LI Lingling, YUAN Hang, YE Zi, et al. Effect of Desiccant on the Quality of Prunus domestica L. under Hot Air Condition[J]. Science and Technology of Food Industry, 2023, 44(11): 238−244. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022070378.
Citation: LI Lingling, YUAN Hang, YE Zi, et al. Effect of Desiccant on the Quality of Prunus domestica L. under Hot Air Condition[J]. Science and Technology of Food Industry, 2023, 44(11): 238−244. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022070378.

Effect of Desiccant on the Quality of Prunus domestica L. under Hot Air Condition

More Information
  • Received Date: August 01, 2022
  • Available Online: April 01, 2023
  • This study used prunus (Prunus domestica L.) as the test material, self-made desiccant (88% potassium carbonate, 8% ethanol, 3% ethyl oleate, 1% potassium hydroxide) and commercial desiccants (Lüzhu brand, Izumi brand, Xinxing brand and Cuilü brand) were used to treat prunus, and the effects of desiccants on the water loss rate, quality and physical and chemical characteristics of dried fruits were investigated. Results showed that the self-made desiccant had obvious advantages over the commercially available desiccants in the dehydration of dried fruits, and under the same conditions, the fruit dehydrated by self-made desiccant was the fastest, up to 26.25%. In addition, the content of soluble solids and titratable acid in prunes treated with different desiccants increased obviously, and the effect of self-made desiccant was better than that of Cuilü desiccants. As for texture characteristics, the hardness and chewiness of dried prunes were increased, but the hardness of dried prunes treated with self-made desiccant was the lowest, which was 1034.62 g, and its elasticity and chewiness were in the middle, which could bring better taste to consumers. The loss of ascorbic acid, total phenols and total flavonoids in dried prunes treated with self-made desiccant was the lowest, which were 25.48 mg/100 g DW, 358.54 mg GAE/g and 3.61 mg/g, respectively. Meanwhile, the scavenging capacity of DPPH and ABTS+ free radical in prunes treated with self-made desiccant was 79.75% and 66.79% respectively. To sum up, the self-made desiccant can accelerate the dehydration of prunes, and at the same time have a certain protective effect on the quality of prunes. The research results will provide guidance for the production of prunes.
  • [1]
    戴志伟, 孔令明, 刘伟, 等. 西梅发酵乳酸菌的筛选、鉴定及其抗氧化特性研究[J]. 中国食品学报,2022,22(7):310−318. [DAI Z W, KONG L M, LIU W, et al. Screening and identification of lactic acid bacteria fermenting prunes and studies on their antioxidant properties[J]. Journal of Chinese Institute of Food Science and Technology,2022,22(7):310−318. doi: 10.16429/j.1009-7848.2022.07.031
    [2]
    夏娜, 周茜, 任小娜, 等. 西梅“女神”“法兰西”果实品质比较研究[J]. 食品研究与开发,2020,41(12):69−74. [XIA N, ZHOU Q, REN X N, et al. Comparative study on fruit quality of Prunus domestica “Empress” and “France”[J]. Food Research and Development,2020,41(12):69−74. doi: 10.12161/j.issn.1005-6521.2020.12.012
    [3]
    张玎婕, 胡超, 朱远洋, 等. 不同品种及产地西梅香气成分差异性研究[J]. 食品研究与开发,2021,42(23):33−40. [ZANG D J, HU C, ZHU Y Y, et al. Study of differences among different prune varieties and producing areas in prune aroma components[J]. Food Research and Development,2021,42(23):33−40. doi: 10.12161/j.issn.1005-6521.2021.23.006
    [4]
    夏娜, 周茜, 魏健, 等. 不同储藏温度对NFC西梅汁品质变化的影响[J]. 保鲜与加工,2021,21(8):7−14. [XIA N, ZHOU Q, WEI J, et al. Influence of different storage temperature on quality change of NFC prune juice[J]. Storage and Process,2021,21(8):7−14. doi: 10.3969/j.issn.1009-6221.2021.08.002
    [5]
    吕丹丹, 赵晓敏, 李学文, 等. 不同促干剂处理对无核白葡萄干褐变的影响[J]. 食品科技,2019,44(1):58−62. [LÜ D D, ZHAO X M, LI X W, et al. Optimization of drying agent to improve drying rate of seedless grape[J]. Food Science and Technology,2019,44(1):58−62. doi: 10.13684/j.cnki.spkj.2019.01.010
    [6]
    王冬, 朱保庆, 王云鹤, 等. 促干剂处理对无核白葡萄干香气的影响[J]. 食品工业科技,2013,34(12):106−111. [WANG D, ZHU B Q, WANG Y H, et al. Effect of dry-promoter on the contents of flavours in Thompson seedless raisins[J]. Science and Technology of Food Industry,2013,34(12):106−111. doi: 10.13386/j.issn1002-0306.2013.12.077
    [7]
    车玉红, 朱保庆, 王云鹤, 等. 促干剂在鲜杏制干工艺中的应用[J]. 北方园艺,2009(10):249−250. [CHE Y H, ZHU B Q, WANG Y H, et al. Preliminary study on dry-promoter to dry technology of apricot[J]. Northern Horticulture,2009(10):249−250.
    [8]
    吕丹丹, 白友强, 李学文, 等. 葡萄促干剂对无核白葡萄干燥的研究[J]. 中国食品添加剂,2018(11):113−117. [LÜ D D, BAI Y Q, LI X W, et al. Study on seedless white grape drying by grape drying agent[J]. China Food Additives,2018(11):113−117. doi: 10.3969/j.issn.1006-2513.2018.11.013
    [9]
    杜静. 枸杞表皮蜡质及制干技术研究[D]. 兰州: 兰州理工大学, 2010.

    DU J. The study on the epidermal wax and drying proeess of lycium[D]. Lanzhou: Lanzhou University of Technology, 2010.
    [10]
    韩宏伟, 邱杰, 李勇, 等. 不同品种西梅电热烘干工艺研究[J]. 经济林研究,2014,32(4):120−126. [HAN H W, QIU J, LI Y, et al. Electric drying process conditions of different varieties of prunes[J]. Nonwood Forest Research,2014,32(4):120−126. doi: 10.14067/j.cnki.1003-8981.2014.04.023
    [11]
    贺红霞, 申江, 张川, 等. 不同冰温真空干燥压力对草莓品质的影响[J]. 食品研究与开发,2018,39(18):129−134. [HE H X, SHEN J, ZHANG C, et al. Effect of different ice-temperature vacuum drying pressure on the quality of strawberry[J]. Food Research and Development,2018,39(18):129−134. doi: 10.3969/j.issn.1005-6521.2018.18.023
    [12]
    曹建康, 姜微波, 赵玉梅, 等. 果蔬采后生理生化实验指导[M]. 北京: 中国轻工业出版社, 2007.

    CAO J K, JIANG W B, ZHAO Y M, et al. Guidance on postharvest physiological and biochemical experiments of fruits and vegetables[M]. Beijing: China Light Industry Press, 2007.
    [13]
    吴新怡, 潘志涛, 朱吟非, 等. 不同解冻方式对西梅品质的影响[J]. 食品工业科技,2022,43(18):331−336. [WU X Y, PAN Z T, ZHU Y F, et al. Effect of different thawing methods on quality of prunes[J]. Science and Technology of Food Industry,2022,43(18):331−336. doi: 10.13386/j.issn1002-0306.2021110295
    [14]
    谭飔, 彭思维, 李玮轩, 等. 不同干燥方式对龙眼多酚及抗氧化活性的影响[J]. 果树学报,2021,38(3):411−420. [TAN S, PENG S W, LI W X, et al. Effects of different drying methods on polyphenol profile and antioxidant activities in longan (Ficus carica Linn.)[J]. Journal of Fruit Science,2021,38(3):411−420. doi: 10.13925/j.cnki.gsxb.20200488
    [15]
    CHUMROENPHAT T, SOMBOONWATTHANAKUL I, SAENSOUK S, et al. Changes in curcuminoids and chemical components of turmeric (Curcuma longa L.) under freeze-drying and low-temperature drying methods[J]. Food Chemistry,2021,339:128121. doi: 10.1016/j.foodchem.2020.128121
    [16]
    秦建华, 吴涛. 不同干燥处理对马齿苋总酚含量及其抗氧化性的影响[J]. 保鲜与加工,2016,16(5):31−35, 40. [QIN J H, WU T. Effects of different drying methods on functional components and antioxidant activity in sweet potato leaves[J]. Storage and Process,2016,16(5):31−35, 40.
    [17]
    赵珊, 仲伶俐, 秦琳, 等. 不同干燥方式对甘薯叶功能成分及抗氧化活性的影响[J]. 中国农业科学,2021,54(21):4650−4663. [ZHAO S, ZHONG L L, QIN L, et al. Effects of different drying methods on functional components and antioxidant activity in sweet potato leaves[J]. Scientia Agricultura Sinica,2021,54(21):4650−4663. doi: 10.3864/j.issn.0578-1752.2021.21.014
    [18]
    王新茗, 贾传青, 王晓, 等. 无花果热风干燥过程中水分变化及其品质研究[J]. 食品研究与开发,2022,43(11):71−78. [WANG X M, JIA C Q, WANG X, et al. Detecting variations in water and quality of Ficus carica L. during hot air drying[J]. Food Research and Development,2022,43(11):71−78. doi: 10.12161/j.issn.1005-6521.2022.11.010
    [19]
    李文丽. 枸杞脱蜡剂及促干机理研究[D]. 天津: 天津科技大学, 2016.

    LI W L. Experimental study on the dewaxing agent and its drying improvement mechanism of Lycium barbarum L[D]. Tianjin: Tianjin University of Science and Technology, 2016.
    [20]
    朱婷婷, 陈燕帆, 连惠勇. 促干剂对热风干燥条件下黄皮品质的影响[J]. 食品科技,2020,45(5):76−83. [ZHU T T, CHEN Y F, LIAN H Y. Effects of dry-promoting agent on the quality of Clausena lansium (Lour.) Skeels under hot-air-drying condition[J]. Food Science and Technology,2020,45(5):76−83. doi: 10.13684/j.cnki.spkj.2020.05.017
    [21]
    陈嘉旭, 郭蕴璋, 吴楚丽, 等. 不同番茄品种果实品质比较分析[J]. 北京农学院学报,2022,37(3):43−48. [CHEN J X, GUO Y Z, WU C L, et al. Comparative analysis of fruit quality of different tomato varieties[J]. Journal of Beijing University of Agriculture,2022,37(3):43−48. doi: 10.13473/j.cnki.issn.1002-3186.2022.0308
    [22]
    JIA Y, KHALIFA I, HU L, et al. Influence of three different drying techniques on persimmon chips’ characteristics: A comparison study among hot-air, combined hot-air-microwave, and vacuum-freeze drying techniques[J]. Food and Bioproducts Processing,2019,118:67−76. doi: 10.1016/j.fbp.2019.08.018
    [23]
    盛金凤, 陈坤, 雷雅雯, 等. 微波-热风联合干燥茉莉花干燥特性及品质分析[J]. 食品工业科技,2022,43(11):126−135. [SHENG J F, CHEN K, LEI Y W, et al. Drying characteristics and quality analysis of jasmine with combined microwave and hot air drying[J]. Science and Technology of Food Industry,2022,43(11):126−135. doi: 10.13386/j.issn1002-0306.2021090267
    [24]
    SONG C F, CUI Z W, JIN G Y, et al. Effects of four different drying methods on the quality characteristics of peeled litchis (Litchi chinensis Sonn.)[J]. Drying Technology,2015,33(5):583−590. doi: 10.1080/07373937.2014.963203
    [25]
    高月. 枸杞干燥方法及其促干剂的研究[D]. 保定: 河北农业大学, 2015.

    GAO Y. Study on drying method of Chinese wolfberry and their drying solvents[D]. Baoding: Hebei University of Technology, 2015.
    [26]
    GÜMÜŞAY Ö A, BORAZAN A A, ERCAL N, et al. Drying effects on the antioxidant properties of tomatoes and ginger[J]. Food Chemistry,2015,173:156−162. doi: 10.1016/j.foodchem.2014.09.162
    [27]
    MERCALI G D, SCHWARTZ S, MARCZAK L D F, et al. Effect of the electric field frequency on ascorbic acid degradation during thermal treatment by ohmic heating[J]. Journal of Agricultural and Food Chemistry,2014,62(25):5865−5870. doi: 10.1021/jf500203u
    [28]
    da CUNHA R M C, BRANDÃO S C R, de MEDEIROS R A B, et al. Effect of ethanol pretreatment on melon convective drying[J]. Food Chemistry,2020,333:127502. doi: 10.1016/j.foodchem.2020.127502
    [29]
    关东, 陈丹, 崔梦迪, 等. 不同加热温度和处理方式对灰枣活性成分和抗氧化活性的影响[J]. 食品工业科技,2022:1−15. [GUAN D, CHEN D, CUI M D, et al. Effect of different heating temperatures and treatment methods on the active compounds and antioxidant activities of Ziziphus jujuba cv. Huizao[J]. Science and Technology of Food Industry,2022:1−15.
    [30]
    KAUR R, KAUR K, AHLUWALIA P. Effect of drying temperatures and storage on chemical and bioactive attributes of dried tomato and sweet pepper[J]. LWT,2020,117:108604. doi: 10.1016/j.lwt.2019.108604
    [31]
    XU Y, XIAO Y, LAGNIKA C, et al. A comparative evaluation of nutritional properties, antioxidant capacity and physical characteristics of cabbage (Brassica oleracea var. Capitate var L.) subjected to different drying methods[J]. Food Chemistry,2020,309:124935. doi: 10.1016/j.foodchem.2019.06.002
    [32]
    AN N N, SUN W H, LI B, et al. Effect of different drying techniques on drying kinetics, nutritional components, antioxidant capacity, physical properties and microstructure of edamame[J]. Food Chemistry,2022,373:131412. doi: 10.1016/j.foodchem.2021.131412
    [33]
    WU B, GUO X, GUO Y, et al. Enhancing jackfruit infrared drying by combining ultrasound treatments: Effect on drying characteristics, quality properties and microstructure[J]. Food Chemistry,2021,358:129845. doi: 10.1016/j.foodchem.2021.129845
    [34]
    邵雪花, 赖多, 肖维强, 等. 不同干燥方法对番石榴果实品质及抗氧化活性的影响[J]. 中国农学通报,2022,38(6):134−140. [SHAO X H, LAI D, XIAO W Q, et al. The effects of drying methods on fruit quality and antioxidant activity of guava[J]. Chinese Agricultural Science Bulletin,2022,38(6):134−140. doi: 10.11924/j.issn.1000-6850.casb2021-0500
  • Cited by

    Periodical cited type(6)

    1. 代桂丽,张超锋. 反相高效液相色谱-脉冲安培检测法对硫酸新霉素的药物分析研究. 化学与粘合. 2024(02): 200-205 .
    2. 苗晶,宋戈,朱琳,王树奇,李茜,杨文敏. 离子交换色谱法测定调制乳粉和固体饮料中异麦芽糖、异麦芽三糖和潘糖. 中国乳品工业. 2023(05): 50-54 .
    3. 颉东妹,王宁丽,刘笑笑,吴福祥,裴栋,郭玫,邸多隆. 微波消解-离子色谱法测定枸杞多糖的含量及组成. 食品安全质量检测学报. 2022(04): 1065-1072 .
    4. 陈修红,冀鹏,何国亮,夏然,李祖明,刘佳. 离子色谱-脉冲安培法同时测定牛肉水解产物中6种糖组分的含量. 食品工业科技. 2022(11): 267-275 . 本站查看
    5. 胡佳偲,孙晨,张昊,霍宗利. 高效液相色谱法同时测定全血中的原卟啉和锌原卟啉. 江苏预防医学. 2022(03): 272-276 .
    6. 梁静. 离子色谱在食品检测中的应用. 食品安全导刊. 2021(29): 152-153 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (179) PDF downloads (13) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return