CHENG Yuying, TAN Shudan, CHEN Yanlan, et al. Effects of High Salt-intake on Renal Injury and Fibrosis in C57BL/6J Mice[J]. Science and Technology of Food Industry, 2023, 44(5): 397−402. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022070254.
Citation: CHENG Yuying, TAN Shudan, CHEN Yanlan, et al. Effects of High Salt-intake on Renal Injury and Fibrosis in C57BL/6J Mice[J]. Science and Technology of Food Industry, 2023, 44(5): 397−402. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022070254.

Effects of High Salt-intake on Renal Injury and Fibrosis in C57BL/6J Mice

More Information
  • Received Date: July 20, 2022
  • Available Online: December 22, 2022
  • In order to further explore the effects of high salt intake on kidney of ordinary mice, C57BL/6J mice were randomly allocated into normal control group (NC), 4% high salt intake group (4% group) and 8% high salt intake group (8% group), which were fed with 0.5%NaCl normal diet, 4% or 8% high salt diet respectively. The renal function index, inflammatory factor secretion, pathological damage and fibrosis degree of mice from different groups were compared. The results indicated that high salt intake led to renal function injury in C57BL/6J mice. The contents of serum creatinine, serum urea nitrogen and urine Na were significantly increased, whereas the content of urine creatinine was significantly decreased. The 8% high salt diet showed further renal damage when compared to the 4% high salt diet, which include further decrease in urine creatinine and an increase in serum urea nitrogen. Compared with NC, 4% and 8% high salt intake also increased the secretion of inflammatory cytokines TNF-α、IL-6 and IL-1β in kidney, and the secretion of IL-6 and IL-1β was further increased in the 8% group compared with the 4% group. As the HE and Masson staining results shown, high salt intake caused renal fibrosis and pathological damage of cortex and medulla in C57BL/6J mice, and the 8% group was more severe than the 4% group. High salt diet induces kidney injury and fibrosis in C57BL/6J mice, and increasing salt intake can further aggravate the severity of injury and fibrosis.
  • [1]
    BIKBOV B, PURCELL C, LEVEY A S, et al. Global, regional, and national burden of chronic kidney disease, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017[J]. Lancet,2020,395(10225):709−733. doi: 10.1016/S0140-6736(20)30045-3
    [2]
    苑佳奇, 沈晓丹, 虞飞, 等. lncRNA与慢性肾病关系的研究进展[J]. 生理科学进展,2022,53(3):219−223. [YUAN J Q, SHEN X D, YU F, et al. Research progress in the relationship between lncRNA and chronic kidney disease[J]. Advances in Physiological Science,2022,53(3):219−223. doi: 10.3969/j.issn.0559-7765.2022.03.011
    [3]
    SHIBATA K, HASHIMOTO T, HASUMI K, et al. Potent efficacy of Stachybotrys microspora triprenyl phenol-7, a small molecule having anti-inflammatory and antioxidant activities, in a mouse model of acute[J]. European Journal of Pharmacology,2021,910:174496. doi: 10.1016/j.ejphar.2021.174496
    [4]
    ZHANG D, JI P, SUN R, et al. Ginsenoside Rg1 attenuates LPS-induced chronic renal injury by inhibiting NOX4-NLRP3 signaling in mice[J]. Biomedicine & Pharmacotherapy,2022,150:112936.
    [5]
    SANTANA A C, DEGASPARI S, CATANOZI S, et al. Thalidomide suppresses inflammation in adenine-induced CKD with uraemia in mice[J]. Nephrology, Dialysis, Transplantation: Official Publication of the European Dialysis and Transplant Association-European Renal Association,2013,28(5):1140−1149. doi: 10.1093/ndt/gfs569
    [6]
    OLORUNNISOLA O S, FADAHUNSI O S, ADEGBOLA P I, et al. Phyllanthus amarus attenuated derangement in renal-cardiac function, redox status, lipid profile and reduced TNF-α, interleukins-2, 6 and 8 in high salt diet fed rats[J]. Heliyon,2021,7(10):e08106. doi: 10.1016/j.heliyon.2021.e08106
    [7]
    WANG Y, LIU X, ZHANG C, et al. High salt diet induces metabolic alterations in multiple biological processes of Dahl salt-sensitive rats[J]. The Journal of Nutritional Biochemistry,2018,56:133−141. doi: 10.1016/j.jnutbio.2018.01.007
    [8]
    KANG M, KANG E, RYU H, et al. Measured sodium excretion is associated with CKD progression: Results from the KNOW-CKD study[J]. Nephrology Dialysis Transplantation,2020,36(3):512−519.
    [9]
    LIU Y, DAI X, YANG S, et al. High salt aggravates renal inflammation via promoting pro-inflammatory macrophage in 5/6-nephrectomized rat[J]. Life Sciences,2021,274:119109. doi: 10.1016/j.lfs.2021.119109
    [10]
    HOSOHATA K. Biomarkers for chronic kidney disease associated with high salt intake[J]. International Journal of Molecular Sciences,2017,18(10):2080. doi: 10.3390/ijms18102080
    [11]
    DU H, XIAO G, XUE Z, et al. QiShenYiQi ameliorates salt-induced hypertensive nephropathy by balancing ADRA1D and SIK1 expression in Dahl salt-sensitive rats[J]. Biomedicine & Pharmacotherapy,2021,141:111941.
    [12]
    任洁, 胡经文, 郭统帅, 等. 高盐饮食对盐敏感性高血压大鼠肾脏损伤的影响[J]. 安徽医学,2020,41(8):872−875. [REN J, HU J W, GUO T S, et al. Effect of high salt diet on kidney injury ofrats with salt-sensitive hypertension[J]. Anhui Medical Journal,2020,41(8):872−875. doi: 10.3969/j.issn.1000-0399.2020.08.002
    [13]
    赵宇, 李浩, 商黔惠, 等. 辣椒素通过抑制肾小管间质纤维化改善高盐诱导肾脏损害的作用[J]. 中华高血压杂志,2018,26(4):349−356. [ZHAO Y, LI H, SHANG Q H, et al. Capsaicin improve high-salt induced renal injury by inhibiting renal tubulointerstitial fibrosis[J]. Chinese Journal of Hypertension,2018,26(4):349−356.
    [14]
    刘美丽, 刘丹, 刘艳霞, 等. 不同盐浓度对盐敏感性高血压肾脏纤维化及巨噬细胞浸润的影响[J]. 现代生物医学进展,2017,17(27):5214−5218. [LIU M L, LIU D, LIU Y X, et al. Influence of different dietary salt concerntration on the renal fibrosis and macrophages infiltration in salt sensitive hypertension[J]. Progress in Modern Biomedicine,2017,17(27):5214−5218. doi: 10.13241/j.cnki.pmb.2017.27.004
    [15]
    FEHRENBACH D J, ABAIS-BATTAD J M, DASINGER J H, et al. Salt-sensitive increase in macrophages in the kidneys of Dahl SS rats[J]. American Journal of Physiology-Renal Physiology,2019,317(2):F361−F74. doi: 10.1152/ajprenal.00096.2019
    [16]
    GAROFALO C, BORRELLI S, PROVENZANO M, et al. Dietary salt restriction in chronic kidney disease: A meta-analysis of randomized clinical trials[J]. Nutrients,2018,10(6):732. doi: 10.3390/nu10060732
    [17]
    YANG P, ZHAO X, ZHOU L, et al. Protective effect of oral histidine on hypertension in Dahl salt-sensitive rats induced by high-salt diet[J]. Life Sciences,2021,270:119134. doi: 10.1016/j.lfs.2021.119134
    [18]
    COWLEY A W. Renal medullary oxidative stress, pressure-natriuresis, and hypertension[J]. Hypertension,2008,52(5):777−786. doi: 10.1161/HYPERTENSIONAHA.107.092858
    [19]
    MAJID D S A, KOPKAN L. Nitric oxide and superoxide interactions in the kidney and their implication in the development of salt-sensitive hypertension[J]. Clinical and Experimental Pharmacology and Physiology,2007,34(9):946−952. doi: 10.1111/j.1440-1681.2007.04642.x
    [20]
    王琨, 吴珊珊, 黎攀, 等. 茯苓对高尿酸血症大鼠肾损伤及肠道菌群的影响[J/OL]. 食品科学, https://kns.cnki.net/kcms/detail/11.2206.TS.20220309.2206.042.html.

    WANG K, WU S S, LI P, et al. Effects of Poria cocos on renal injury and gut microbiota in hyperuricemia rats[J]. Food Science, https://kns.cnki.net/kcms/detail/11.2206.TS.20220309.2206.042.html.
    [21]
    LIU W, LI Y, XIONG X, et al. Traditional Chinese medicine protects against hypertensive kidney injury in Dahl salt-sensitive rats by targeting transforming growth factor signaling pathway[J]. Biomedicine & Pharmacotherapy,2020,131:110746.
    [22]
    GAO L, YUAN P, ZHANG Q, et al. Taxifolin improves disorders of glucose metabolism and water-salt metabolism in kidney via PI3K/AKT signaling pathway in metabolic syndrome rats[J]. Life Sciences,2020,263:118713. doi: 10.1016/j.lfs.2020.118713
    [23]
    VAIDYA V S, OZER J S, DIETERLE F, et al. Kidney injury molecule-1 outperforms traditional biomarkers of kidney injury in preclinical biomarker qualification studies[J]. Nature Biotechnology,2010,28(5):478−485. doi: 10.1038/nbt.1623
    [24]
    MINEGISHI S, ISHIGAMI T, KINO T, et al. An isoform of Nedd4-2 is critically involved in the renal adaptation to high salt intake in mice[J]. Sci Rep,2016,6:27137. doi: 10.1038/srep27137
    [25]
    MATTSON D L, MEISTER C J, MARCELLE M L. Immune suppression attenuates hypertension and renal disease in the Dahl salt-sensitive rat[J]. Hypertension,2006,48(1):149−156. doi: 10.1161/01.HYP.0000228320.23697.29
    [26]
    RIMESSI A, PREVIATI M, NIGRO F, et al. Mitochondrial reactive oxygen species and inflammation: Molecular mechanisms, diseases and promising therapies[J]. The International Journal of Biochemistry & Cell Biology, 2016, 81(Pt B): 281−293.
    [27]
    AKDIS M, AAB A, ALTUNBULAKLI C, et al. Interleukins (from IL-1 to IL-38), interferons, transforming growth factor β, and TNF: Receptors, functions, and roles in diseases[J]. Journal of Allergy and Clinical Immunology,2016,138(4):984−1010. doi: 10.1016/j.jaci.2016.06.033
    [28]
    TOBA H, IKEMOTO M J, KOBARA M, et al. Secreted protein acidic and rich in cysteine (SPARC) and a disintegrin and metalloproteinase with thrombospondin type 1 motif (ADAMTS1) increments by the renin-angiotensin system induce renal fibrosis in deoxycorticosterone acetate-salt hypertensive rats[J]. Eur J Pharmacol,2022,914:174681. doi: 10.1016/j.ejphar.2021.174681
    [29]
    PONTICELLI C, CAMPISE M R. The inflammatory state is a risk factor for cardiovascular disease and graft fibrosis in kidney transplantation[J]. Kidney International,2021,100(3):536−545. doi: 10.1016/j.kint.2021.04.016
    [30]
    WU M, WU X, ZHU J, et al. Selenium-enriched and ordinary green tea extracts prevent high blood pressure and alter gut microbiota composition of hypertensive rats caused by high-salt diet[J]. Food Science and Human Wellness,2022,11(3):738−751. doi: 10.1016/j.fshw.2021.12.031
    [31]
    夏南, 张焕鑫, 赵继先, 等. 高盐饮食对自发性高血压大鼠肾脏的影响及左旋氨氯地平的作用[J]. 中国循证心血管医学杂志,2019,11(5):611−613, 7. [XIA N, ZHANG H X, ZHAO J X, et al. Effect of high salt diet on kidney in spontaneously hypertensive rats and the effect of L-amlodipine[J]. Chinese Journal of Evidence-Based Cardiovascular Medicine,2019,11(5):611−613, 7. doi: 10.3969/j.issn.1674-4055.2019.05.26
    [32]
    赵宇, 刘燕, 商黔惠, 等. 替米沙坦对4%高盐饮食诱导肾脏纤维化的保护作用[J]. 中国老年学杂志,2018,38(6):1430−1433. [ZHAO Y, LIU Y, SHANG Q H, et al. Improvement of telmisartan on renal fibrosis induced by 4% high-salt diet in Wistar rats[J]. Chinese Journal of Gerontology,2018,38(6):1430−1433. doi: 10.3969/j.issn.1005-9202.2018.06.064
    [33]
    BUKOSZA E N, KAUCSÁR T, GODÓ M, et al. Glomerular collagen deposition and lipocalin-2 expression are early signs of renal injury in prediabetic obese rats[J]. Int J Mol Sci,2019,20(17):4266. doi: 10.3390/ijms20174266
    [34]
    BAI M, LEI J, WANG S, et al. BMP1 inhibitor UK383, 367 attenuates renal fibrosis and inflammation in CKD[J]. American Journal of Physiology Renal Physiology,2019,317(6):F1430−F1438. doi: 10.1152/ajprenal.00230.2019
  • Cited by

    Periodical cited type(8)

    1. 陶思琪,封炳迪,孟彩云,穆歆迪,张语涵,马隆煜,韩齐,李鹤. 清洁标签在食品加工中的应用及研究进展. 农产品加工. 2025(05): 95-98 .
    2. 刘欣睿,王美娟,计云龙,孔保华,曹传爱,孙方达,张宏伟,刘骞. 低温慢煮时间对即食鸡胸肉品质及消化特性的影响. 食品工业科技. 2024(03): 114-122 . 本站查看
    3. 白恒丽,李来好,吴燕燕,王悦齐. 基于超声联合滚揉腌制改善低盐预制调理海鲈鱼品质特性. 食品科学. 2024(14): 161-171 .
    4. 曾昱,陈季旺,王欣欣,王柳清,张鹏,杨海琦,田宏伟. 辣椒油树脂乳液在卤鸭脖中的应用研究. 武汉轻工大学学报. 2024(05): 41-49 .
    5. 田梦瑶,肖珧,伍岳,娄爱华. 响应面法优化鸭肉间歇真空滚揉腌制工艺. 中国调味品. 2024(12): 132-136 .
    6. 周银娜,魏相茹,张德权,王振宇. 不同升温模式对北京鸭肉肌球蛋白热凝胶特性的影响. 肉类研究. 2023(06): 8-14 .
    7. 贺俊杰,曹传爱,孔保华,赵伟焱,李元钢,计云龙,刘骞. 蒸煮时间对低温即食鸭胸肉品质特性的影响. 肉类研究. 2023(06): 21-28 .
    8. 董智铭,姜萩婉,蒋泽临,王辉,王见钊,孔保华,刘骞,陈倩. 超声时间对牛肉干品质及其肌原纤维蛋白结构的影响. 食品工业科技. 2023(20): 36-42 . 本站查看

    Other cited types(2)

Catalog

    Article Metrics

    Article views (306) PDF downloads (27) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return