. Food Research And Development, 2017, 38(14): 196-199 doi: 10.3969/j.issn.1005-6521.2017.14.042
|
[23] |
周中流, 李春燕, 陈林浩, 等. 天然产物皂苷类化合物生物转化的研究进展[J]. 中国实验方剂学杂志,2019,25(16):173−192. [ZHOU Z L, LI C Y, CHEN L H, et al. Biotransformation of natural saponins[J]. Chinese Journal of Experimental Traditional Medical Formulae,2019,25(16):173−192. doi: 10.13422/j.cnki.syfjx.20190815
ZHOU Z L, LI C Y, CHEN L H, et al. Biotransformation of Natural Saponins[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2019, 25(16): 173-192. doi: 10.13422/j.cnki.syfjx.20190815
|
[24] |
BAE E A , HAN M J,CHOO M K, et al. Metabolism of 20(S)- and 20(R)-Ginsenoside Rg3 by human intestinal bacteria and its relation to in vitro biological activities[J]. Biol Pharm Bull,2002,25(1):58−63. doi: 10.1248/bpb.25.58
|
[25] |
韩铭鑫, 李方彤, 张琰, 等. 稀有原人参二醇型皂苷的人肠道菌群生物转化[J]. 高等学校化学学报,2019,40(7):1390−1396. [HAN M X, LI F T, ZHANG Y, et al. Biotransformation of rare protopanaxadiol saponinby human intestinal microflora[J]. Chemical Journal of Chinese Universities,2019,40(7):1390−1396. doi: 10.7503/cjcu20180812
HAN M X, LI F T, ZHANG Y, et al. Biotransformation of Rare Protopanaxadiol Saponinby Human Intestinal Microflora[J]. Chemical Journal of Chinese Universities, 2019, 40(07): 1390-1396. doi: 10.7503/cjcu20180812
|
[26] |
张琰, 李方彤, 韩铭鑫, 等. 通过RRLC-Q-TOF MS和UPLC-QQQ MS分析原人参三醇型皂苷在人肠道菌群中的代谢产物[J]. 质谱学报,2020,41(1):66−75. [ZHANG Y, LI F T, HAN M X, et al. Analysis of metabolites of protopanaxatriol saponins in human intestinal flora by RRLC-Q-TOF MS and UPLC-QQQ MS[J]. Journal of Chinese Mass Spectrometry Society,2020,41(1):66−75. doi: 10.7538/zpxb.2019.0046
ZHANG Y, LI F T, HAN M X, et al. Analysis of Metabolites of Protopanaxatriol Saponins in Human Intestinal Flora by RRLC-Q-TOF MS and UPLC-QQQ MS[J]. Journal of Chinese Mass Spectrometry Society, 2020, 41(01): 66-75. doi: 10.7538/zpxb.2019.0046
|
[27] |
唐岚, 傅璐璐, 沈丽婷, 等. 大鼠肠道菌群对三七总皂苷体外降解的研究[J]. 中草药,2018,49(2):396−399. [TANG L, FU L L, SHEN L T, et al. Degradation of total saponins of Panax notoginseng by intestinal flora of ratsi n vitro[J]. Chinese Traditional and Herbal Drugs,2018,49(2):396−399. doi: 10.7501/j.issn.0253-2670.2018.02.020
TANG L, FU L L, SHEN L T, et al. Degradation of total saponins of Panax notoginseng by intestinal flora of rats in vitro[J]. Chinese Traditional and Herbal Drugs, 2018, 49(02): 396-399. doi: 10.7501/j.issn.0253-2670.2018.02.020
|
[28] |
GUO Y P, CHEN M Y, SHAO L, et al. Quantification of panax notoginseng saponins metabolites in rat plasma with in vivo gut microbiota-mediated biotransformation by HPLC-MS/MS[J]. Chinese Journal of Natural Medicines,2019,17(3):231−240. doi: 10.1016/S1875-5364(19)30026-3
|
[29] |
陈思键, 吴冬雪, 刘淑莹, 等. 人参皂苷化学转化与生物转化研究进展[J]. 中成药,2022,44(5):1539−1545. [CHEN S J, WU D X, LIU S Y, et al. Advances in chemical and biological transformation of ginsenoside[J]. Chinese Traditional Patent Medicine,2022,44(5):1539−1545. doi: 10.3969/j.issn.1001-1528.2022.05.031
CHEN S J, WU D X, LIU S Y, et al. Advances in chemical and biological transformation of ginsenoside[J]. Chinese Traditional Patent Medicine, 2022, 44(5): 1539-1545. doi: 10.3969/j.issn.1001-1528.2022.05.031
|
[30] |
王珊珊, 胡萍, 余少文. 天然产物微生物转化的研究进展[J]. 中国新药杂志,2016,25(1):71−75. [WANG S S, HU P, YU S W. Progress in research of biotransformation of natural products[J]. Chinese Journal of New Drugs,2016,25(1):71−75.
WANG S S, HU P, YU S W. Progress in research of biotransformation of natural products [J]. Chinese Journal of New Drugs, 2016, 25(1): 71-75.
|
[31] |
高娟, 周安东, 原野, 等. 黑曲霉降解人参皂苷Rb1制备稀有皂苷Compound K[J]. 生物技术进展,2016,6(2):98−104. [GAO J, ZHOU A D, YUAN Y, et al. Enzymatic degradation of ginsenoside Rb1 for preparation of compound K by Aspergillus niger sp. J7[J]. Current Biotechnology,2016,6(2):98−104. doi: 10.3969/j.issn.2095-2341.2016.02.04
GAO J, ZHOU A D, YUAN Y, et al. Enzymatic Degradation of Ginsenoside Rb1 for Preparation of Compound K by Aspergillus niger sp. J7[J]. Current Biotechnology, 2016, 6(02): 98-104. doi: 10.3969/j.issn.2095-2341.2016.02.04
|
[32] |
LIU C Y, ZUO K Z, YU H S, et al. Preparation of minor ginsenosides C-Mx and C-K from notoginseng leaf ginsenosides by a special ginsenosidase type-I[J]. Process Biochemistry,2015,50(12):2158−2167. doi: 10.1016/j.procbio.2015.10.011
|
[33] |
SONG X L, WU H, PIAO X C, et al. Microbial transformation of ginsenosides extracted from Panax ginseng adventitious roots in an airlift bioreactor[J]. Electronic Journal of Biotechnology,2017,26:20−26. doi: 10.1016/j.ejbt.2016.12.005
|
[34] |
YAN Q, ZHOU W, SHI X L, et al. Biotransformation pathways of ginsenoside Rb1 to compound K by β-glucosidases in fungus Paecilomyces bainier sp. 229[J]. Process Biochemistry, 2010, 45(9): 1550-1556.
|
[35] |
YAN Q, ZHOU W, SHI X L, et al. Biotransformation pathways of ginsenoside Rb1 to compound K by β-glucosidases in fungus Paecilomyces bainier sp. 229[J]. Process Biochemistry,2010,45(9):1550−1556. doi: 10.1016/j.procbio.2010.06.007
|
[36] |
陈旸, 张美萍, 王义, 等. 枯草芽孢杆菌转化人参总苷为Rg3的研究[J]. 时珍国医国药,2014,25(11):2676−2678. [CHEN Y, ZHANG M P, WANG Y, et al. Microbial transformed ginsenoside Rg3 from total saponins of Panax ginseng by Bacillus subtilis[J]. Lishizhen Medicine and Materia Medica Research,2014,25(11):2676−2678.
CHEN Y, ZHANG M P, WANG Y, et al. Microbial transformed ginsenoside Rg3 from total saponins of Panax ginseng by Bacillus subtilis [J]. Lishizhen Medicine and Materia Medica Research, 2014, 25(11): 2676-2678.
|
[37] |
ZHANG R, HUANG X M, YAN H J, et al. Highly selective production of compound k from ginsenoside Rd by hydrolyzing glucose at C-3 glycoside using β-glucosidase of bfidobacterium breve ATCC 15700[J]. Journal of Microbiology and Biotechnology,2019,29(3):410−418. doi: 10.4014/jmb.1808.08059
|
[38] |
ALMANDO G, NI M, FATIMAHAB, al. Enzymatic biotransformation of ginsenoside Rb1 by recombinant β-glucosidase of bacterial isolates from Indonesia[J]. Biocatalysis and Agricultural Biotechnology,2020,23(C):101449−101449.
|
[39] |
LI L, LEE SOO JIN, YUAN Q P, et al. Production of bioactive ginsenoside Rg3(S) and compound K using recombinant Lactococcus lactis[J]. Journal of Ginseng Research,2017,42(4):412−418.
|
[40] |
PEI J J, XIE J C, YIN R, et al. Enzymatic transformation of ginsenoside Rb1 to ginsenoside 20(S)-Rg3 by GH3 β-glucosidase from Thermotoga thermarum DSM 5069 T[J]. Journal of Molecular Catalysis B:Enzymatic,2015,113:104−109. doi: 10.1016/j.molcatb.2014.12.012
|
[41] |
ZHANG S H, XIE J C, ZHAO L G. Cloning, overexpression and characterization of a thermostable β-xylosidase fromThermotoga petrophila and cooperated transformation of ginsenoside extract to ginsenoside 20(S)-Rg3 with a β-glucosidase[J]. Bioorganic Chemistry,2019,85:159−167. doi: 10.1016/j.bioorg.2018.12.026
|
[42] |
李琦, 童欣怡, 蒋玉洁, 等. 全细胞催化剂pelB-Xln-DT构建及其在水解三七皂苷R1中的应用[J]. 林业工程学报,2020,5(4):114−120. [LI Q, TONG X Y, JIANG Y J, et al. Construction of whole cell catalyst pelB-Xln-DT and its application in biotransformation of Panax notoginsenoside R1[J]. Journal of Forestry Engineering,2020,5(4):114−120.
LI Q, TONG X Y, JIANG Y J, et al. Construction of whole cell catalyst pelB-Xln-DT and its application in biotransformation of Panax notoginsenoside R1[J]. Journal of Forestry Engineering, 2020, 5(04): 114-120.
|
[43] |
MIN-JI KIM, JITENDRA UPADH A Y, MIN-SUNYOON, et al. Highly regioselective biotransformation of ginsenoside Rb2 into compound Y and compound K by β-glycosidase purified from armillaria mellea mycelia[J]. Journal of Ginseng Research,2017,42(4):504−511.
|
[44] |
钟雅婷. 人参皂苷转化菌株 GsBt3 的筛选及其转化西洋参总皂苷的研究[D]. 上海: 上海师范大学, 2012
ZHONG Y T. Screening of ginseng saponin transforming strain GsBt3 and its transformation into total saponins of Panax quinquefolium[D]. Shanghai: Shanghai Normal University, 2012.
|
[45] |
丛悦怡, 孙佳, 于恩, 等. 红曲霉发酵转化人参皂苷Rg3的研究[J]. 中草药,2018,49(6):1298−1303. [CONG Y Y, SUN J, YU E, et al. Study on transformation of ginsenoside Rg3 fermented by Monascus purpureus[J]. Chinese Traditional and Herbal Drugs,2018,49(6):1298−1303. doi: 10.7501/j.issn.0253-2670.2018.06.010
CONG Y Y, SUN J, YU en, et al. Study on transformation of ginsenoside Rg3 fermented by Monascus purpureus[J]. Chinese Traditional and Herbal Drugs, 2018, 49(06): 1298-1303. doi: 10.7501/j.issn.0253-2670.2018.06.010
|
[46] |
蒋磊, 赵寿经, 李然, 等. 酶法转化人参皂苷Re为Rg1的研究[J]. 特产研究,2006(2):28−31. [JIANG L, ZAO S J, LI R, et al. A research of converting ginsenoside Re to Rg1 in enzyme reaction[J]. Special Wild Economic Animal and Plant,2006(2):28−31.
JIANG L, ZAO S J, LI R, et al. A research of converting ginsenoside Re to Rg1 in enzyme reaction[J] Special Wild Economic Animal and Plant, 2006(2):28-31
|
[47] |
ZHUANG Y, YANG G Y, CHEN X H, et al. Biosynthesis of plant-derived ginsenoside Rh2 in yeast via repurposing a key promiscuous microbial enzyme[J]. Metabolic Engineering,2017,42:25−32. doi: 10.1016/j.ymben.2017.04.009
|
[48] |
BYEONG-MIN JEON, JONG-IN BAEK, MIN-SUNG KIM, et al. Characterization of a novel ginsenoside MT1 produced by an enzymatic transrhamnosylation of protopanaxatriol-type ginsenosides Re[J]. Biomolecules,2020,10(4):525−525. doi: 10.3390/biom10040525
|
[49] |
MUHAMMAD ZUBAIR SIDDIQI, HIPOLITO AMARAL XIMENES, BONG-KYU SONG, et al. Enhanced production of ginsenoside Rh2(S) from PPD-type major ginsenosides using BglSk cloned from Saccharibacillus kuerlensis together with two glycosidase in series[J]. Saudi Journal of Biological Sciences,2021,04:079.
|
[50] |
JITENDRA UPADHYAYA, MIN-JI KIM, YOUNG-HOI KIM, et al. Enzymatic formation of compound-K from ginsenoside Rb1 by enzyme preparation from cultured mycelia of Armillaria mellea[J]. Journal of Ginseng Research,2016,40(2):105−112. doi: 10.1016/j.jgr.2015.05.007
|
[51] |
HYOJIN L, SEUNG I A, BYUNG WOOK YANG, et al. Biotransformation of ginsenosides by eoyukjang-derived lactic acid bacteria in mountain-cultivated ginseng[J]. Microbiology and Biotechnology Letters,2019,47(2):201−210. doi: 10.4014/mbl.1810.10003
|
[52] |
YE L, ZHOU C Q, ZHOU W, et al. Biotransformation of ginsenoside Rb1 to ginsenoside Rd by highly substrate-tolerant Paecilomyces bainier 229-7[J]. Bioresource Technology,2010,101(20):7872−7876. doi: 10.1016/j.biortech.2010.04.102
|
[53] |
杨元超, 王英平, 闫梅霞, 等. 人参皂苷compound K转化菌株的筛选[J]. 中国中药杂志,2011,36(12):1596−1598. [YANG Y C, WANGY P, YAN M X, et al. Screening of plant pathogenic fungi by ginsenoside compound K production[J]. China Journal of Chinese Materia Medica,2011,36(12):1596−1598.
YANG Y C, WANGY P, YAN M X, et al. Screening of plant pathogenic fungi by ginsenoside compound K production[J]. China Journal of Chinese Materia Medica, 2011, 36(12): 1596-1598.
|
[54] |
HU Y B, WANG N, YAN X C, et al. Ginsenoside Re impacts on biotransformation products of ginsenoside Rb1 by Cellulosimicrobium cellulans sp. 21 and its mechanisms[J]. Process Biochemistry, 2019, 77: 57-62.
|
[55] |
金艳, 金香梅, 尹成日. 鞘氨醇单胞菌2-F2将人参主皂苷Re转化为人参稀有皂苷Rh1[J]. 延边大学农学学报,2011,33(2):103−107. [JIN Y, JIN X M, YIN C R. Biotransformation of major ginsenoside Re to minor ginsenoside Rh1 by Sphingomonas sp. 2-F2[J]. Agricultural Science Journal of Yanbian University,2011,33(2):103−107. doi: 10.3969/j.issn.1004-7999.2011.02.006
JIN Y, JIN X M, YIN C R. Biotransformation of major ginsenoside Re to minor ginsenoside Rh1by Sphingomonas sp. 2-F2[J]. Agricultural Science Journal of Yanbian University, 2011, 33(02): 103-107. doi: 10.3969/j.issn.1004-7999.2011.02.006
|
[56] |
梁志齐, 张京楼, 金海珠, 等. 人参皂苷Rg3生物转化法制备Rh2[J]. 人参研究,2018,30(3):6−10. [LIANG Z Q, ZHANG J L, JING H Z, et al. Microbiological transformation of ginsenoside Rg3 into Rh2[J]. Ginseng Research,2018,30(3):6−10. doi: 10.19403/j.cnki.1671-1521.2018.03.002
LIANG Z Q, ZHANG J L, JING H Z, et al. Microbiological Transformation of Ginsenoside Rg3 into Rh2[J]. Ginseng Research, 2018, 30(03): 6-10. doi: 10.19403/j.cnki.1671-1521.2018.03.002
|
[57] |
SU J H, XU J H, LU W Y, et al. Enzymatic transformation of ginsenoside Rg3 to Rh2 using newly isolatedFusarium proliferatum ECU2042[J]. Journal of Molecular Catalysis B Enzymatic,2006,38(2):113−118. doi: 10.1016/j.molcatb.2005.12.004
|
[58] |
陈小春, 戴柱, 傅荣昭. 生物转化法制备稀有人参皂苷Rh2[J]. 江西化工,2019(2):55−57. [CHEN X C, DAI Z, FU R Z. Biocatalytic synthesis of rare ginsenoside Rh2[J]. Jiangxi Chemical Industry,2019(2):55−57. doi: 10.3969/j.issn.1008-3103.2019.02.016
CHEN X C, DAI Z, FU R Z. Biocatalytic Synthesis of rare ginsenoside Rh2[J]. Jiangxi Chemical Industry, 2019(02): 55-57. doi: 10.3969/j.issn.1008-3103.2019.02.016
|
[59] |
SU J H, XU J H, YU H L, et al. Properties of a novel β-glucosidase from Fusarium proliferatum ECU2042 that converts ginsenoside Rg3 into Rh2[J]. Journal of Molecular Catalysis B Enzymatic,2009,57(1-4):278−283. doi: 10.1016/j.molcatb.2008.09.017
|
[60] |
吴秀丽, 王艳, 赵文倩, 等. 一种真菌对人参皂苷Rg3的转化[J]. 微生物学报,2008(9):1181−1185. [WU X L, WANG Y, ZHAO W Q, et al. Fungal biotransformation of ginsenoside Rg3[J]. Acta Microbiologica Sinica,2008(9):1181−1185. doi: 10.3321/j.issn:0001-6209.2008.09.008
WU X L, WANG Y, ZHAO W Q, et al. Fungal biotransformation of ginsenoside Rg3[J]. Acta Microbiologica Sinica, 2008(09): 1181-1185. doi: 10.3321/j.issn:0001-6209.2008.09.008
|
[61] |
CHEN H, DONG, ZHI F, et al. Discovery, synthesis, and structure-activity relationships of 20S-dammar-24-en-2α, 3β, 12β, 20-tetrol (GP) derivatives as a new class of AMPKα2β1γ1 activators[J]. Bioorganic & medicinal chemistry,2016,24(12):2688−96.
|
[62] |
XIN S, JL A, YU X A, et al. Highly regioselective biotransformation of ginsenoside Rg1 to 25-OH derivatives of 20(S/R)-Rh1 by cordyceps sinensis-science direct[J]. Bioorganic & Medicinal Chemistry Letters,2020,30(21):127−504.
|
[63] |
LIU J S, YU X N, QIU Z D, et al. Cordyceps sinensis-mediated biotransformation of notoginsenoside R1 into 25-OH-20(S/R)-R2 with elevated cardioprotective effect against DOX induced cell injury[J]. RSC Advances,2022,12:129−38. doi: 10.1039/D1RA08249C
|
[64] |
CHEN G T, GE H J, SONG Y, et al. Biotransformation of 20(S)-protopanaxatriol by Mucor racemosus and the anti-cancer activities of some products[J]. Biotechnology Letters,2015,37(10):2005−2009. doi: 10.1007/s10529-015-1877-2
|
[65] |
KIM M Y, CHO J Y. 20S-dihydroprotopanaxadiol, a ginsenoside derivative, boosts innate immune responses of monocytes and macrophages[J]. Journal of Ginseng Research,2013,Jul,37(3):293−9.
|
[66] |
AKANAKA M, ZHU P, BO Z, et al. Intravenous infusion of dihydroginsenoside Rb1 prevents compressive spinal cord injury and ischemic brain damage through upregulation of VEGF and Bcl-XL[J]. J Neurotrauma,2007,24(6):1037−1054. doi: 10.1089/neu.2006.0182
|
[67] |
CHEN F, ZHENG S L, HU J N, et al. Octyl ester of ginsenoside Rh2 induces apoptosis and G1 cell cycle arrest in human HepG2 cells by activating the extrinsic apoptotic pathway and modulating the Akt/p38 MAPK signaling pathway[J]. Journal of Agricultural & Food Chemistry,2016,acs.jafc.:6b03519.
|
[68] |
DU G J, DAI Q, WILLIAMS S, et al. Synthesis of protopanaxadiol derivatives and evaluation of their anticancer activities[J]. Anti-cancer Drugs,2011,22(1):35. doi: 10.1097/CAD.0b013e32833fde29
|
[69] |
XU D, TAO L, YAN L, et al. 2-Pyrazine-PPD, a novel dammarane derivative, showed anticancer activity by reactive oxygen species-mediate apoptosis and endoplasmic reticulum stress in gastric cancer cells[J]. European Journal of Pharmacology, 2020, 881.
|
[70] |
XU D, YUAN Y, FAN Z, et al. 4-XL-PPD, a novel ginsenoside derivative, as potential therapeutic agents for gastric cancer shows anti-cancer activity via inducing cell apoptosis medicated generation of reactive oxygen species and inhibiting migratory and invasive[J]. Biomedicine & Pharmacotherapy,2019(118):108.
|
[71] |
LI Y, BALDAUF S, LIM E K, et al. Phylogenetic analysis of the UDP-glycosyltransferase multigene family of Arabidopsis thaliana[J]. Journal of Biological Chemistry,2001,276(6):4338. doi: 10.1074/jbc.M007447200
|
[72] |
CHRISTENSEN L P. Ginsenosides: Chemistry, biosynthesis, analysis and potential health effects (Chapter 1)[J]. Adv Food Nutr Res,2008,55(55):1−99.
|
[73] |
WANG D D, YEON-JU KIM, NAM BAEK, et al. Glycosyltransformation of ginsenoside Rh2 into two novel ginsenosides using recombinant glycosyltransferase from Lactobacillus rhamnosus and its in vitro applications[J]. Journal of Ginseng Research,2021,45(1):48−57. doi: 10.1016/j.jgr.2019.11.004
|
[74] |
HU Y, XUE J, MIN J, et al. Biocatalytic synthesis of ginsenoside Rh2 using Arabidopsis thaliana glucosyltransferase-catalyzed coupled reactions[J]. Journal of Biotechnology,2020,309:107−112. doi: 10.1016/j.jbiotec.2020.01.003
|
[75] |
JUNG S C, KIM W, PARK S C, et al. Two ginseng UDP-glycosyltransferases synthesize ginsenoside Rg3 and Rd[J]. Plant & cell physiology,2014,55(12):2177−88.
|
[76] |
KHOROLRAGCHAA A, KIM Y J, Rahimi Y J, et al. Grouping and characterization of putative glycosyltransferase genes from Panax ginseng Meyer[J]. Gene, 536(1): 186–192.
|
[77] |
WARNECKE D, ERDMANN R, FAHL A, et al. Cloning and functional expression of UGT genes encoding sterol glucosyltransferases from Saccharomyces cerevisiae, Candida albicans, Pichia pastorisand dictyostelium discoideum[J]. J Biol Chem,1999,274(19):13048−13059. doi: 10.1074/jbc.274.19.13048
|
[78] |
ZHAO J N, WANG R F, ZHAO S J, et al. Advance in glycosyltransferases, the important bioparts for production of diversified ginsenosides[J]. Chinese Journal of Natural Medicines,2020,18(9):643−658. doi: 10.1016/S1875-5364(20)60003-6
|