ZHANG Zhiyi, BAI Ruoxi, ZONG Aizhen, et al. Online Identification and Constitutive Relationship Analysis of Antioxidant Components in Jerusalem Artichoke[J]. Science and Technology of Food Industry, 2023, 44(18): 307−312. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022080031.
Citation: ZHANG Zhiyi, BAI Ruoxi, ZONG Aizhen, et al. Online Identification and Constitutive Relationship Analysis of Antioxidant Components in Jerusalem Artichoke[J]. Science and Technology of Food Industry, 2023, 44(18): 307−312. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022080031.

Online Identification and Constitutive Relationship Analysis of Antioxidant Components in Jerusalem Artichoke

More Information
  • Received Date: August 02, 2022
  • Available Online: July 19, 2023
  • In this study, a new method based on the HPLC online scavenging diphenyl-1-picrylhydrazyl (DPPH) radical activity and Q-TOF/MS for the rapid screening and identification of caffeoylquinic acids in Jerusalem artichoke, and its antioxidant activity was evaluated. The mobile phase was acetonitrile-0.1% formic acid aqueous solution (gradient elution), and the samples were separated by C18 column. The samples were mixed with DPPH radical solution in PEEK tube and then entered UV detector, the detection wavelength were 280 and 517 nm, and the online screening of caffeoylquinic acid components was realized by the negative peak generated at 517 nm. Results showed that, under the negative ion mode, according to the precise molecular weight combined with the standards, five antioxidant compounds were screened from the Jerusalem artichoke, including chlorogenic acid, caffeic acid, 3,4-O-dicaffeoylquinic acid, 3,5-O-dicaffeoylquinic acid, 4,5-O-dicaffeoylquinic acid. The free radical scavenging rate of each component to DPPH, ABTS+ and superoxide anion was in the range of 54.63%~95.43%, 8.32%~69.63%, 27.37%~51.40%, and were positively correlated with the concentration. In this study, the caffeoylquinic acids in Jerusalem artichoke were rapidly identified and their antioxidant activities were explored, which provided a scientific basis for the development and utilization of caffeoylquinic acids in Jerusalem artichoke.
  • [1]
    李玲玉, 孙晓晶, 郭富金, 等. 菊芋的化学成分、生物活性及其利用研究进展[J]. 食品研究与开发,2019,40(16):213−218. [LI L Y, SUN X J, GUO F J, et al. Study on the chemical and bioactive compounds and applications of Helianthus tuberosus L

    J]. Food Research and Development,2019,40(16):213−218.
    [2]
    胡素琴, 蔡飞鹏, 王建梅, 等. 菊芋的种植和开发利用[J]. 生物质化学工程,2012,46(1):51−54. [HU S Q, CAI F P, WANG J M, et al. The planting and utilization of Jerusalem artichoke[J]. Biomass Chemical Engineering,2012,46(1):51−54.

    HU S Q, CAI F P, WANG J M, et al. The planting and utilization of Jerusalem artichoke[J]. Biomass Chemical Engineering, 2012, 46(1): 51-54.
    [3]
    王友法, 曾斯杰, 宋小平, 等. 菊糖提取工艺及其应用研究进展[J]. 中国调味品,2019,44(6):193−197. [WANG Y F, ZENG S J, SONG X P, et al. Research progress of lnulin extraction technology and its application[J]. China Condiment,2019,44(6):193−197.

    WANG Y F, ZENG S J, SONG X P, et al. Research progress of lnulin extraction technology and its application[J]. China Condiment, 2019, 44(6): 193-197.
    [4]
    袁晓艳, 封冬梅, 陈晓兰. 菊芋叶中多酚类成分的提取分离及结构鉴定[J]. 江西农业学报,2017,29(4):81−84. [YUAN X Y, FENG D M, CHEN X L, et al. Extraction, separation and structural identification of polyphenolic components from leaves of Helianthus tuberosus[J]. Acta Agriculturae Jiangxi,2017,29(4):81−84.

    YUAN X Y, FENG D M, CHEN X L, et al. Extraction, separation and structural identification of polyphenolic components from leaves of Helianthus tuberosus[J]. Acta Agriculturae Jiangxi, 2017, 29(4): 81-84.
    [5]
    YUAN X Y, CHENG M C, GAO M Z, et al. Cytotoxic constituents from the leaves of Jerusalem artichoke (Helianthus tuberosus L. ) and their structure–activity relationships[J]. Phytochemistry Letters,2013,6(1):21−25. doi: 10.1016/j.phytol.2012.10.007
    [6]
    李佳银, 于欢, 石伯阳, 等. 甘薯茎叶中异槲皮苷及咖啡酰基奎宁酸类衍生物的抗氧化活性[J]. 食品科学,2013,34(7):111−114. [LI J Y, YU H, SHI B Y, et al. Antioxidant activity of isoquercitrin and caffeoylquinic acid derivatives from sweet potato stems and leaves[J]. Food Science,2013,34(7):111−114.

    LI J Y, YU H, SHI B Y, et al. Antioxidant activity of isoquercitrin and caffeoylquinic acid derivatives from sweet potato stems and leaves[J]. Food Science, 2013, 34(7): 111-114.
    [7]
    SHABNAM S, MEHRANGIZ E-M, KHATEREH R. The antioxidant activity of artichoke (Cynara scolymus): A systematic review and meta-analysis of animal studies[J]. Phytotherapy Research,2019,33(1):55−71. doi: 10.1002/ptr.6213
    [8]
    LIAO G C, JHUANG J H, YAO H T. Artichoke leaf extract supplementation lowers hepatic oxidative stress and inflammation and increases multidrug resistance-associated protein 2 in mice fed a high-fat and high-cholesterol diet[J]. Food & Function,2021,12(16):7239−7249.
    [9]
    SHAO T L, LIU W, YUAN P C, et al. Enhanced antitumor activity of inulin-capped Se nanoparticles synthesized using Jerusalem artichoke tubers[J]. Glycoconjugate Journal,2021,38(5):599−607. doi: 10.1007/s10719-021-10011-1
    [10]
    KIM H S, HAN G D. Hypoglycemic and hepatoprotective effects of Jerusalem artichoke extracts on streptozotocin-induced diabetic rats[J]. Food Sciences Biotechnol,2013,22(4):1121−1124. doi: 10.1007/s10068-013-0192-8
    [11]
    SHAO T Y, YU Q H, ZHU T S, et al. Inulin from Jerusalem artichoke tubers alleviates hyperglycaemia in high-fat-diet-induced diabetes mice through the intestinal microflora improvement[J]. British Journal of Nutrition,2020,123(3):308−318.
    [12]
    PANAHI Y, KIANPOUR P, MOHTASHAMI R. Efficacy of artichoke leaf extract in non-alcoholic fatty liver disease: A pilot double-blind randomized controlled trial[J]. Phytotherapy Research,2018,32(7):1382−1387. doi: 10.1002/ptr.6073
    [13]
    HUSSEIN R M, SAWY D M, KANDEIL M A, et al. Chlorogenic acid, quercetin, coenzyme Q10 and silymarin modulate Keap1-Nrf2/heme oxygenase-1 signaling in thioacetamide-induced acute liver toxicity[J]. Life Sciences,2021,277:119460−119460. doi: 10.1016/j.lfs.2021.119460
    [14]
    YUAN X Y, GAO M Z, XIAO H B, et al. Free radical scavenging activities and bioactive substances of Jerusalem artichoke(Helianthus tuberosus L.) leaves[J]. Food Chemistry,2012,133(1):10−14. doi: 10.1016/j.foodchem.2011.09.071
    [15]
    TAMAYOSE C I, SANTOS E A D, NÁDIA R, et al. Caffeoylquinic acids: separation method, antiradical properties and cytotoxicity[J]. Chemistry & Biodiversity,2019,16(7):e1900093.
    [16]
    史红阳, 董蕾. 咖啡及其提取物绿原酸的生物学作用[J]. 国际消化病杂志,2009,29(5):343−345. [SHI H Y, DONG L. Biological effects of coffee and its extract chlorogenic acid[J]. International Journal of Digestive Diseases,2009,29(5):343−345.

    SHI H Y, DONG L. Biological effects of coffee and its extract chlorogenic acid[J]. International journal of digestive diseases, 2009, 29(5): 343-345.
    [17]
    马建华, 钱素平, 林维真, 等. 绿原酸对脱氧鸟苷酸氧化性羟基加合物的快速修复[J]. 中国科学(B辑),1998(6):561−565. [MA J H, QIAN S P, LIN W Z, et al. Rapid repair of oxidative hydroxyl adducts of deoxyguanylate by chlorogenic acid[J]. Science in China (Series B),1998(6):561−565.

    MA J H, QIAN S P, LIN W Z, et al. Rapid repair of oxidative hydroxyl adducts of deoxyguanylate by chlorogenic acid[J]. Science in China(Series B), 1998(06): 561-565.
    [18]
    IVAN C M, MARC B, PIERRE L, et al. The glomerular response to IgA deposition in IgA nephropathy[J]. Semin Nephrol,2008,28(1):88−95. doi: 10.1016/j.semnephrol.2007.10.010
    [19]
    王彬, 岳子青, 何永成. 二咖啡酰奎宁酸在IgA肾病发生发展中潜在的肾保护机制[J]. 中国医药指南,2011,9(8):41−43. [WANG B, YUE Z Q, HE Y C. Potential nephroprotective mechanism of dicaffeoylquinic acid in the development of IgA nephropathy[J]. Guide of China Medicine,2011,9(8):41−43.

    WANG B, YUE Z Q, HE Y C. Potential nephroprotective mechanism of dicaffeoylquinic acid in the development of IgA nephropathy[J]. Guide of China Medicine, 2011, 9(08): 41-43.
    [20]
    苗芹, 叶明国, 刘苏静, 等. 高效液相色谱法测定菊芋叶和向日葵叶中绿原酸[J]. 化学与生物工程,2017,34(2):63−67. [MIAO Q, YE M G, LIU S J, et al. Determination of contents of chlorogenic acid in Helianthus tuberosus L. leaves and Helianthus annuus L. leaves by HPLC[J]. Chemistry & Bioengineering,2017,34(2):63−67.

    MIAO Q, YE M G, LIU S J, et al. Determination of contents of chlorogenic acid in Helianthus tuberosus L. leaves and Helianthus annuus L. leaves by HPLC[J]. Chemistry & Bioengineering, 2017, 34(02): 63-67.
    [21]
    袁晓艳, 高明哲, 王锴, 等. 高效液相色谱-质谱法分析菊芋叶中的绿原酸类化合物[J]. 色谱,2008(3):335−338. [YUAN X Y, GAO M Z, WANG K, et al. Analysis of chlorogenic acids in Helianthus tuberosus L. leaves using high performance liquid chromatography-mass spectrometry[J]. Chinese Journal of Chromatography,2008(3):335−338.

    YUAN X Y, GAO M Z, WANG K, et al. Analysis of chlorogenic acids in Helianthus tuberosus L. leaves using high performance liquid chromatography-mass spectrometry[J]. Chinese Journal of Chromatography, 2008(03): 335-338.
    [22]
    张敏敏, 赵志国, 刘倩, 等. 基于离线2D-HPLC-DPPH-ESI-Q-TOF/MS联用技术的金银花抗氧化成分系统筛选研究[J]. 中草药,2021,52(11):3193−3200. [ZHANG M M, ZHAO Z G, LIU Q, et al. Rapid discovery of trace antioxidants in Lonicerae Japonicae flos by 2D-HPLC-DPPH-ESI-TOF/MS[J]. Chinese Traditional and Herbal Drugs,2021,52(11):3193−3200.

    ZHANG M M, ZHAO Z G, LIU Q, et al. Rapid discovery of trace antioxidants in Lonicerae Japonicae Flos by 2D-HPLC-DPPH-ESI-TOF/MS[J]. Chinese Traditional and Herbal Drugs, 2021, 52(11): 3193-3200.
    [23]
    郑振佳, 张瑞凌, 张敏敏, 等. HPLC-DAD-Q-TOF-MS在线筛选鉴定牛蒡中的抗氧化成分[J]. 食品科学,2019,40(8):175−179. [ZHENG Z J, ZHANG R L, ZHANG M M, et al. On-line screening for and identification of antioxidant compounds from Burdock roots (Arctium lappa L. ) by high performance liquid chromatography-quadrupole time-of-flight mass spectrometry[J]. Food Science,2019,40(8):175−179.

    ZHENG Z J, ZHANG R L, ZHANG M M, et al. On-line screening for and identification of antioxidant compounds from Burdock roots (Arctium lappa L. ) by high performance liquid chromatography-quadrupole time-of-flight mass spectrometry[J]. Food Science, 2019, 40(8): 175-179.
    [24]
    HU W C, ZHOU J, SHEN T, et al. Target-guided isolation of three main antioxidants from Mahonia bealei (Fort.) Carr. leaves using HSCCC[J]. Molecules,2019,24(10):1907. doi: 10.3390/molecules24101907
    [25]
    张敏敏, 程素盼, 赵志国, 等. UPLC-DPPH-PAD-ESI-TOF/MS在线联用技术快速筛选丹参中的抗氧化成分[J]. 中草药,2020,51(11):2908−2913. [ZHANG M M, CHENG S P, ZHAO Z G, et al. Rapid discovery of antioxidants in Salvia miltiorrhiza by UPLC-DPPH-PDA-ESITOF/MS online technique[J]. Chinese Traditional and Herbal Drugs,2020,51(11):2908−2913.

    ZHANG M M, CHENG S P, ZHAO Z G, et al. Rapid discovery of antioxidants in Salvia miltiorrhiza by UPLC-DPPH-PDA-ESITOF/MS online technique[J]. Chinese Traditional and Herbal Drugs, 2020, 51(11): 2908-2913.
    [26]
    徐小博, 徐萍, 毛雪飞, 等. 金银花不同器官三种活性成分含量及其抗氧化活性[J]. 食品工业科技,2018,39(13):41−45. [XU X B, XU P, MAO X F, et al. Contents of three active components in different organs of honeysuckle and their antioxidant activities[J]. Science and Technology of Food Industry,2018,39(13):41−45.

    XU X B, XU P, MAO X F, et al. Contents of three active components in different organs of honeysuckle and their antioxidant activities[J]. Science and Technology of Food Industry, 2018, 39(13): 41-45.
    [27]
    刘英, 王之盛, 周安国, 等. 橙皮苷和绿原酸的体内外抗氧化效应研究[J]. 食品科学,2009,30(23):196−199. [LIU Y, WANG Z S, ZHOU A G, et al. Antioxidative effects of hesperidin and chlorogenic acid in vitro and in vivo[J]. Food Science,2009,30(23):196−199.

    LIU Y, WANG Z S, ZHOU A G, et al. Antioxidative effects of hesperidin and chlorogenic acid in vitro and in vivo[J]. Food Science, 2009, 30(23): 196-199.
    [28]
    甘小娜, 李廷钊, 李波. 基于UPLC-ABTS-PDA-Triple TOF/MS的辣木叶中抗氧化活性成分在线筛选[J]. 中国现代中药,2022,24(6):1003−1008. [GAN X N, LI Y Z, LI B. Online screening of antioxidant active components in Moringa oleifera leaves based on UPLC-ABTS-PDA-Triple TOF/MS[J]. Modern Chinese Medicine,2022,24(6):1003−1008.

    GAN X N, LI Y Z, LI B. Online screening of antioxidant active components in Moringa oleifera leaves based on UPLC-ABTS-PDA-Triple TOF/MS[J]. Modern Chinese Medicine, 2022, 24(6): 1003-1008.
    [29]
    王俏, 邹阳, 钟耕, 等. 多酚类单体物质抗氧化活性的研究[J]. 食品工业科技,2011,32(1):137−140,145. [WANG Q, ZOU Y, ZHONG G, et al. Study on the antioxidant activity of polyphenolic monomers[J]. Science and Technology of Food Industry,2011,32(1):137−140,145.

    WANG Q, ZOU Y, ZHONG G, et al. Study on the antioxidant activity of polyphenolic monomers[J]. Science and Technology of Food Industry, 2011, 32(1): 137-140, 145.
    [30]
    LI X C, LI K, XIE H, et al. Antioxidant and cytoprotective effects of the di-O-caffeoylquinic acid family: The mechanism, structure-activity relationship, and conformational effect[J]. Molecules,2018,23(1):222. doi: 10.3390/molecules23010222
  • Cited by

    Periodical cited type(4)

    1. 刘丽辰,张志昌,雷桂英,侯彦双. 梵净山区域内黑茶中冠突散囊菌的分离和利用. 南方农业. 2025(01): 8-11+17 .
    2. 兰天,段国珍,祁有朝,樊光辉,白春燕,张叶德. 红果枸杞和黄果枸杞广泛靶向代谢组学分析. 食品工业科技. 2024(24): 9-20 . 本站查看
    3. 张修宝,龚雪,王翔,刘源,杨勇胜. 茶叶微生物污染研究进展. 贵茶. 2023(02): 4-13 .
    4. 马薇薇,郑晓娇,刘荣艳,罗岳伟,郭瑜,王晓闻. 加速溶剂萃取法提取小米多酚及其组分分析. 食品安全质量检测学报. 2023(20): 279-286 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (134) PDF downloads (16) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return