Citation: | LI Wangming, MA Rongkun, JIA Qingchao, et al. Calculation of Moisture Diffusivity of Wheat Dough at Different Temperatures Based on Inversion Method[J]. Science and Technology of Food Industry, 2023, 44(11): 111−117. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022070354. |
[1] |
张梦超. 非油炸方便型马铃薯热干面的品质改良及其干燥特性研究[D]. 武汉: 华中农业大学, 2019
ZHANG M C. Study on the quality improvement and drying characteristics of non-fried instant potato hot dry noodles[D]. Wuhan: Huazhong Agricultural University, 2019.
|
[2] |
GONZALEZ J E, LOPEZ E M, OCHOA C E, et al. Mass transfer and morphometric characteristics of fresh and osmodehydrated white mushroom pilei during convective drying[J]. Journal of Food Engineering,2019,262(12):181−188.
|
[3] |
KAVEH M, JAHANBAKHSHI A, ABBASPOUR G Y, et al. The effect of ultrasound pre-treatment on quality, drying, and thermodynamic attributes of almond kernel under convective dryer using ANNs and ANFIS network[J]. Journal of Food Process Engineering,2018,41(7):1−14.
|
[4] |
FRANCISCO J T, CHAIYAN W, PHAM Q T. Drying modeling and water diffusivity in beef meat[J]. Journal of Food Engineering,2007,78(1):74−85. doi: 10.1016/j.jfoodeng.2005.09.010
|
[5] |
KHAN M I, KUMAR C, JOARDDER M U, et al. Determination of appropriate effective diffusivity for different food materials[J]. Drying Technology,2016,29(4):335−346.
|
[6] |
BARROZO M A, SOUZA A M, COSTA S M, et al. Simultaneous heat and mass transfer between air and soybean seeds in a concurrent moving bed[J]. International Journal of Food Science and Technology,2001,36(4):393−399. doi: 10.1046/j.1365-2621.2001.00470.x
|
[7] |
TARMIAN A, REMOND R, DASHTI H, et al. Moisture diffusion coefficient of reaction woods: compression wood of Picea abies L. and tension wood of Fagus sylvatica L.[J]. Wood Science and Technology,2012,10(3):405−417.
|
[8] |
KARATHANOS V T, VILLOALOBOS G, SARAVACOS G D, et al. Comparison of two methods of estimation of the effective moisture diffusivity from drying data[J]. Journal of Food Science,1990,55(1):218−223. doi: 10.1111/j.1365-2621.1990.tb06056.x
|
[9] |
HAMDAMI N, MONTEAU J, BAIL A L, et al. Moisture diffusivity and water activity of part-baked bread at above and sub-freezing temperatures[J]. International Journal of Food Science and Technology,2006,41(1):33−44. doi: 10.1111/j.1365-2621.2005.00984.x
|
[10] |
李望铭, 赵学伟, 张艳艳, 等. 反演法求小麦面团在冻结温度范围内的热导率[J]. 食品工业科技,2020,41(1):1−5. [LI W M, ZHAO X W, ZHANG Y Y, et al. Thermal conductivity of wheat flour dough determined by an inversion method within freezing temperature[J]. Science and Technology of Food Industry,2020,41(1):1−5.
|
[11] |
KIANI H, KARIMI F, LABBAFI M, et al. A novel inverse numerical modeling method for the estimation of water and salt mass transfer coefficients during ultrasonic assisted-osmotic dehydration of cucumber cubes[J]. Ultrasonics Sonochemistry,2018,44(3):171−180.
|
[12] |
FABBRI A, CEVOLI C, TRONCOSO R, et al. Moisture diffusivity coefficient estimation in solid food by inversion of a numerical model[J]. Food Research International,2014,56:63−67. doi: 10.1016/j.foodres.2013.12.002
|
[13] |
THORELL A, WADOSO L, et al. Determination of external mass transfer coefficients in dynamic sorption (DVS) measurements[J]. Drying Technology: An International Journal,2018,26(6):139−157.
|
[14] |
张华, 段瑞谦, 赵学伟, 等. 根据等温吸附模型进行水分状态分析的可行性—以糯米粉的水分解吸为例[J]. 食品科学,2018,39(5):57−66. [ZHANG H, DUAN R Q, ZHAO X W, et al. Feasibility of characterizing water states based on isothermal adsorption models: A case study of water desorption of glutinous rice flour[J]. Food Science,2018,39(5):57−66. doi: 10.7506/spkx1002-6630-201805009
|
[15] |
杨薇, 王雅洁, 汤成成, 等. 三七提取物吸湿性及其数学模型研究[J]. 中药材,2018,41(3):670−676. [YANG W, WANG Y J, TANG C C, et al. Study on hygroscopicity and mathematical models of panax notoginseng extract[J]. Journal of Chinese Medicinal Materials,2018,41(3):670−676.
|
[16] |
ZHU G, JIN Q, LIU Y, et al. Moisture sorption and thermodynamic properties of Camellia oleifera seeds as influenced by oil content[J]. International Journal of Agricultural and Biological Engineering,2021,14(1):251−258. doi: 10.25165/j.ijabe.20211401.5457
|
[17] |
张雪峰, 黎斌, 彭桂兰, 等. 种用油菜籽真空干燥动力学特性及对Weibull模型的解析[J]. 食品与发酵工业,2019,45(4):66−73. [ZHANG X F, LI B, PENG G L, et al. Analysis of vacuum drying kinetics of rapeseed and analysis of Weibull model[J]. Food and Fermentation Industries,2019,45(4):66−73.
|
[18] |
韩鹏军, 薛志峰, 张丽娜, 等. 3种中药颗粒剂的吸湿性及数学模型拟合[J]. 天津中医药大学学报,2018,37(4):326−331. [HAN P J, XUE Z F, ZHANG L N, et al. Mathematical model fitting and moisture adsorption kinetics of three kinds of traditional Chinese herbal granule[J]. Journal of Tianjin University of Traditional Chinese Medicine,2018,37(4):326−331.
|
[19] |
GREIBY I, MISHRA D K, DOLAN K D, et al. Inverse method to sequentially estimate temperature-dependent thermal conductivity of cherry pomace during nonisothermal heating[J]. Journal of Food Engineering,2014,12(7):6−23.
|
[20] |
LONG F A, RICHMAN D. Concentration gradients for diffusion of vapors in glassy polymers and their relation to time dependent diffusion phenomena[J]. Journal of the American Chemical Society,1960,82(7):513−519.
|
[21] |
蒋超, 刘显茜, 蒋仕飞, 等. Crank公式估算豌豆水分扩散系数可靠性分析[J]. 新技术新工艺,2014,1(6):128−131. [JIANG C, LIU X X, JIANG S F, et al. Estimation and reliability analysis of moisture diffusion coefficient[J]. New Technology and New Process,2014,1(6):128−131. doi: 10.3969/j.issn.1003-5311.2014.06.041
|
[22] |
ZAIHAN J, HILL C A, CURLING S F, et al. The kinetics of water vapour sorption: Analysis using parallel exponential kinetics model on six Malaysian hardwoods[J]. Journal of Tropical Forest Science,2010,22(2):107−117.
|
[23] |
KOHLER R, DUCK R, AUSPERGER B, et al. A numeric model for the kinetics of water vapor sorption on cellulosic reinforcement fibers[J]. Composite Interfaces,2003,10(2):255−276.
|
[24] |
OLEK W, PERRE P, WERES J, et al. Inverse analysis of the transient bound water diffusion in wood[J]. Holzforschung,2005,59(1):38−45. doi: 10.1515/HF.2005.007
|
[25] |
牛利娇. 吸湿多孔物料冷冻干燥多相传递模型[D]. 大连: 大连理工大学, 2017
NIU L J. Multiphase transport model for freeze-drying of hygroscopic porous media[D]. Dalian: Dalian University of Technology, 2017.
|
[26] |
王鹤, 慕松, 吴俊, 等. 基于Weibull分布函数的枸杞微波干燥过程模拟及应用[J]. 现代食品科技,2018,34(1):141−147. [WANG H, MU S, WU J, et al. Application and modeling microwave drying of Chinese wolfberry based on Weibull distribution[J]. Modern Food Science & Technology,2018,34(1):141−147. doi: 10.13982/j.mfst.1673-9078.2018.1.022
|
[27] |
ZHAO X W, LI W M, ZHANG H, et al. Reaction-diffusion approach to modeling water diffusion in glutinous rice flour particles during dynamic vapor adsorption[J]. Journal of Food Science and Technology-mysore,2019,56(10):4605−4615. doi: 10.1007/s13197-019-03925-0
|
[28] |
李望铭. 水饺皮, 馅的物性测定及水饺浸渍冷冻过程模拟[D]. 郑州: 郑州轻工业大学, 2020
LI W M. Determination of the physical properties of wrappers and fillings of dumplings and simulation of immersion freezing process of dumplings[D]. Zhengzhou: Zhengzhou University of Light Industry, 2020.
|
[29] |
ZHAO X W, LI W M, ZHANG H, et al. Disparate dynamic viscoelastic responses of wheat flour doughs coated with different oils for preventing water evaporation during time sweeps and their mechanisms decoupled[J]. Journal of Food Science and Technology,2019,56(3):462−472.
|
[30] |
WADSO L. Unsteady-state water vapor adsorption in wood: An experimental study[J]. Wood and Fiber Science,1994,26(1):36−50.
|
[31] |
OLEK W, WERES J. Effects of the method of identification of the diffusion coefficient on accuracy of modeling bound water transfer in wood[J]. Transport in Porous Media,2007,66(1):135−144.
|
[32] |
CHEN C, VENKITASAMY C, ZHANG W, et al. Effective moisture diffusivity and drying simulation of walnuts under hot air[J]. International Journal of Heat and Mass Transfer,2020,150(3):113−122.
|
1. |
甄子辰,刘阳,王珊珊,路宏朝,王令,张涛. 基于文献计量的乳酸菌细菌素研究进展分析. 食品工业科技. 2024(09): 378-388 .
![]() | |
2. |
杜丽红,袁谨怡,战俊杰,陈雨新,王可答,李杨,朱璇,张金凤. 大肠杆菌产L-酪氨酸发酵工艺优化. 食品与发酵科技. 2024(05): 16-22 .
![]() |