Citation: | TANG Jingyue, GE Shaoyang, SANG Yue, et al. Effect of Nitrogen Source on Freeze-dried Resistance of Lactobacillus delbrueckii subsp. bulgaricus B61-3[J]. Science and Technology of Food Industry, 2023, 44(11): 144−152. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022070343. |
[1] |
NADIA L A, FRIZZO L S, OUWEHAND A C, et al. Technological characterization of probiotic lactic acid bacteria as starter cultures for dry fermented sausages[J]. Foods,2020,9(5):596. doi: 10.3390/foods9050596
|
[2] |
FONSECA F, CENARD S, PASSOT S. Freeze drying of lactic acid bacteria[M]. New York, NY: Springer New York, 2015: 477−488.
|
[3] |
WANG Y, WU J, LÜ M, et al. Metabolism characteristics of lactic acid bacteria and the expanding applications in food industry[J]. Front Bioeng Biotechnol,2021,9:612285. doi: 10.3389/fbioe.2021.612285
|
[4] |
CUI S, HANG F, LIU X, et al. Effect of acids produced from carbohydrate metabolism in cryoprotectants on the viability of freeze-dried lactobacillus and prediction of optimal initial cell concentration[J]. J Biosci Bioeng,2018,125(5):513−518. doi: 10.1016/j.jbiosc.2017.12.009
|
[5] |
孙媛媛. 异型发酵乳杆菌高密度培养及提高其冻干存活率的方法[D]. 无锡: 江南大学, 2021
SUN Y Y. High-density cultivation of heterofermentive lactobacillus and methods to improve the freeze-drying survival rate[D]. Wuxi: Jiangnan University, 2021.
|
[6] |
CARVALHO A S, SILVA J, HO P, et al. Relevant factors for the preparation of freeze-dried lactic acid bacteria[J]. International Dairy Journal,2004,14(10):835−847. doi: 10.1016/j.idairyj.2004.02.001
|
[7] |
李宝磊. 真空冷冻干燥对乳酸菌损伤机制及关键保护技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2011
LI B L. Freeze-drying damage mechanism of lactic acid bacteria and the key protection technology research[D]. Harbin: Harbin Institute of Technology, 2011.
|
[8] |
于小青. 植物乳杆菌在冷冻干燥过程中生理损伤及保护策略的研究[D]. 上海: 上海理工大学, 2019
YU X Q. The study on physiological damage and protection strategies of lactobacillus plantarum during freeze-drying[D]. Shanghai: University of Shanghai for Science and Technology, 2019.
|
[9] |
李娜. 植物乳杆菌ZJ316的高密度发酵及高活性菌制剂的初步研究[D]. 南宁: 广西大学, 2020
LI N. High-density fermentation of Lactobacillus plantarum ZJ316 and preliminary study on the high activity bacteria agent[D]. Nanning: Guangxi University, 2020.
|
[10] |
BODZEN A, JOSSIER A, DUPONT S, et al. Design of a new lyoprotectant increasing freeze-dried Lactobacillus strain survival to long-term storage[J]. BMC Biotechnol,2021,21(1):66. doi: 10.1186/s12896-021-00726-2
|
[11] |
HAN L, PU T, WANG X, et al. Optimization of a protective medium for enhancing the viability of freeze-dried Bacillus amyloliquefaciens B1408 based on response surface methodology[J]. Cryobiology,2018,81:101−106. doi: 10.1016/j.cryobiol.2018.02.003
|
[12] |
WANG G Q, PU J, YU X Q, et al. Influence of freezing temperature before freeze-drying on the viability of various Lactobacillus plantarum strains[J]. J Dairy Sci,2020,103(4):3066−3075. doi: 10.3168/jds.2019-17685
|
[13] |
冯志伟. Pediococcus acidilactici IMAU95219增殖培养基及高密度培养工艺优化[D]. 呼和浩特: 内蒙古农业大学, 2020
FENG Z W. Optimization of enrichment medium and high cell density cultivation of Pediococcus acidilactici IMAU95219[D]. Huhehot: Inner Mongolia Agricultural University, 2020.
|
[14] |
田良玉. 乳酸菌高密度规模发酵工艺优化[D]. 扬州: 扬州大学, 2018
TIAN Y L. Optimization of high-density and large-scale fermentation for lactic acid bacteria[D]. Yangzhou: Yangzhou University, 2018.
|
[15] |
SANTIVARANGKNA C, HIGL B, FOERST P. Protection mechanisms of sugars during different stages of preparation process of dried lactic acid starter cultures[J]. Food Microbiology,2008,25(3):429−441. doi: 10.1016/j.fm.2007.12.004
|
[16] |
SHAO Y, GAO S, GUO H, et al. Influence of culture conditions and preconditioning on survival of Lactobacillus delbrueckii subsp. bulgaricus ND02 during lyophilization[J]. J Dairy Sci,2014,97(3):1270−1280. doi: 10.3168/jds.2013-7536
|
[17] |
CHEN Z, E J, MA R, et al. The effect of aspartic acid on the freeze-drying survival rate of Lactobacillus plantarum LIP-1 and its inherent mechanism[J]. LWT,2022,155:112929. doi: 10.1016/j.lwt.2021.112929
|
[18] |
WANG C, CUI Y, QU X. Identification of proteins regulated by acid adaptation related two component system HPK1/RR1 in Lactobacillus delbrueckii subsp. bulgaricus[J]. Arch Microbiol,2018,200(9):1381−1393. doi: 10.1007/s00203-018-1552-9
|
[19] |
LIU E, ZHENG H, SHI T, et al. Relationship between Lactobacillus bulgaricus and Streptococcus thermophilus under whey conditions: Focus on amino acid formation[J]. International Dairy Journal,2016,56:141−150. doi: 10.1016/j.idairyj.2016.01.019
|
[20] |
YAMAMOTO E, WATANABE R, ICHIMURA T, et al. Effect of lactose hydrolysis on the milk-fermenting properties of Lactobacillus delbrueckii subsp. bulgaricus 2038 and Streptococcus thermophilus 1131[J]. J Dairy Sci,2021,104(2):1454−1464. doi: 10.3168/jds.2020-19244
|
[21] |
汪文丽. 双歧杆菌氮源利用的选择性及特征分析[D]. 无锡: 江南大学, 2021
WANG W L. Selectivity and characteristic analysis of nitrogen source utilization by Bifidobacteria[D]. Wuxi: Jiangnan University, 2021.
|
[22] |
陈琪, 张亚敏, 赵颖, 等. 表达外源谷氨酸脱羧酶基因对重组乳酸乳球菌胁迫抗性的影响[J]. 食品科学,2018,39(20):132−139. [CHEN Q, ZHANG Y M, ZHAO Y, et al. Effect of overexpression of glutamic acid decarboxylase(CsGAD) gene from Camellia sinensis on stress tolerance in Lactococcus lactis[J]. Food Science,2018,39(20):132−139. doi: 10.7506/spkx1002-6630-201820020
|
[23] |
CHEN H, HUANG J, SHI X, et al. Effects of six substances on the growth and freeze-drying of Lactobacillus delbrueckii subsp. bulgaricus[J]. Acta Sci Pol Technol Aliment,2017,16(4):403−412.
|
[24] |
李子叶. 不同酸奶发酵剂的发酵性能及其产品功能活性的研究[D]. 哈尔滨: 东北农业大学, 2019
LI Z Y. Study on fermentation performance of different starter culture and evaluation of its functional bioactivity in yogurt[D]. Harbin: Northeaster Agricultural University, 2019.
|
[25] |
冯镇, 张兰威. 变温培养对乳酸菌高密度培养的影响[J]. 中国乳品工业,2009,37(7):4−7. [FENG Z, ZHANG L W. Effect temperature-shift strategy on high density culture of lactic acid bacteria[J]. China Dairy Industry,2009,37(7):4−7. doi: 10.3969/j.issn.1001-2230.2009.07.001
|
[26] |
中华人民共和国国家卫生和计划生育委员会. GB 5009.239-2016 食品安全国家标准 食品酸度的测定[S]. 北京: 中国标准出版社, 2016
National Health and Family Planning Commission of the People's Republic of China. GB 5009.239-2016 National food safety standard-determination of acidity of food[S]. Beijing: Standards Press of China, 2016.
|
[27] |
钱志浩. 通过调节细胞膜组成提高乳杆菌冻干存活率的研究[D]. 无锡: 江南大学, 2021
QIAN Z H. Study on improving the lyophilization survival rate of Lactobacillus beijerinck. by regulating the composition of cell membrane[D]. Wuxi: Jiangnan University, 2021.
|
[28] |
臧凯丽, 王泳, 赵林森, 等. 球磨-CTAB法提取嗜酸乳杆菌基因组DNA条件优化[J]. 生物技术,2018,28(3):236−241. [ZANG K L, WANG Y, ZHAO L S, et al. Conditions research on beadbeater-CTAB extraction of Lactobacillus acidophilus genome DNA[J]. Biotechnology,2018,28(3):236−241.
|
[29] |
刘晓永, 王强, 胡永金. 用微珠涡流法破壁酵母细胞[J]. 吉首大学学报(自然科学版),2006(6):110−113. [LIU X Y, WANG Q, HU Y J. Disruption of the yeast cell walls by vortex-mini-bead disruption method[J]. Journal of Jishou University (Natural Science Edition),2006(6):110−113. doi: 10.3969/j.issn.1007-2985.2006.06.029
|
[30] |
PALMFELDT J, RADSTROM P, HAHN H B. Optimisation of initial cell concentration enhances freeze-drying tolerance of Pseudomonas chlororaphis[J]. Cryobiology,2003,47(1):21−29. doi: 10.1016/S0011-2240(03)00065-8
|
[31] |
丛美楠. 保加利亚乳杆菌的低成本培养、保藏及初步应用研究[D]. 厦门: 集美大学, 2017
CONG M N. Low cost culture, preservation and preliminary application study of Lactobacillus delbrueckii subsp. bulgaricus[D]. Xiamen: Jimei University, 2017.
|
[32] |
高姝冉. 德氏乳杆菌保加利亚亚种IMAU80319高密度发酵和真空冷冻干燥工艺的研究[D]. 呼和浩特: 内蒙古农业大学, 2015
GAO S R. Study on high cell density culture and vacuum freeze-drying of Lactobacillus delbrueckii subsp. bulgaricus IMAU80319[D]. Huhehot: Inner Mongolia Agricultural University, 2015.
|
[33] |
赵宏飞. 乳糖对瑞士乳杆菌生长代谢影响及高密度培养研究[D]. 北京: 北京林业大学, 2014
ZHAO H F. Effect of lactose on the growth and metabolism of Lactobacillus helveticus and its high cell density culture[D]. Beijing: Beijing Forestry University, 2014.
|
[34] |
朱丹凤, 王园园, 崔树茂, 等. 罗伊氏乳杆菌氮源利用的选择性与特征分析[J]. 食品与发酵工业,2018,44(11):35−41. [ZHU D F, WANG Y Y, CUI S M, et al. Selectivity and characteristic analysis of nitrogen source utilized by Lactobacillus reuteri[J]. Food and Fermentation Industry,2018,44(11):35−41.
|
[35] |
汪政煜, 吴文茹, 习羽, 等. cspL对保加利亚乳杆菌的影响研究[J]. 食品科技,2017,42(1):7−11. [WANG Z Y, WU W R, XI Y, et al. The influence of cspL on Lactobacillus delbrueckii subsp. bulgaricus[J]. Food Science and Technology,2017,42(1):7−11.
|
[36] |
严涛, 朱建国, 姜甜, 等. 高密度发酵乳酸菌抗冻性影响因素分析[J]. 食品研究与开发,2018,39(17):209−213. [YAN T, ZHU J G, JIANG T, et al. Study on influencing factors of anti-freezing of high-density fermentation lactic acid bacteria[J]. Food Research and Development,2018,39(17):209−213. doi: 10.3969/j.issn.1005-6521.2018.17.038
|
[37] |
岳林芳, 王俊国, 萨如拉, 等. 培养条件对乳酸菌发酵剂抗冷冻干燥性能影响的研究进展[J]. 食品科学,2016,37(11):270−276. [YUE L F, WANG J G, SA R L, et al. Effects of culture conditions on the survival of freeze-dried lactic acid bacterial starter cultures[J]. Food Science,2016,37(11):270−276. doi: 10.7506/spkx1002-6630-201611047
|
[38] |
安慧莹. 戊糖乳杆菌发酵产乳酸的培养条件优化及组学分析[D]. 大连: 大连理工大学, 2017
AN H Y. Optimization of culture conditions and omics analysis of lactic acid production by Lactobacillus pentosus[D]. Dalian: Dalian University of Technology, 2017.
|
[39] |
SENZ M, VAN L B, BADER J, et al. Control of cell morphology of probiotic Lactobacillus acidophilus for enhanced cell stability during industrial processing[J]. International Journal of Food Microbiology,2015,192:34−42. doi: 10.1016/j.ijfoodmicro.2014.09.015
|
[40] |
KREBS S J, TAYLOR R K. Nutrient-dependent, rapid transition of Vibrio cholerae to coccoid morphology and expression of the toxin co-regulated pilus in this form[J]. Microbiology (Reading),2011,157(Pt 10):2942−2953.
|
[41] |
DUMONT F, MARECHAL P, GERVAIS P. Cell size and water permeability as determining factors for cell viability after freezing at different cooling rates[J]. Applied and Environmental Microbiology,2004,70(1):268−272. doi: 10.1128/AEM.70.1.268-272.2004
|
[42] |
PROUST L, SOURABIE A, PEDERSEN M, et al. Insights into the complexity of yeast extract peptides and their utilization by Streptococcus thermophilus[J]. Front Microbiol,2019,10:906. doi: 10.3389/fmicb.2019.00906
|
[43] |
张晓宁. 不同干燥方式及贮藏环境对植物乳杆菌LIP-1活性影响的研究[D]. 呼和浩特: 内蒙古农业大学, 2019
ZHANG X N. Effects of Lactobacillus plantarum LIP-1 activity during storage in different drying methods[D]. Huhehot: Inner Mongolia Agricultural University, 2019.
|
[44] |
崔树茂. 乳酸菌的生长抑制和冻干存活的影响因素及规律[D]. 无锡: 江南大学, 2017
CUI S M. The impact factors and rules of growth inhibition and freeze-drying survival for lactic acid bacteria[D]. Wuxi: Jiangnan University, 2017.
|
[45] |
LARSEN B S, SKYTTE J, SVAGAN A J, et al. Using dextran of different molecular weights to achieve faster freeze-drying and improved storage stability of lactate dehydrogenase[J]. Pharm Dev Technol,2019,24(3):323−328. doi: 10.1080/10837450.2018.1479866
|
[46] |
尹玉文, 高鸣阳, 张艳森, 等. 响应面法优化提取牛骨蛋白酶解物及其对酵母增殖的影响[J]. 食品工业,2022,43(6):34−38. [YIN Y W, GAO M Y, ZHANG Y S, et al. Optimization of extraction of bovine bone protein hydrolysate by response surface methodology and its effect on yeast proliferation[J]. Food Industry,2022,43(6):34−38.
|
[47] |
张俊理. 耐冷菌Pseudomonas sp. W7产低温蛋白酶水解牛骨蛋白研究[D]. 哈尔滨: 黑龙江大学, 2012
ZHANG J L, Study on hydrolysis of bovine bone protein by cold-tolerant bacterium Pseudomonas sp. W7[D]. Harbin: Heilongjiang University, 2012.
|
[48] |
LE M C, BON E, LONVAUD F A. Tolerance to high osmolality of the lactic acid bacterium Oenococcus oeni and identification of potential osmoprotectants[J]. International Journal of Food Microbiology,2007,115(3):335−342. doi: 10.1016/j.ijfoodmicro.2006.12.039
|
[49] |
NORDAHL L, WENNMALM S, JONSSON J, et al. Direct observation of Na+K+-ATPase oligomers in the plasma membrane of living cells by FRET-FCS[J]. The FASEB Journal,2022,36(S1):4657.
|
[50] |
E J, CHEN J, CHEN Z, et al. Effects of different initial pH values on freeze-drying resistance of Lactobacillus plantarum LIP-1 based on transcriptomics and proteomics[J]. Food Res Int,2021,149:110694. doi: 10.1016/j.foodres.2021.110694
|
[51] |
AZATIAN S B, KAUR N, LATHAM M P. Increasing the buffering capacity of minimal media leads to higher protein yield[J]. Journal of Biomolecular NMR,2019,73(1):11−17.
|
[52] |
AYIVI R D, IBRAHIM S A, KRASTANOV A, et al. The impact of alternative nitrogen sources on the growth and viability of Lactobacillus delbrueckii subsp. bulgaricus[J]. Journal of Dairy Science,2022,105(10):7986−7997. doi: 10.3168/jds.2022-21971
|
[53] |
XU Z, LI C, YE Y, et al. The β-galactosidase LacLM plays the major role in lactose utilization of Lactobacillus plantarum[J]. LWT,2022,153:112481. doi: 10.1016/j.lwt.2021.112481
|
[54] |
李宝坤. 乳酸杆菌冷冻干燥生理损伤机制及保护策略的研究[D]. 无锡: 江南大学, 2011
LI B K. Study on the physiology mechanism of cell damage caused by freeze-drying and protection strategies of Lactobacillus Beijerinck[D]. Wuxi: Jiangnan University, 2011.
|
[55] |
GOMES T A, SANTOS L B, NOGUEIRA A, et al. Increase in an intracellular β-galactosidase biosynthesis using Lactobacillus reuteri NRRL B-14171, inducers and alternative low-cost nitrogen sources under submerged cultivation[J]. International Journal of Food Engineering,2018,14(3):20170333.
|
[56] |
MAKUCH K, MARKIEWICZ M, PASENKIEWICZ G M. Asymmetric spontaneous intercalation of lutein into a phospholipid bilayer, a computational study[J]. Computational and Structural Biotechnology Journal,2019,17:516−526. doi: 10.1016/j.csbj.2019.04.001
|
[57] |
KOBAYASHI J. D-amino acids and lactic acid bacteria[J]. Microorganisms,2019,7(12):690. doi: 10.3390/microorganisms7120690
|
[58] |
WOLKERS W F, OLDENHOF H, TANG F, et al. Factors affecting the membrane permeability barrier function of cells during preservation technologies[J]. Langmuir,2019,35(23):7520−7528. doi: 10.1021/acs.langmuir.8b02852
|
[59] |
张莉. 抗冻肽在乳酸乳球菌中表达及其抗冻活性表征[D]. 上海: 上海交通大学, 2018
ZHANG L. Intracellular expression of an antifreeze peptide by Lactococcus lactis and evaluation of cryoprotective effect in recombinant bacteria[D]. Shanghai: Shanghai Jiao Tong University, 2018.
|
[60] |
LI C, ZHANG G F, MAO X, et al. Growth and acid production of Lactobacillus delbrueckii subsp. bulgaricus ATCC 11842 in the fermentation of algal carcass[J]. J Dairy Sci,2016,99(6):4243−4250. doi: 10.3168/jds.2015-10700
|
[61] |
张晓宁, 陈境, 麻丽丽, 等. 优化培养基对冷冻干燥后植物乳杆菌LIP-1活性的影响[J]. 食品科技,2019,44(7):1−9. [ZHANG X N, CHEN J, MA L L, et al. The effect of optimized medium components on the activity of Lactobacillus plantarum LIP-1 after freeze-drying[J]. Food Science and Technology,2019,44(7):1−9.
|
1. |
涂玲飞,陈迎丽,李焱,张振. 白及多糖锌的结构表征及其抗氧化活性评价. 食品与发酵工业. 2024(17): 218-225+245 .
![]() | |
2. |
宋林梦,孔烁,蔡雨情,高慧,余远,纪雪莹,陶飞燕,薛鹏. 基于响应面法优化弱酸热催化制备藜麦低极性皂苷及活性研究. 食品科技. 2023(09): 192-200 .
![]() |