Citation: | MA Yongqiang, ZHANG Siyao, YU Shiyou, et al. Construction of MnO2/ZnO/GCE Electrochemical Sensor and the Detection of Sulfamethoxazole in Honey[J]. Science and Technology of Food Industry, 2023, 44(11): 306−314. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022070271. |
[1] |
LUO B, HUANG G H, YAO Y, et al. Investigation into the influencing factors and adsorption characteristics in the removal of sulfonamide antibiotics by carbonaceous materials[J]. Journal of Cleaner Production,2021,319(15):128692.
|
[2] |
LI X H, YANG Y Q, MIAO J J, et al. Determination of sulfa antibiotic residues in river and particulate matter by field-amplified sample injection-capillary zone electrophoresis[J]. Electrophoresis,2020,41(18-19):1584−1591. doi: 10.1002/elps.202000122
|
[3] |
LIU Y C, LIU Y J, LIU Z M, et al. Ultra-durable, multi-template molecularly imprinted polymers for ultrasensitive monitoring and multicomponent quantification of trace sulfa antibiotics[J]. Journal of Materials Chemistry: B,2021,9(14):3192−3199. doi: 10.1039/D1TB00091H
|
[4] |
LI L, ZHU Y, ZHANG F Y, et al. Rapid detection of sulfamethoxazole in plasma and food samples with in-syringe membrane SPE coupled with solid-phase fluorescence spectrometry[J]. Food Chemistry,2020,320(1):126612.
|
[5] |
KURC O, TURKMEN D. Molecularly imprinted polymers based surface plasmon resonance sensor for sulfamethoxazole detection[J]. Photonic Sensors,2022,12(4):1−15.
|
[6] |
SONG R, CHEN Q C, YAN L L, et al. Response surface optimization of an extraction method for the simultaneous detection of sulfamethoxazole and 17 β-estradiol in soil[J]. Molecules,2020,25(6):1415. doi: 10.3390/molecules25061415
|
[7] |
SANDRA D I B, LENKA K, LENKA V, et al. Sulfonamide residues: Honey quality in the czech market[J]. Journal of Food Quality,2018,2018(1):1−7.
|
[8] |
TURCO A, CORVAGLIA S, MAZZOTTA E, et al. Preparation and characterization of molecularly imprinted mussel inspired film as antifouling and selective layer for electrochemical detection of sulfamethoxazole[J]. Sensors and Actuators: B Chemical,2018,255(3):3374−3383.
|
[9] |
HUANG W H, SI H J, QING Y J, et al. A magnetic, core-shell structured, pH-responsive molecularly imprinted polymers for the selective detection of sulfamethoxazole[J]. Journal of Inorganic and Organometallic Polymers and Materials,2021,31(5):2054−2062. doi: 10.1007/s10904-021-01893-7
|
[10] |
JIN Y, ZHANG J Z, ZHAO W, et al. Development and validation of a multiclass method for the quantification of veterinary drug residues in honey and royal jelly by liquid chromatography-tandem mass spectrometry[J]. Food Chemistry,2017,221(15):1298−1307.
|
[11] |
中华人民共和国国家质量监督检验检疫总局. GB/T 18932.17-2003 蜂蜜中16种磺胺残留量的测定方法液相色谱-串联质谱法[S]. 北京: 中国标准出版社, 2003.
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. GB/T 18932.17-2003 Method for the determination of sixteen sulfonamides residues in honey-LC-MS-MS method[S]. Beijing: National Standards Press, 2003.
|
[12] |
蔡亮亮, 林昕, 倪荣华, 等. HPLC法同时测定磺胺止咳口服液中4个成分的含量[J]. 药学与临床研究,2022,30(3):217−220. [CAI L L, LIN X, NI R H, et al. Simultaneous determination of four components in sulfanilamide cough oral suspensions by HPLC[J]. Pharmaceutical and Clinical Research,2022,30(3):217−220. doi: 10.11881/j.issn.1673-7806.2022.3.jsyxylcyj202203005
|
[13] |
ERRAYESS S A, LAHCEN A A, IDRISSI L, et al. A sensitive method for the determination of sulfonamides in seawater samples by solid phase extraction and UV-Visible spectrophotometry[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2017,181(15):276−285.
|
[14] |
ISLAS G, RODRIGUEZ J A, HERNANDEZ M E P, et al. Dispersive solid-phase extraction based on butylamide silica for the determination of sulfamethoxazole in milk samples by capillary electrophoresis[J]. Journal of Liquid Chromatography & Related Technologies,2016,39(14):658−665.
|
[15] |
赵玲钰, 秦思楠, 高林, 等. 磺胺嘧啶分子印迹电化学传感器的制备及其快速检测食品中磺胺嘧啶药物残留[J]. 食品科学,2018,39(22):319−327. [ZHAO L Y, QIN S N, GAO L, et al. Preparation and application of molecularly imprinted electrochemical sensor for rapid detection of sulfadiazine residues in foods[J]. Food Science,2018,39(22):319−327. doi: 10.7506/spkx1002-6630-201822048
|
[16] |
徐军军, 吴甜甜, 席慧婷, 等. 一种新型过氧化氢传感器的构建及其在牛奶中的应用[J]. 食品工业科技,2020,41(22):253−259. [XU J J, WU T T, XI H T, et al. Construction of a novel hydrogen peroxide sensor and its application in milk[J]. Science and Technology of Food Industry,2020,41(22):253−259. doi: 10.13386/j.issn1002-0306.2020020082
|
[17] |
GUO S F, CHEN X Y, WANG P, et al. Preparation of molecularly imprinted composites initiated by hemin/graphene hybrid nanosheets and its application in detection of sulfamethoxazole[J]. Current Medical Science,2019,39(1):159−165. doi: 10.1007/s11596-019-2014-6
|
[18] |
MOHAMMED M R. Efficient formaldehyde sensor development based on Cu-codoped ZnO nanomaterial by an electrochemical approach[J]. Sensors and Actuators: B Chemical,2020,305(3):127541.
|
[19] |
MAMBO M, LEHUTSO R F, JONATHAN O O. Improved electro-oxidation of triclosan at nano-zinc oxide-multiwalled carbon nanotube modified glassy carbon electrode[J]. Sensors & Actuators: B Chemical,2015,209(3):898−905.
|
[20] |
CAO M C, ZHENG L T, GU Y F, et al. Electrostatic self-assembly to fabricate ZnO nanoparticles/reduced graphene oxide composites for hypersensitivity detection of dopamine[J]. Microchemical Journal,2020,159(7):105465.
|
[21] |
ZHENG R J, ZHAO C H, ZHONG J H, et al. Determination of epinephrine using a novel sensitive electrochemiluminescence sensor based on ZnO nanoparticles modified pencil graphite electrode[J]. International Journal of Electrochemical Science,2019,14(9):9380−9390.
|
[22] |
JANDAGHI N, JAHANI S, FOROUGHI M M, et al. Cerium-doped flower-shaped ZnO nano-crystallites as a sensing component for simultaneous electrochemical determination of epirubicin and methotrexate[J]. Mikrochimica Acta,2019,187(1):24.
|
[23] |
YUE X Z, LI Z Y, ZHAO S. A new electrochemical sensor for simultaneous detection of sulfamethoxazole and trimethoprim antibiotics based on graphene and ZnO nanorods modified glassy carbon electrode[J]. Microchemical Journal,2020,159(2):105440.
|
[24] |
ANSARI S, ANSARI M S, SOAMI P S, et al. Bi2O3/ZnO nanocomposite: Synthesis, characterizations and its application in electrochemical detection of balofloxacin as an antibiotic drug[J]. Journal of Pharmaceutical Analysis,2021,11(1):57−67. doi: 10.1016/j.jpha.2020.03.013
|
[25] |
HE Q G, LIU J, LIU X P, et al. Manganese dioxide nanorods/electrochemically reduced graphene oxide nanocomposites modified electrodes for cost-effective and ultrasensitive detection of Amaranth[J]. Colloids and Surfaces B: Biointerfaces,2018,172(1):565−572.
|
[26] |
ZHANG L, YUAN S M, YANG L M, et al. An enzymatic glucose biosensor based on a glassy carbon electrode modified with manganese dioxide nanowires[J]. Mikrochimica Acta: An International Journal for Physical and Chemical Methods of Analysis,2013,180(7-8):627−633.
|
[27] |
贾丽芳, 李梅, 王国平. 二氧化锰修饰电极在甲硝唑检测中的应用[J]. 山东化工, 2021, 50(2): 105−107.
JIA L F, LI M, WANG G P. Application of manganese dioxide modified electrode in metronidazole detection[J]. Shandong Chemical Industry 2021, 50(2): 105−107.
|
[28] |
韩哲, 俞天寿, 柳宛彤, 等. 不同晶型二氧化锰的制备、表征及甲醛降解性能研究[J]. 中国计量大学学报,2021,32(1):124−131. [HAN Z, YU T S, LIU W T, et al. Preparation, characterization and catalytic degradation performance of formaldehyde of different manganese dioxide[J]. Journal of China University of Metrology,2021,32(1):124−131. doi: 10.3969/j.issn.2096-2835.2021.01.017
|
[29] |
ZHONG L L, SAMAL M, YUN K. Synthesis, characterization and electrochemical properties of different morphological ZnO anchored on graphene oxide sheets[J]. Materials Chemistry and Physics,2018,204(2):315−322.
|
[30] |
AIBITER E, MERLANO A S, ROJAS E, et al. Synthesis, characterization, and photocatalytic performance of ZnO-Graphene nanocomposites: A review[J]. Journal of Composites Science,2020,5(1):4. doi: 10.3390/jcs5010004
|
[31] |
刘美琪, 陈学青, 王志彦, 等. 铁、钴掺杂氧化锌纳米材料及其红外吸波性能研究[J]. 人工晶体学报,2016,45(12):2785−2789. [LIU M Q, CHEN X Q, WANG Z Y, et al. Preparation and infrared wave absorbing properties of Fe, Co-doped nano-ZnO material[J]. Journal of Synthetic Crystals,2016,45(12):2785−2789. doi: 10.3969/j.issn.1000-985X.2016.12.008
|
[32] |
HAMID H H, MOHAMED H E, ELSHAER A M, et al. Electrochemical preparation and electrical characterization of polyaniline as a sensitive biosensor[J]. Microsystem Technologies,2018,24(4):1775−1781. doi: 10.1007/s00542-018-3793-6
|
[33] |
HENRIQUE M J, ROCHA C J, GABRIEL O G, et al. Disposable electrochemical sensor based on shellac and graphite for sulfamethoxazole detection[J]. Microchemical Journal,2021,170(5):106701.
|
[34] |
TASHKHOURIAN J, HEMMATEENEJAD B, BEIGIZADEH H, et al. ZnO nanoparticles and multiwalled carbon nanotubes modified carbon paste electrode for determination of naproxen using electrochemical techniques[J]. Journal of Electroanalytical Chemistry,2014,174(1):103−108.
|
[35] |
常凤霞, 尚宗毅, 董清, 等. 纳米氧化铜-碳纳米管修饰玻碳电极同时检测邻、对苯二酚[J]. 应用化学,2020,37(10):1195−1202. [CHANG F X, SHANG Z Y, DONG Q, et al. Simultaneous determination of catechol and hydroquinone by copper oxide nanoparticles and carbon nanotubes modified glassy carbon electrode[J]. Chinese Journal of Applied Chemistry,2020,37(10):1195−1202. doi: 10.11944/j.issn.1000-0518.2020.10.200048
|
[36] |
YI W W, LI Z P, DONG C, et al. Electrochemical detection of chloramphenicol using palladium nanoparticles decorated reduced graphene oxide[J]. Microchemical Journal,2019,148(3):774−783.
|
[37] |
TURCO A, CORVAGLIA S, POMAP P P, et al. An innovative and simple all electrochemical approach to functionalize electrodes with a carbon nanotubes/polypyrrole molecularly imprinted nanocomposite and its application for sulfamethoxazole analysis[J]. Journal of Colloid and Interface Science,2021,599(1):676−685.
|
[38] |
BALASUBRAMANIAN P, SETTU R, CHEN S M, et al. Voltammetric sensing of sulfamethoxazole using a glassy carbon electrode modified with a graphitic carbon nitride and zinc oxide nanocomposite[J]. Microchimica Acta,2018,185(8):1−9.
|
[39] |
KOKULNATHAN T, KUAMR E A, WANG T J, et al. Strontium tungstate-modified disposable strip for electrochemical detection of sulfadiazine in environmental samples[J]. Ecotoxicology and Environmental Safety,2021,208(3):111516−111516.
|
[40] |
ARVAND M, ANSARI R, HEYDARI L. Electrocatalytic oxidation and differential pulse voltammetric determination of sulfamethoxazole using carbon nanotube paste electrode[J]. Materials Science & Engineering C,2011,31(8):1819−1825.
|
[41] |
贺全国, 李广利, 刘军, 等. 纳米Cu2O-还原石墨烯复合修饰玻碳电极用于多巴胺的检测[J]. 食品科学,2018,39(20):308−314. [HE Q G, LI G L, LIU J, et al. Preparation of Cu2O-reduced graphene nanocomposite-modified electrodes and their application in detection of dopamine[J]. Food Science,2018,39(20):308−314. doi: 10.7506/spkx1002-6630-201820044
|
[42] |
ISSAC S, GIRISH K K. Voltammetric determination of sulfamethoxazole at a multiwalled carbon nanotube modified glassy carbon sensor and its application studies[J]. Drug Testing and Analysis,2009,1(7):350−354. doi: 10.1002/dta.69
|
[43] |
LORENA T R, ASUNCION M A L, OLGA D R, et al. Tyrosinase based biosensor for the electrochemical determination of sulfamethoxazole[J]. Sensors and Actuators: B Chemical,2016,227(1):48−53.
|
[44] |
DIEGO L C, GOLINELLI, SERGIO A S, et al. Synthesis of silver nanoparticle graphene composites for electroanalysis applications using chemical and electrochemical methods[J]. Electroanalysis,2017,29(4):1014−1021. doi: 10.1002/elan.201600669
|
[45] |
国家市场监督管理总局, 国家卫生健康委员会, 农业农村部. GB 31650-2019 食品安全国家标准食品中兽药最大残留限量[S]. 北京: 中国标准出版社, 2019.
State Administration for Market Regulation, National Health Commission, Ministry of Agriculture and Rural Affairs Announcement. GB 31650-2019 Naional food safety standard maximum residue limits for veterinary drugs in foods[S]. Beijing: National Standards Press, 2019.
|
1. |
侯晓庆,张蕴哲,李子坤,卢鑫,杨倩,张伟. 基于催化发夹自组装比率电化学双适体传感器检测乳中四环素. 中国食品学报. 2025(02): 423-432 .
![]() |