XU Liming, JIANG Guofeng, WU Xinling, et al. Bioinformatics Analysis and Gene Cloning of L-Lactate Dehydrogenase from Lactobacillus rhamnosus[J]. Science and Technology of Food Industry, 2023, 44(11): 153−162. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022080109.
Citation: XU Liming, JIANG Guofeng, WU Xinling, et al. Bioinformatics Analysis and Gene Cloning of L-Lactate Dehydrogenase from Lactobacillus rhamnosus[J]. Science and Technology of Food Industry, 2023, 44(11): 153−162. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022080109.

Bioinformatics Analysis and Gene Cloning of L-Lactate Dehydrogenase from Lactobacillus rhamnosus

More Information
  • Received Date: August 09, 2022
  • Available Online: April 04, 2023
  • In this study, L-lactate dehydrogenase (Lr-L-LDH) from Lactobacillus rhamnosus was investigated. The well-known Lr-L-LDH1 was taken as the control, differences between Lr-L-LDH1 and Lr-L-LDH2 annotated from the genome of L. rhamnosus were analyzed. The primary structure, basic properties, hydrophobicity, secondary structure of Lr-L-LDH1 and Lr-L-LDH2 were predicted and analyzed using online websites and professional software. Homology modeling of the tertiary structure, molecular docking of enzymes and substrates, phylogenetic analysis, in vitro cloning, expression, and enzyme activity assays were further studied. The results showed that, in comparison to Lr-L-LDH1, although Lr-L-LHD2 had similar molecular characteristics, secondary and tertiary structures, Lr-L-LHD2 exhibited differences: A shorter sequences, low amino acid identities (48.08%), and a different phylogenetic status. Lr-L-LHD2 also contained a catalytically active site, a highly conserved NAD+ binding site sequence (GXGXXG), a three-dimensional active pocket domain, was an NAD+ dependent tetrameric L-lactate dehydrogenase, and be activated by fructose 1,6-diphosphate in the cytoplasm for catalyzing the reduction of pyruvate to L-lactic acid. In vitro enzyme activity was significantly lower than Lr-L-LDH1 (P<0.01). In conclusion, both Lr-L-LDH1 and Lr-L-LHD2 showed enzyme activities of L-lactate dehydrogenase, indicating they may regulate the L-lactate metabolism pathway together. Considerations of both Lr-L-LDH1 and Lr-L-LHD2 should be taken for the future molecular modifications of L-LDH in L. rhamnosus, and the study provided the molecular and scientific basis for the gene engineering modifications of lactic acid fermentation industry.
  • [1]
    JU S Y, KIM J H, LEE P C. Long-term adaptive evolution of Leuconostoc mesenteroides for enhancement of lactic acid tolerance and production[J]. Biotechnology for Biofuels,2016,9(1):240. doi: 10.1186/s13068-016-0662-3
    [2]
    ABDEL-RAHMAN M A, TASHIRO Y, SONOMOTO K. Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: Overview and limits[J]. Journal of Biotechnology,2010,156(4):286−301.
    [3]
    PARRA-RAMIREZ D, MARTINEZ A, CARDONA C A. Lactic acid production from glucose and xylose using the lactogenic Escherichia coli strain JU15: Experiments and techno-economic results[J]. Bioresource Technology,2018,273:86−92.
    [4]
    孙浩轩, 周卫强, 杨硕, 等. 微生物制备高光学纯度L-乳酸的研究进展[J]. 食品与发酵科技,2021,57(5):91−96, 112. [SUN H X, ZHOU W Q, YANG S, et al. Progress in microbiological preparation of L-lactic acid strain with high optical purity and its production[J]. Food and Fermentation Sciences & Technology,2021,57(5):91−96, 112.
    [5]
    刘金熙, 李冠洋, 金清. 乳酸菌发酵生产D-/L-乳酸的研究进展[J]. 食品安全导刊,2021,33:146−148. [LIU J X, LI G Y, JIN Q. Research progress in production of D-/L-lactic acid by lactic acid bacteria[J]. China Food Safety Magazine,2021,33:146−148. doi: 10.3969/j.issn.1674-0270.2021.30.spaqdk202130085
    [6]
    WESSELS S, AXELSSON L, HANSEN E B, et al. The lactic acid bacteria, the food chain, and their regulation[J]. Trends in Food Science & Technology,2004,15(10):498−505.
    [7]
    BERNARD N, FERAIN T, GARMYN D, et al. Cloning of the D-lactate dehydrogenase gene from Lactobacillus delbrueckii subsp. bulgaricus by complementation in Escherichia coli[J]. FEBS Letters,1991,290:61−64. doi: 10.1016/0014-5793(91)81226-X
    [8]
    ABDEL-RAHMAN M A, TASHIRO Y, SONOMOTO K. Recent advances in lactic acid production by microbial fermentation processes[J]. Biotechnology Advances,2013,31(6):877−902. doi: 10.1016/j.biotechadv.2013.04.002
    [9]
    吉林中粮生化有限公司. 产L-乳酸的重组菌株及其构建方法和发酵产L-乳酸的方法及应用: 中国, CN202010463397.3[P]. 2020-08-07

    Jilin COFCO Biochemical Co. Ltd. Recombinant strain producing L-lactic acid and its construction method, fermentation method and application: China, CN202010463397.3[P]. 2020-08-07.
    [10]
    李雪晴, 袁风娇, 刘艳, 等. 不对称还原苯丙酮酸的L-乳酸脱氢酶L-LcLDH2的表达及生物信息学分析[J]. 食品与生物技术学报,2019,38(12):25−30. [LI X Q, YUAN F J, LIU Y, et al. Expression and bioinformatic analysis of an L-Lactate Dehydrogenase (L-LcLDH2) for the asymmetric reduction of phenylpyruvic acid[J]. Journal of Food Science and Biotechnology,2019,38(12):25−30. doi: 10.3969/j.issn.1673-1689.2019.12.004
    [11]
    ANDRES J, MOLINER V, KRECHL J, et al. A PM3 quantum chemical study of the pyruvate reduction mechanism catalyzed by lactate dehydrogenase[J]. Bioorganic Chemistry,1993,21(3):260−274. doi: 10.1006/bioo.1993.1022
    [12]
    KLEEREBEZEM M, HUGENHOLTZ J. Metabolic pathway engineering in lactic acid bacteria[J]. Current Opinion in Biotechnology,2003,14(2):232−237. doi: 10.1016/S0958-1669(03)00033-8
    [13]
    杨贞耐, 张雪. 乳酸菌代谢途径的基因工程调控[J]. 中国乳品工业,2007,35(11):44−47. [YANG Z N, ZHANG X. Genetic engineering of metabolic pathways in lactic acid bacteria[J]. China Dairy Industry,2007,35(11):44−47. doi: 10.3969/j.issn.1001-2230.2007.11.013
    [14]
    李倩, 王梦, 刘珞, 等. L-乳酸脱氢酶在大肠杆菌BL-21(DE3)中的表达[J]. 生物加工过程,2011,9(6):21−25. [LI Q, WANG M, LIU L, et al. Expression of L-lactate dehydrogenase in Escherichia coli BL-21 (DE3)[J]. Chinese Journal of Bioprocess Engineering,2011,9(6):21−25. doi: 10.3969/j.issn.1672-3678.2011.06.005
    [15]
    袁剑, 秦浩, 葛向阳, 等. 干酪乳杆菌L-乳酸脱氢酶在大肠杆菌中的表达、纯化及酶学性质[J]. 微生物学通报,2011,38(10):1482−1487. [YUAN J, QIN H, GE X Y, et al. Overexpression, purification and properties of ldhL gene from Lactobacillus casei in Escherichia coli[J]. Microbiology China,2011,38(10):1482−1487.
    [16]
    杨登峰, 潘丽霞, 关妮, 等. 产高纯度L-乳酸大肠杆菌基因工程菌的初步研究[J]. 现代食品科技,2010,26(2):126−128,171. [YANG D F, PAN L X, GUAN N, et al. Construction of recombinant E. coli. strain for producing high-purity L-Lactate[J]. Modern Food Science and Technology,2010,26(2):126−128,171.
    [17]
    王刚, 肖雨, 李义, 等. ldhL-ldb0094基因敲除对保加利亚乳杆菌产L-乳酸的影响[J]. 中国生物工程杂志,2019,39(8):66−73. [WANG G, XIAO Y, LI Y, et al. Effect of ldhL-ldb0094 gene knock out mutant on Lactobacillus delbrueckii subsp. blgaricus producing L-lactic acid[J]. China Biotechnology,2019,39(8):66−73.
    [18]
    许黎明, 成春燕, 吕军. 鼠李糖乳杆菌D-乳酸脱氢酶基因ldhD的敲除[J]. 基因组学与应用生物学,2016,35(6):1421−1427. [XU L M, CHENG C Y, LÜ J. Knockout of D-Lactate dehydrogenase gene ldhD in Lactobacillus rhamnosus[J]. Genomics and Applied Biology,2016,35(6):1421−1427.
    [19]
    金李玲, 孙丽霞, 陈思婷, 等. 鼠李糖乳杆菌半固态发酵法生产L-乳酸及发酵动力学分析[J]. 食品工业科技,2015,36(19):195−201. [JIN L L, SUN L X, CHEN S T, et al. Study on production of L-Lactic acid in semi-solid state fermentation by Lactobacillus rhamnosus and fermentation kinetics[J]. Science and Technology of Food Industry,2015,36(19):195−201.
    [20]
    JIANG G F, HINSINGER D D, STRIJK J S. Comparison of intraspecific, interspecific and intergeneric chloroplast diversity in Cycads[J]. Scientific Reports,2016,6:31473. doi: 10.1038/srep31473
    [21]
    XU L M, HINSINGER D D, JIANG G F. The complete mitochondrial genome of the Agrocybe aegerita, an edible mushroom[J]. Mitochondrial Dna Part B,2017,2(2):791−792. doi: 10.1080/23802359.2017.1398618
    [22]
    XU L M, HINSINGER D D, JIANG G F. The complete mitochondrial genome of the Basidiomycete fungus Pleurotus cornucopiae (Paulet) Rolland[J]. Mitochondrial DNA Part B,2018,3(1):73−75. doi: 10.1080/23802359.2017.1422405
    [23]
    李建武, 萧能, 余瑞元, 等. 生物化学实验原理和方法[M]. 北京: 北京大学出版社, 1997: 351−353

    LI J W, XIAO N, YU R Y, et al. Principles and methods of biochemical experiment[M]. Beijing: Peking University Press, 1997: 351−353.
    [24]
    倪玉芳. 四种啮齿动物Ldha基因的克隆、原核表达与酶学性质研究[D]. 泸州: 西南医科大学, 2021

    NI Y F. Cloning, prokaryotic expression and enzymatic properties of Ldha genes from four rodents[D]. Luzhou: Southwest Medical University, 2021.
    [25]
    申萍香, 黄艳, 黄江, 等. 生物信息学分析亚洲牛带绦虫乳酸脱氢酶基因及其蛋白的结构与特性[J]. 中国人兽共患病学报,2008,24(8):722−727. [SHEN P X, HUANG Y, HUANG J, et al. Bioinformatics analysis on the structures and properties of gene and the encoding protein of lactate dehydrogenase from Taeniasaginata asiatica[J]. Chinese Journal of Zoonoses,2008,24(8):722−727. doi: 10.3969/j.issn.1002-2694.2008.08.008
    [26]
    吕刚, 余新炳, 黄灿, 等. 日本血吸虫乳酸脱氢酶(SjLDH)结构与功能的生物信息学分析[J]. 中国寄生虫学与寄生虫病杂志,2007,25(3):202−205. [LÜ G, YU X B, HUANG C, et al. Bioinformatics analysis for the structure and function of lactate dehydrogenase from Schistosoma japonicum[J]. Chinese Journal of Parasitology and Parasitic Diseases,2007,25(3):202−205. doi: 10.3969/j.issn.1000-7423.2007.03.010
    [27]
    赵婷. 副干酪乳杆菌乳酸脱氢酶的克隆表达及酶学性质的研究[D]. 苏州: 苏州大学, 2012

    ZHAO T. Cloning, overexpression and properties of ldh gene from Lactobacillus paracasei[D]. Suzhou: Soochow University, 2012.
    [28]
    GURUPRASAD K, REDDY B V, PANDIT M W. Correlation between stability of a protein and its dipeptide composition: A novel approach for predicting in vivo stability of a protein from its primary sequence[J]. Protein Engineering, Design and Selection,1990,4(2):155−161. doi: 10.1093/protein/4.2.155
    [29]
    GASTEIGER E, HOOGLAND C, GATTIKER A, et al. The proteomics protocols handbook: Protein identification and analysis tools on the ExPASy server[M]. Clifton: Humana Press, 2005: 571−607.
    [30]
    WOODS H K R. Prediction of protein antigenic determinants from amino acid sequences[J]. Proceedings of the National Academy of Sciences of the United States of America,1981,78(6):3824−3828. doi: 10.1073/pnas.78.6.3824
    [31]
    陈琦, 李春秀, 郑高伟, 等. 工业蛋白质构效关系的计算生物学解析[J]. 生物工程学报,2019,35(10):1829−1842. [CHEN Q, LI C X, ZHENG G W, et al. Computational analysis of structure-activity relationship of industrial enzymes[J]. Chinese Journal of Biotechnology,2019,35(10):1829−1842.
    [32]
    ARAI K, ISHIMITSU T, FUSHINOBU S, et al. Active and inactive state structures of unliganded Lactobacillus casei allosteric L-lactate dehydrogenase[J]. Proteins-structure Function & Bioinformatics,2010,78(3):681−694.
    [33]
    GARVIE E I. Bacterial lactate dehydrogenases[J]. Microbiological Reviews,1980,44(1):106. doi: 10.1128/mr.44.1.106-139.1980
    [34]
    FELDMAN-SALIT A, HERING S, MESSIHA H L, et al. Regulation of the activity of lactate dehydrogenases from four lactic acid bacteria[J]. Journal of Biological Chemistry,2013,288(29):21295−21306. doi: 10.1074/jbc.M113.458265
    [35]
    NEVES A R, POOL W A, KOK J, et al. Overview on sugar metabolism and its control in Lactococcus lactis-the input from in vivo NMR[J]. Fems Microbiology Reviews,2010,29(3):531−554.
    [36]
    钱国军, 陈彩平, 翟如英, 等. 极耐热性乳酸脱氢酶高效表达、纯化及酶学性质[J]. 生物工程学报,2014,30(4):545−553. [QIAN G J, CHEN C P, ZHAI R Y, et al. Expression, purification and characterization of a thermostable lactate dehydrogenase from Thermotoga maritima[J]. Chinese Journal of Biotechnology,2014,30(4):545−553.
    [37]
    ZHAO R, ZHENG S, DUAN C, et al. NAD-dependent lactate dehydrogenase catalyses the first step in respiratory utilization of lactate by Lactococcus lactis[J]. Febs Open Bio,2013,3:379−386. doi: 10.1016/j.fob.2013.08.005
    [38]
    CROW V L, PRITCHARD G G. Fructose-1, 6-diohosphate activated L-lactate dehydrogenase from Streptococcus lactis kinetic properties and factors affecting activation[J]. Journal of Bacteriology,1977,131(1):82−91. doi: 10.1128/jb.131.1.82-91.1977
    [39]
    THOMAS T D, TURNER K W, CROW V L. Galactose fermentation by Streptococcus lactis and Streptococcus cremoris: Pathways, products, and regulation[J]. Journal of Bacteriology,1980,144(2):672−682. doi: 10.1128/jb.144.2.672-682.1980
    [40]
    CARREA G, RIVA S. Properties and synthetic applications of enzymes in organic solvents[J]. Cheminform,2000,39(13):2226−2254.
    [41]
    王希庆. 产高光学纯度D-乳酸保加利亚乳杆菌工程菌的构建及在生物炼制中的应用[D]. 长春: 吉林农业大学, 2018

    WANG X Q. Construction of Lactobacillus delbrueckii sp. bulgaricus engineering for high optical purity D-lactic acid and application in biorefinery[D]. Changchun: Jilin Agricultural University, 2018.
  • Cited by

    Periodical cited type(4)

    1. 胡秀发,陈燕美,张喜玲,顾辰琦,李曼,宁阳阳,关纬超,郑婵敏,董茗洋,胡蝶,杨庆余. 超声辅助NaCl浸泡对熟化黑豆结构和消化特性的影响. 食品工业科技. 2024(06): 121-127 . 本站查看
    2. 陈楚瑶,李丹丹,陶阳,张荣广,韩永斌. 微波预处理对红豆吸水特性、外观及淀粉特性的影响. 食品工业科技. 2023(01): 56-64 . 本站查看
    3. 曲敏,贾圆芳,刘琳琳,朱秀清,朱颖,黄雨洋,孙冰玉,吕铭守. 不同复水方式对大豆拉丝蛋白复水品质的影响及动力学模型构建. 农业工程学报. 2023(10): 264-274 .
    4. 李娜,线承源,徐鹏云,姜海勇,李姜维,王杉. 皂荚籽热风干燥特性及干燥动力学模型研究. 食品安全质量检测学报. 2023(19): 252-261 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (219) PDF downloads (22) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return