CHEN Yatian, CAI Xuemei, ZHU Kaixian, et al. Optimization of Cooking Technology and Analysis of Quality of Flowering Vicia faba L. DOI: 10.13386/j.issn1002-0306.2022080141
Citation: CHEN Yatian, CAI Xuemei, ZHU Kaixian, et al. Optimization of Cooking Technology and Analysis of Quality of Flowering Vicia faba L. DOI: 10.13386/j.issn1002-0306.2022080141

Optimization of Cooking Technology and Analysis of Quality of Flowering Vicia faba L.

More Information
  • Received Date: August 14, 2022
  • Available Online: April 04, 2023
  • In order to optimize the cooking technology of flowering broad beans, four processing parameters including soaking temperature, soaking time, frying temperature and frying time were selected for single factor and orthogonal optimization experiments, and the indexes of color difference, texture, energy and nutrition, and volatile substances were detected. The results showed that the optimal process for producing flowering broad beans were: Soaking temperature 25 ℃, soaking time 15 h, frying temperature 180 ℃ and frying time 6 min. Color difference characteristics: L* 71.05±1.22, a* 10.59±0.67, b* 29.31±1.46, texture characteristics: Crispness 20.74±1.46 N, hardness 26.67±1.33 N, nutritional label: Each 100 g of flowering broad beans contained 1869.33±0.58 kJ of energy, 18.83±0.40 g of protein, 26.93±0.21 g of fat, 33.40±0.10 g of carbohydrate. The GC-MS test results showed that there were 75 volatile substances in the two groups of samples, mainly benzene and its derivatives, alcohols, olefins, etc, including 37 in the blank group, 40 in the optimal group, and 2 kinds of volatile substances in the two groups. The characteristic substance of the blank group was p-isopropyltoluene, and the characteristic substance of the optimal group was 1-isopropenyl-3-methylbenzene. The GC-IMS test results showed that there were 57 volatile substances in the two groups of samples, mainly alcohols, esters and heterocyclic, etc, including 44 in the blank group, 42 in the optimal group, and 29 kinds of volatile substances in the two groups. After processing, the types and contents of alcohols, aldehydes and ketones decreased in varying degrees, while esters and ethers increased in varying degrees. The results of GC-IMS and GC-MS were consistent. The flowering broad beans under the optimized technology are golden in color, crisp and delicious, and rich in flavor substances.
  • [1]
    LIZARAZO C I, LAMPI A M, LIU J W, et al. Nutritive quality and protein production from grain legumes in a boreal climate[J]. Journal of the Science of Food and Agriculture,2015,95:2053−2064. doi: 10.1002/jsfa.6920
    [2]
    LONGOBARDI F, SACCO D, CASIELLO G, et al. Chemical pro-file of the carpino broad bean by conventional and innovative phys-icochemical analyses[J]. Journal of Food Quality,2015,38:273−284. doi: 10.1111/jfq.12143
    [3]
    NEME K, BULTOSA G, BUSSA N. Nutrient and functional prop-erties of composite flours processed from pregelatinised barley, sprouted faba bean and carrot flours[J]. International Journal of Food Science and Technology,2015,50:2375−2382. doi: 10.1111/ijfs.12903
    [4]
    MULTARI S, STEWART D, RUSSELL W R. Potential of fava bean as future protein supply to partially replace meat intake in the human diet[J]. Compr Rev Food Sci F,2015,14(5):511−522. doi: 10.1111/1541-4337.12146
    [5]
    申士富, 钱静, 刘廷, 等. 青海蚕豆中原花青素和左旋多巴的含量测定和品种间差异的比较[J]. 中国食物与营养,2017,23(9):36−40. [SHEN Shifu, QIAN Jing, LIU Ting, et al. Determination of oligomeric proanthocyanidins and levodopa in broad bean from Qinghai province and comparison of differences among varieties[J]. Food and Nutrition in China,2017,23(9):36−40. doi: 10.3969/j.issn.1006-9577.2017.09.009
    [6]
    吴海虹, 卓成龙, 江宁, 等. 正交试验优化蚕豆真空微波干燥工艺[J]. 食品科学,2013,34(14):100−103. [WU Haihong, ZHUO Chenglong, JIANG Ning, et al. Optimization of vacuum microwave drying of broad bean[J]. Food Science,2013,34(14):100−103. doi: 10.7506/spkx1002-6630-201314020
    [7]
    TAZRART K, ZAIDI F, SALVADOR A, et al. Effect of broad bean (Vicia faba) addition on starch properties and texture of dry and fresh pasta[J]. Food Chemistry,2019,278:476−481. doi: 10.1016/j.foodchem.2018.11.036
    [8]
    李雪芬, 韩涛, 夏晓楠, 等. 铜螯合亲和层析分离抗氧化活性蚕豆蛋白酶解物[J]. 中国粮油学报,2017,32(1):119−124. [LI Xuefen, HAN Tao, XIA Xiaonan, et al. Separation of antioxidant hydrolysates from broad bean protein with immobilized metal affinity chromatography (IMAC)[J]. Journal of the Chinese Cereals and Oils Association,2017,32(1):119−124. doi: 10.3969/j.issn.1003-0174.2017.01.021
    [9]
    XIE J H, DU M X, SHEN M Y, et al. Physico-chemical properties, antioxidant activities and angiotensin-I converting enzyme inhibitory of protein hydrolysates from Mung bean (Vigna radiate)[J]. Food Chemistry,2019,270:243−250. doi: 10.1016/j.foodchem.2018.07.103
    [10]
    陈丹阳, 韩涛, 杜斌, 等. 酶解蚕豆蛋白制备降胆固醇肽及其响应面优化[J]. 中国油脂,2018,43(10):46−52. [CHEN Danyang, HAN Tao, DU Bin, et al. Optimization of preparation of hypocholesterolemic peptides from broad bean protein by enzymatic hydrolysis using response surface methodology[J]. China Oils and Fats,2018,43(10):46−52. doi: 10.3969/j.issn.1003-7969.2018.10.010
    [11]
    林琳, 卢跃红, 陈友霞, 等. 蚕豆多酚对过氧自由基介导的DNA损伤的保护作用[J]. 食品科学,2020,41(17):83−88. [LIN Lin, LU Yuehong, CHEN Youxia, et al. Protective effect of polyphenols from broad bean on peroxy radical-Induced DNA damage[J]. Food Science,2020,41(17):83−88. doi: 10.7506/spkx1002-6630-20190725-343
    [12]
    兰佳佳, 杨希娟, 王生君. 蚕豆加工利用综述[J]. 青海农林科技,2017(4):46−49. [LAN Jiajia, YANG Xijuan, WANG Shengjun. Summary of processing and utilization of faba bean[J]. Science and Technology of Qinghai Agriculture and Forestry,2017(4):46−49. doi: 10.3969/j.issn.1004-9967.2017.04.015
    [13]
    袁婷婷, 董坤, 郭增鹏, 等. 阿魏酸诱导蚕豆枯萎病发生及根系组织结构损伤的化感效应[J]. 植物营养与肥料学报,2020,26(5):914−923. [YUAN Tingting, DONG Kun, GUO Zengpeng, et al. Allelopathic effects of ferulic acid inducing Fusarium wilt occurrence and abnormal root tissue structure of faba bean[J]. Journal of Plant Nutrition and Fertilizers,2020,26(5):914−923. doi: 10.11674/zwyf.19388
    [14]
    王丽娟, 杨丽萍. 基于专利分析的油炸蚕豆休闲食品产业技术创新态势研究[J]. 中国高新科技,2020(17):36−37. [WANG Lijuan, YANG Liping. Research on technological innovation situation of fried broad bean snack food industry based on patent analysis[J]. China High and New Technology,2020(17):36−37. doi: 10.3969/j.issn.2096-4137.2020.17.010
    [15]
    范柳萍, 王维琴, 孙金才, 等. 预处理技术对真空油炸脆蚕豆品质的影响[J]. 食品工业科技,2008(7):108−109, 113. [FAN Liuping, WANG Weiqin, SUN Jincai, et al. Effects of pretreatment on the quality of vacuum fried horsebean[J]. Science and Technology of Food Industry,2008(7):108−109, 113. doi: 10.13386/j.issn1002-0306.2008.07.026
    [16]
    李焕荣, 胡瑞兰, 贾静. 蚕豆膨化休闲食品的研制[J]. 食品科学,2006,27(11):627−631. [LI Huanrong, HU Ruilan, JIA Jing. Production technology of puffed and recreation food with the broad bean[J]. Food Science,2006,27(11):627−631. doi: 10.3321/j.issn:1002-6630.2006.11.157
    [17]
    饶先军, 汪立成, 刘春梅, 等. 预糊化替代复合磷酸盐在油炸蚕豆中的应用[J]. 食品工业科技,2012,33(21):242−245. [RAO Xianjun, WANG Licheng, LIU Chunmei, et al. Compound phosphate replaced by pre-gelatinizing in the application of frying broad bean[J]. Science and Technology of Food Industry,2012,33(21):242−245. doi: 10.13386/j.issn1002-0306.2012.21.053
    [18]
    张洁, 徐桂花, 黄蓉. 酥脆蚕豆休闲食品的研制[J]. 粮食与饲料工业,2010(9):34−36. [ZHANG Jie, XU Guihua, HUANG Rong. Research and manufacture of snack food crispy broad beans[J]. Cereal & Feed Industry,2010(9):34−36. doi: 10.3969/j.issn.1003-6202.2010.09.012
    [19]
    郭爱平, 温利军, 吴晓伟, 等. 花生荞面豆制作工艺的研究[J]. 美食研究,2016,33(2):48−52. [GUO Aiping, WEN Lijun, WU Xiaowei, et al. Processing technology of fried fava beans coated by peanut and puckwheat paste[J]. Journal of Researches on Dietetic Science and Culture,2016,33(2):48−52. doi: 10.3969/j.issn.1009-4717.2016.02.010
    [20]
    刘潇潇, 张龙飞, 甘钰培, 等. 油炸花生米生产工艺及挥发性风味成分研究[J]. 食品研究与开发,2021,42(24):68−73. [LIU Xiaoxiao, ZHANG Longfei, GAN Yupei. et al. The production technology and volatile flavor components of fried peanuts[J]. Food Research and Development,2021,42(24):68−73. doi: 10.12161/j.issn.1005-6521.2021.24.010
    [21]
    IDRUS N F M, YANG T A. Comparison between roasting by super-heated steam and by convection on changes in colour, texture and microstructure of peanut (Arachis hypogaea)[J]. Food Science and Technology Research,2012,18(4):515−524. doi: 10.3136/fstr.18.515
    [22]
    BLANK I. Gas chromatography-olfactometry in food aroma analysis. In R. Marsili (Ed.)[M]//Techniques for Analyzing Food Aroma New York: Nestec Ltd Dekker, 1997: 293−329.
    [23]
    JELEN H H, OBUCHOWSKA M, ZAWIRSKA-WOJTASIAK R, et al. Headspace solid-phase microextraction use for the characterization of volatile compounds in vegetable oils of different sensory quality[J]. Journal of Agricultural and Food Chemistry,2000,48(6):2360−2367. doi: 10.1021/jf991095v
    [24]
    袁小钧, 钟世荣, 吴华昌, 等. 火锅常用不同品种干辣椒感官品质差异研究[J]. 中国调味品,2022,47(4):173−177. [YUAN Xiaojun, ZHONG Shirong, WU Huachang, et al. Study on sensory quality differences of different varieties of dried chilies commonly used in hot pot[J]. China Condiment,2022,47(4):173−177. doi: 10.3969/j.issn.1000-9973.2022.04.033
    [25]
    YANG M, ZHENG C, ZHOU Q, et al. Minor components and oxidative stability of cold-pressed from rapeseed cultivars in China[J]. Journal of Food Composition and Analysis,2013,29(1):1−9. doi: 10.1016/j.jfca.2012.08.009
    [26]
    冷进松, 熊洋, 胡韬纲. 低温真空油炸大蒜调味配方及含油率影响研究[J]. 食品工业,2015,36(12):126−129. [LENG Jinsong, XIONG Yang, HU Taogang. Study on the fried garlic seasoning formula of low temperature vacuum and the influence of oil content[J]. The Food Industry,2015,36(12):126−129.
    [27]
    李祥慧, 周文君, 易阳, 等. 菜籽油挥发性成分检测及高温处理前后变化分析[J]. 食品科技,2020,45(3):190−195. [LI Xianghui, ZHOU Wenjun, YI Yang, et al. Determination of volatile compounds from refined rapeseed oil and their changes before and after high temperature treatment[J]. Food Science and Technology,2020,45(3):190−195. doi: 10.13684/j.cnki.spkj.2020.03.035
    [28]
    鲁金花, 谢定, 鲜灵芝. 发酵型与浸泡型杨梅酒的挥发性成分分析[J]. 食品与机械,2022,38(6):34−39, 179. [LU Jinhua, XIE Ding, XIAN Lingzhi. Analysis of volatile components of fermented and soaked bayberry wine[J]. Food and Machinery,2022,38(6):34−39, 179. doi: 10.13652/j.spjx.1003.5788.2022.80027
    [29]
    YAN W, LIU Q, WANG Y, et al. Inhibition of lipid and aroma deterioration in rice bran by infrared heating[J]. Food and Bioprocess Technology,2020,13:1677−1687. doi: 10.1007/s11947-020-02503-z
    [30]
    廖紫玉, 魏光强, 田洋, 等. 基于HS-SPME-GC-MS分析加工方式对即食乳扇风味品质的影响[J]. 中国乳品工业,2022,50(3):14−21. [LIAO Ziyu, WEI Guangqiang, TIAN Yang, et al. Based on HS-SPME-GC-MS analysis of the effect of processing methods on the flavor quality of instant Rushan[J]. China Dairy Industry,2022,50(3):14−21. doi: 10.19827/j.issn1001-2230.2022.03.003
    [31]
    孟令晗, 雷思佳, 吴迪, 等. 全麦速冻油条复热加工中风味与抗氧化特性[J]. 食品科学,2022,43(4):167−174. [MENG Linghan, LEI Sijia, WU Di, et al. Flavor substances and antioxidant properties of quick-frozen pre-fried whole wheat youtiao after different reheating methods[J]. Food Science,2022,43(4):167−174. doi: 10.7506/spkx1002-6630-20210219-202
    [32]
    ASOKAPANDIAN S, SWAMY G J, HAJJUL H. Deep fat frying of foods: A critical review on process and product parameters[J]. Crit Rev Food Sci,2020,60(20):3400−3413. doi: 10.1080/10408398.2019.1688761
    [33]
    陶星宇, 邓科磊, 汤尚文, 等. 烘烤温度对黑米挥发性风味物质的影响[J]. 食品科技,2022,47(8):138−145. [TAO Xingyu, DENG Keqiang, TANG Shangwen, et al. Effects of baking temperature on volatile organic compounds in black rice[J]. Food Science and Technology,2022,47(8):138−145. doi: 10.3969/j.issn.1005-9989.2022.8.spkj202208022
    [34]
    尹含靓, 肖何, 邓高文, 等. 基于GC-IMS技术分析不同香辛料水煮液的风味物质组成差异[J]. 食品工业科技,2021,42(17):278−284. [YIN Hanliang, XIAO He, DENG Gaowen, et al. Based on GC-IMS technology to analyze the difference in flavor composition of different spice boiling liquids[J]. Science and Technology of Food Industry,2021,42(17):278−284. doi: 10.13386/j.issn1002-0306.2020110117
    [35]
    袁琴琴. 气相色谱-离子迁移谱分析漂烫和银杏叶提取物对腊肉挥发性物质成分的影响[J]. 食品研究与开发,2020,41(11):165−172. [YUAN Qinqin. The aromatic constituents analysis of cantonese bacon suffer from blanching and ginkgo biloba extract by GC-IMS[J]. Food Research and Development,2020,41(11):165−172. doi: 10.12161/j.issn.1005-6521.2020.11.028
    [36]
    姚文生, 蔡莹暄, 刘登勇, 等. 不同材料熏制鸡腿肉挥发性物质GC-IMS指纹图谱分析[J]. 食品科学技术学报,2019,37(6):37−45. [YAO Wensheng, CAI Yingxuan, LIU Dengyong, et al. Volatile compounds analysis in chicken thigh smoked with different materials by GC-IMS fingerprint[J]. Journal of Food Science and Technology,2019,37(6):37−45. doi: 10.3969/j.issn.2095-6002.2019.06.006
    [37]
    张敬文, 潘磊庆, 屠康. 基于E-nose、HS-SPME-GC-MS和GC-IMS检测三种草莓鲜榨汁的香气[J]. 食品工业科技,2023,44(3):286−296. [ZHANG Jingwen, PAN Leiqing, TU Kang. Aroma determination of three freshly squeezed strawberry juice based on E-nose, HS-SPME-GC-MS and GC-IMS[J]. Science and Technology of Food Industry,2023,44(3):286−296. doi: 10.13386/j.issn1002-0306.2022040207
    [38]
    卢延想, 梁慧珍, 陈鹏, 等. 高温大曲中产香酵母的筛选及特征香气分析[J]. 食品研究与开发,2021,42(11):167−174. [LU Yanxiang, LIANG Huizhen, CHEN Peng, et al. Screening and characteristic aroma analysis of aroma-producing yeasts in high-temperature Daqu[J]. Food Research and Development,2021,42(11):167−174. doi: 10.12161/j.issn.1005-6521.2021.11.027
    [39]
    詹展. 再生稻稻米品质研究[D]. 武汉: 武汉轻工大学, 2021.

    ZHAN Zhan. Study on rice quality of ratoon crop rice[D]. Wuhan: Wuhan Polytechnic University, 2021.
  • Cited by

    Periodical cited type(7)

    1. 冯薇,孟然,李赵嘉,吴哲,鲁雪林,陈悦,王秀萍. 甲基磺酸乙酯对蒲公英胚性细胞基因表达的影响. 中草药. 2025(06): 2111-2121 .
    2. 冯薇,吴哲,孟然,李赵嘉,鲁雪林,张丽娜,王秀萍. 蒲公英白粉病病原菌鉴定及种质资源抗病性评价. 中国蔬菜. 2025(03): 104-110 .
    3. 晋海军,杨灵丽,梁建东,龚荣英,邢益政,王国凯,陈美娟,田维毅. 蒲公英水提液的发酵工艺优化及其机制研究. 食品与发酵工业. 2024(21): 112-120 .
    4. 刘红宁,姜佳恩,单雅慧,郑凯麒,周权,陈丽华. 茶剂产品的开发现状与创新发展趋势. 中成药. 2023(11): 3683-3688 .
    5. 程丽英,沈纪健,胡西阳,王若男,高源,李印帮. 蒲公英的营养保健价值及其在食品中开发利用现状. 食品工业. 2022(08): 331-334 .
    6. 李家磊,高扬,管立军,严松,徐娜,卢淑雯,李波,周野. 蒲公英超微粉馒头的研制及品质分析. 食品科技. 2022(12): 141-148 .
    7. 伍建军. 国民营养计划背景下的中国营养保健食品行业创新发展趋势. 食品安全质量检测学报. 2021(08): 3164-3171 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (146) PDF downloads (15) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return