Citation: | CHENG Yuying, TAN Shudan, CHEN Yanlan, et al. Effects of High Salt-intake on Renal Injury and Fibrosis in C57BL/6J Mice[J]. Science and Technology of Food Industry, 2023, 44(5): 397−402. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022070254. |
[1] |
BIKBOV B, PURCELL C, LEVEY A S, et al. Global, regional, and national burden of chronic kidney disease, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017[J]. Lancet,2020,395(10225):709−733. doi: 10.1016/S0140-6736(20)30045-3
|
[2] |
苑佳奇, 沈晓丹, 虞飞, 等. lncRNA与慢性肾病关系的研究进展[J]. 生理科学进展,2022,53(3):219−223. [YUAN J Q, SHEN X D, YU F, et al. Research progress in the relationship between lncRNA and chronic kidney disease[J]. Advances in Physiological Science,2022,53(3):219−223. doi: 10.3969/j.issn.0559-7765.2022.03.011
|
[3] |
SHIBATA K, HASHIMOTO T, HASUMI K, et al. Potent efficacy of Stachybotrys microspora triprenyl phenol-7, a small molecule having anti-inflammatory and antioxidant activities, in a mouse model of acute[J]. European Journal of Pharmacology,2021,910:174496. doi: 10.1016/j.ejphar.2021.174496
|
[4] |
ZHANG D, JI P, SUN R, et al. Ginsenoside Rg1 attenuates LPS-induced chronic renal injury by inhibiting NOX4-NLRP3 signaling in mice[J]. Biomedicine & Pharmacotherapy,2022,150:112936.
|
[5] |
SANTANA A C, DEGASPARI S, CATANOZI S, et al. Thalidomide suppresses inflammation in adenine-induced CKD with uraemia in mice[J]. Nephrology, Dialysis, Transplantation: Official Publication of the European Dialysis and Transplant Association-European Renal Association,2013,28(5):1140−1149. doi: 10.1093/ndt/gfs569
|
[6] |
OLORUNNISOLA O S, FADAHUNSI O S, ADEGBOLA P I, et al. Phyllanthus amarus attenuated derangement in renal-cardiac function, redox status, lipid profile and reduced TNF-α, interleukins-2, 6 and 8 in high salt diet fed rats[J]. Heliyon,2021,7(10):e08106. doi: 10.1016/j.heliyon.2021.e08106
|
[7] |
WANG Y, LIU X, ZHANG C, et al. High salt diet induces metabolic alterations in multiple biological processes of Dahl salt-sensitive rats[J]. The Journal of Nutritional Biochemistry,2018,56:133−141. doi: 10.1016/j.jnutbio.2018.01.007
|
[8] |
KANG M, KANG E, RYU H, et al. Measured sodium excretion is associated with CKD progression: Results from the KNOW-CKD study[J]. Nephrology Dialysis Transplantation,2020,36(3):512−519.
|
[9] |
LIU Y, DAI X, YANG S, et al. High salt aggravates renal inflammation via promoting pro-inflammatory macrophage in 5/6-nephrectomized rat[J]. Life Sciences,2021,274:119109. doi: 10.1016/j.lfs.2021.119109
|
[10] |
HOSOHATA K. Biomarkers for chronic kidney disease associated with high salt intake[J]. International Journal of Molecular Sciences,2017,18(10):2080. doi: 10.3390/ijms18102080
|
[11] |
DU H, XIAO G, XUE Z, et al. QiShenYiQi ameliorates salt-induced hypertensive nephropathy by balancing ADRA1D and SIK1 expression in Dahl salt-sensitive rats[J]. Biomedicine & Pharmacotherapy,2021,141:111941.
|
[12] |
任洁, 胡经文, 郭统帅, 等. 高盐饮食对盐敏感性高血压大鼠肾脏损伤的影响[J]. 安徽医学,2020,41(8):872−875. [REN J, HU J W, GUO T S, et al. Effect of high salt diet on kidney injury ofrats with salt-sensitive hypertension[J]. Anhui Medical Journal,2020,41(8):872−875. doi: 10.3969/j.issn.1000-0399.2020.08.002
|
[13] |
赵宇, 李浩, 商黔惠, 等. 辣椒素通过抑制肾小管间质纤维化改善高盐诱导肾脏损害的作用[J]. 中华高血压杂志,2018,26(4):349−356. [ZHAO Y, LI H, SHANG Q H, et al. Capsaicin improve high-salt induced renal injury by inhibiting renal tubulointerstitial fibrosis[J]. Chinese Journal of Hypertension,2018,26(4):349−356.
|
[14] |
刘美丽, 刘丹, 刘艳霞, 等. 不同盐浓度对盐敏感性高血压肾脏纤维化及巨噬细胞浸润的影响[J]. 现代生物医学进展,2017,17(27):5214−5218. [LIU M L, LIU D, LIU Y X, et al. Influence of different dietary salt concerntration on the renal fibrosis and macrophages infiltration in salt sensitive hypertension[J]. Progress in Modern Biomedicine,2017,17(27):5214−5218. doi: 10.13241/j.cnki.pmb.2017.27.004
|
[15] |
FEHRENBACH D J, ABAIS-BATTAD J M, DASINGER J H, et al. Salt-sensitive increase in macrophages in the kidneys of Dahl SS rats[J]. American Journal of Physiology-Renal Physiology,2019,317(2):F361−F74. doi: 10.1152/ajprenal.00096.2019
|
[16] |
GAROFALO C, BORRELLI S, PROVENZANO M, et al. Dietary salt restriction in chronic kidney disease: A meta-analysis of randomized clinical trials[J]. Nutrients,2018,10(6):732. doi: 10.3390/nu10060732
|
[17] |
YANG P, ZHAO X, ZHOU L, et al. Protective effect of oral histidine on hypertension in Dahl salt-sensitive rats induced by high-salt diet[J]. Life Sciences,2021,270:119134. doi: 10.1016/j.lfs.2021.119134
|
[18] |
COWLEY A W. Renal medullary oxidative stress, pressure-natriuresis, and hypertension[J]. Hypertension,2008,52(5):777−786. doi: 10.1161/HYPERTENSIONAHA.107.092858
|
[19] |
MAJID D S A, KOPKAN L. Nitric oxide and superoxide interactions in the kidney and their implication in the development of salt-sensitive hypertension[J]. Clinical and Experimental Pharmacology and Physiology,2007,34(9):946−952. doi: 10.1111/j.1440-1681.2007.04642.x
|
[20] |
王琨, 吴珊珊, 黎攀, 等. 茯苓对高尿酸血症大鼠肾损伤及肠道菌群的影响[J/OL]. 食品科学, https://kns.cnki.net/kcms/detail/11.2206.TS.20220309.2206.042.html.
WANG K, WU S S, LI P, et al. Effects of Poria cocos on renal injury and gut microbiota in hyperuricemia rats[J]. Food Science, https://kns.cnki.net/kcms/detail/11.2206.TS.20220309.2206.042.html.
|
[21] |
LIU W, LI Y, XIONG X, et al. Traditional Chinese medicine protects against hypertensive kidney injury in Dahl salt-sensitive rats by targeting transforming growth factor-β signaling pathway[J]. Biomedicine & Pharmacotherapy,2020,131:110746.
|
[22] |
GAO L, YUAN P, ZHANG Q, et al. Taxifolin improves disorders of glucose metabolism and water-salt metabolism in kidney via PI3K/AKT signaling pathway in metabolic syndrome rats[J]. Life Sciences,2020,263:118713. doi: 10.1016/j.lfs.2020.118713
|
[23] |
VAIDYA V S, OZER J S, DIETERLE F, et al. Kidney injury molecule-1 outperforms traditional biomarkers of kidney injury in preclinical biomarker qualification studies[J]. Nature Biotechnology,2010,28(5):478−485. doi: 10.1038/nbt.1623
|
[24] |
MINEGISHI S, ISHIGAMI T, KINO T, et al. An isoform of Nedd4-2 is critically involved in the renal adaptation to high salt intake in mice[J]. Sci Rep,2016,6:27137. doi: 10.1038/srep27137
|
[25] |
MATTSON D L, MEISTER C J, MARCELLE M L. Immune suppression attenuates hypertension and renal disease in the Dahl salt-sensitive rat[J]. Hypertension,2006,48(1):149−156. doi: 10.1161/01.HYP.0000228320.23697.29
|
[26] |
RIMESSI A, PREVIATI M, NIGRO F, et al. Mitochondrial reactive oxygen species and inflammation: Molecular mechanisms, diseases and promising therapies[J]. The International Journal of Biochemistry & Cell Biology, 2016, 81(Pt B): 281−293.
|
[27] |
AKDIS M, AAB A, ALTUNBULAKLI C, et al. Interleukins (from IL-1 to IL-38), interferons, transforming growth factor β, and TNF-α: Receptors, functions, and roles in diseases[J]. Journal of Allergy and Clinical Immunology,2016,138(4):984−1010. doi: 10.1016/j.jaci.2016.06.033
|
[28] |
TOBA H, IKEMOTO M J, KOBARA M, et al. Secreted protein acidic and rich in cysteine (SPARC) and a disintegrin and metalloproteinase with thrombospondin type 1 motif (ADAMTS1) increments by the renin-angiotensin system induce renal fibrosis in deoxycorticosterone acetate-salt hypertensive rats[J]. Eur J Pharmacol,2022,914:174681. doi: 10.1016/j.ejphar.2021.174681
|
[29] |
PONTICELLI C, CAMPISE M R. The inflammatory state is a risk factor for cardiovascular disease and graft fibrosis in kidney transplantation[J]. Kidney International,2021,100(3):536−545. doi: 10.1016/j.kint.2021.04.016
|
[30] |
WU M, WU X, ZHU J, et al. Selenium-enriched and ordinary green tea extracts prevent high blood pressure and alter gut microbiota composition of hypertensive rats caused by high-salt diet[J]. Food Science and Human Wellness,2022,11(3):738−751. doi: 10.1016/j.fshw.2021.12.031
|
[31] |
夏南, 张焕鑫, 赵继先, 等. 高盐饮食对自发性高血压大鼠肾脏的影响及左旋氨氯地平的作用[J]. 中国循证心血管医学杂志,2019,11(5):611−613, 7. [XIA N, ZHANG H X, ZHAO J X, et al. Effect of high salt diet on kidney in spontaneously hypertensive rats and the effect of L-amlodipine[J]. Chinese Journal of Evidence-Based Cardiovascular Medicine,2019,11(5):611−613, 7. doi: 10.3969/j.issn.1674-4055.2019.05.26
|
[32] |
赵宇, 刘燕, 商黔惠, 等. 替米沙坦对4%高盐饮食诱导肾脏纤维化的保护作用[J]. 中国老年学杂志,2018,38(6):1430−1433. [ZHAO Y, LIU Y, SHANG Q H, et al. Improvement of telmisartan on renal fibrosis induced by 4% high-salt diet in Wistar rats[J]. Chinese Journal of Gerontology,2018,38(6):1430−1433. doi: 10.3969/j.issn.1005-9202.2018.06.064
|
[33] |
BUKOSZA E N, KAUCSÁR T, GODÓ M, et al. Glomerular collagen deposition and lipocalin-2 expression are early signs of renal injury in prediabetic obese rats[J]. Int J Mol Sci,2019,20(17):4266. doi: 10.3390/ijms20174266
|
[34] |
BAI M, LEI J, WANG S, et al. BMP1 inhibitor UK383, 367 attenuates renal fibrosis and inflammation in CKD[J]. American Journal of Physiology Renal Physiology,2019,317(6):F1430−F1438. doi: 10.1152/ajprenal.00230.2019
|
1. |
陶思琪,封炳迪,孟彩云,穆歆迪,张语涵,马隆煜,韩齐,李鹤. 清洁标签在食品加工中的应用及研究进展. 农产品加工. 2025(05): 95-98 .
![]() | |
2. |
刘欣睿,王美娟,计云龙,孔保华,曹传爱,孙方达,张宏伟,刘骞. 低温慢煮时间对即食鸡胸肉品质及消化特性的影响. 食品工业科技. 2024(03): 114-122 .
![]() | |
3. |
白恒丽,李来好,吴燕燕,王悦齐. 基于超声联合滚揉腌制改善低盐预制调理海鲈鱼品质特性. 食品科学. 2024(14): 161-171 .
![]() | |
4. |
曾昱,陈季旺,王欣欣,王柳清,张鹏,杨海琦,田宏伟. 辣椒油树脂乳液在卤鸭脖中的应用研究. 武汉轻工大学学报. 2024(05): 41-49 .
![]() | |
5. |
田梦瑶,肖珧,伍岳,娄爱华. 响应面法优化鸭肉间歇真空滚揉腌制工艺. 中国调味品. 2024(12): 132-136 .
![]() | |
6. |
周银娜,魏相茹,张德权,王振宇. 不同升温模式对北京鸭肉肌球蛋白热凝胶特性的影响. 肉类研究. 2023(06): 8-14 .
![]() | |
7. |
贺俊杰,曹传爱,孔保华,赵伟焱,李元钢,计云龙,刘骞. 蒸煮时间对低温即食鸭胸肉品质特性的影响. 肉类研究. 2023(06): 21-28 .
![]() | |
8. |
董智铭,姜萩婉,蒋泽临,王辉,王见钊,孔保华,刘骞,陈倩. 超声时间对牛肉干品质及其肌原纤维蛋白结构的影响. 食品工业科技. 2023(20): 36-42 .
![]() |