ZHANG Chenchen, SONG Jiangfeng, LIU Yuanfa, et al. Optimization of Dynamic High Pressure Microfluidization-Assisted Extraction of Burdock Root Polysaccharide and Its in Vitro Antioxidant Activity[J]. Science and Technology of Food Industry, 2023, 44(12): 260−267. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022070133.
Citation: ZHANG Chenchen, SONG Jiangfeng, LIU Yuanfa, et al. Optimization of Dynamic High Pressure Microfluidization-Assisted Extraction of Burdock Root Polysaccharide and Its in Vitro Antioxidant Activity[J]. Science and Technology of Food Industry, 2023, 44(12): 260−267. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022070133.

Optimization of Dynamic High Pressure Microfluidization-Assisted Extraction of Burdock Root Polysaccharide and Its in Vitro Antioxidant Activity

More Information
  • Received Date: July 13, 2022
  • Available Online: April 20, 2023
  • In this paper, the extraction process of burdock root polysaccharide was optimized using dynamic high pressure microfluidization (DHPM) combined with water extraction, and its infrared spectral structure and monosaccharide composition were analyzed to evaluate its scavenging activities against DPPH·, ·OH and ABTS· radicals. The results showed that the factors affecting the yield of burdock root polysaccharide were DHPM pressure>extraction temperature>liquid to solid ratio>extraction time> number of treatments in descending order. The optimal extraction conditions were determined by response surface methodology: DHPM pressure of 148.0 MPa, liquid-solid ratio of 25:1 mL/g, two times of treatment, extraction temperature of 63 ℃ and extraction time of 1 h. Under these conditions, the predicted yield of burdock root polysaccharide reached 29.6%, and the relative error between the actual yield of 29.7% and predicted values was only 0.3%. The polysaccharides were mainly composed of fructose, glucose, arabinose, galactose and glucosamine hydrochloride, with molar ratios of 0.844:0.122:0.024:0.008:0.002. The polysaccharides of burdock root had different effects on DPPH·, ABTS+· and ·OH radicals. The IC50 values were 0.30, 0.36 and 3.93 mg/mL, respectively. The study would provide a reference for the green and efficient extraction of burdock root polysaccharide.
  • [1]
    王佳佳, 刘玮, 朱静, 等. 牛蒡根多糖的降血糖活性[J]. 中国药科大学学报,2013,44(5):455−459. [WANG J J, LIU W, ZHU J, et al. Study on hypoglycemic activity of polysaccharides from Arctium lappa L[J]. Journal of China Pharmaceutical University,2013,44(5):455−459.

    WANG J J, LIU W, ZHU J, et al. Study on hypoglycemic activity of polysaccharides from Arctium lappa L[J]. Journal of China Pharmaceutical University, 2013, 44(5): 455-459.
    [2]
    朱姗姗, 张斌, 朱文卿, 等. 牛蒡根多糖特性分析及对脂多糖诱导巨噬细胞炎症的调节作用[J]. 食品工业科技,2022,43(15):272−278. [ZHU S S, ZHANG B, ZHU W Q, et al. Effects of Arctium lappa L. polysaccharides on macrophage inflammation induced by lipopolysaccharide[J]. Science and Technology of Food Industry,2022,43(15):272−278.

    ZHU S S, ZHANG B, ZHU W Q, et al. Effects of Arctium lappa L. polysaccharides on macrophage inflammation induced by lipopolysaccharide[J]. Science and Technology of Food Industry, 2022, 43(15): 272-278.
    [3]
    XU Z, GU C, WANG K, et al. Arctigenic acid, the key substance responsible for the hypoglycemic activity of Fructus Arctii[J]. Phytomedicine,2015,22(1):128−137. doi: 10.1016/j.phymed.2014.11.006
    [4]
    李玲玉, 邱志常, 朱姗姗, 等. 响应面法优化牛蒡根多糖超声辅助提取工艺与抗氧化活性评价[J]. 食品科技,2020,45(11):197−204. [LI L Y, QIU Z C, ZHU S S, et al. Optimization of ultrasound-assisted extraction process and evaluation of antioxidant activity of polysaccharides from burdock by response surface methodology[J]. Food Science and Technology,2020,45(11):197−204.

    LI L Y, QIU Z C, ZHU S S, et al. Optimization of ultrasound-assisted extraction process and evaluation of antioxidant activity of polysaccharides from burdock by response surface methodology[J]. Food Science and Technology, 2020, 45(11): 197-204.
    [5]
    MORO T M, CLERICI M T. Burdock (Arctium lappa L) roots as a source of inulin-type fructans and other bioactive compounds: Current knowledge and future perspectives for food and non-food applications[J]. Food Research International,2021,141:109889. doi: 10.1016/j.foodres.2020.109889
    [6]
    WANG Y, ZHANG N F, KAN J, et al. Structural characterization of water-soluble polysaccharide from Arctium lappa and its effects on colitis mice[J]. Carbohydrate Polymers,2019,213:89−99. doi: 10.1016/j.carbpol.2019.02.090
    [7]
    周浓, 刘亚, 解万翠, 等. 牛蒡根多糖提取工艺及其体外抗氧化活性的研究[J]. 食品研究与开发,2015,36(16):44−48. [ZHOU N, LIU Y, XIE W C, et al. Study on extraction technology and antioxidant activity of polysaccharides from burdock in vitro[J]. Food Research and Development,2015,36(16):44−48.

    ZHOU N, LIU Y, XIE W C, et al. Study on extraction technology and antioxidant activity of polysaccharides from burdock in vitro[J]. Food Research and Development, 2015, 36(16): 44-48.
    [8]
    巫永华, 陆文静, 刘梦虎, 等. 响应面优化超声波辅助双水相提取牛蒡根多糖及抗氧化分析[J]. 食品与发酵工业,2020,46(5):215−223. [WU Y H, LU W J, LIU M H, et al. Response surface optimization ultrasonic-assisted two-phase extraction of polysaccharides from burdock and its antioxidant analysis[J]. Food and Fermentation Industries,2020,46(5):215−223.

    WU Y H, LU W J, LIU M H, et al. Response surface optimization ultrasonic-assisted two-phase extraction of polysaccharides from burdock and its antioxidant analysis[J]. Food and Fermentation Industries, 2020, 46(5): 215-223.
    [9]
    王文丽, 张金玲, 魏亚宁, 等. 天然多糖提取、纯化及生物活性研究进展[J]. 食品工业科技,2022,43(22):470−480. [WANG W L, ZHANG J L, WEI Y N, et al. Research progress in extraction, purification and bioactivity of natural polysaccharides[J]. Food Industry Technology,2022,43(22):470−480.

    WANG W L, ZHANG J L, WEI Y N, et al. Research progress in extraction, purification and bioactivity of natural polysaccharides[J]. Food Industry Technology, 2022, 43(22): 470-480.
    [10]
    姜颖, 涂宗财, 陈媛, 等. 动态超高压微射流预处理对香菇多糖得率的影响[J]. 食品科学,2010,31(24):62−65. [JIANG Y, XU T C, CHEN Y, et al. Effects of dynamic ultra-high pressure microjet pretreatment on the yield of lentinan[J]. Food Science,2010,31(24):62−65.

    JIANG Y, XU T C, CHEN Y, et al. Effects of dynamic ultra-high pressure microjet pretreatment on the yield of lentinan[J]. Food Science, 2010, 31(24): 62-65.
    [11]
    秦令祥, 周婧琦, 崔胜文, 等. 动态超高压微射流法提取黑木耳多糖工艺研究[J]. 食品研究与开发,2019,40(19):155−159. [QIN L X, ZHOU J Q, CUI S W, et al. Extraction of polysaccharides from Auricularia auriculata by dynamic high-pressure microfluidization[J]. Food Research and Development,2019,40(19):155−159.

    QIN L X, ZHOU J Q, CUI S W, et al. Extraction of polysaccharides from Auricularia auriculata by dynamic high-pressure microfluidization[J]. Food Research and Development, 2019, 40(19): 155-159.
    [12]
    ZHANG L, TU Z, WANG H, et al. Response surface optimization and physicochemical properties of polysaccharides from Nelumbo nucifera leaves[J]. International Journal of Biological Macromolecules,2015,74:103−110. doi: 10.1016/j.ijbiomac.2014.11.020
    [13]
    HUANG L, SHEN M, ZHANG X, et al. Effect of high-pressure microfluidization treatment on the physicochemical properties and antioxidant activities of polysaccharide from Mesona chinensis Benth[J]. Carbohydrate Polymers,2018,200:191−199. doi: 10.1016/j.carbpol.2018.07.087
    [14]
    HUANG X, TU Z, JIANG Y, et al. Dynamic high pressure microfluidization-assisted extraction and antioxidant activities of lentinan[J]. International Journal of Biological Macromolecules,2012,51(5):926−932. doi: 10.1016/j.ijbiomac.2012.07.018
    [15]
    李卷梅. 牛蒡根多糖提取和结构特征[D]. 南昌: 南昌大学, 2019

    LI J M. Extraction and structural characteristics of polysaccharides from the root of Arctium lappa L.[D]. Nanchang: Nanchang University, 2019.
    [16]
    ZHOU S, HUANG G, CHEN G. Extraction, structural analysis, derivatization and antioxidant activity of polysaccharide from Chinese yam[J]. Food Chemistry,2021,361:130089. doi: 10.1016/j.foodchem.2021.130089
    [17]
    张丽红, 谢三都, 徐芳, 等. 紫苏叶多糖活性炭脱色工艺优化[J]. 食品与机械,2015,31(3):224−230,241. [ZHANG L H, XIE S D, XU F, et al. Optimization of decolorization process of polysaccharides from Perilla perilla leaves on activated carbon[J]. Food and Machinery,2015,31(3):224−230,241.

    ZHANG L H, XIE S D, XU F, et al. Optimization of decolorization process of polysaccharides from Perilla perilla leaves on activated carbon[J]. Food and Machinery, 2015, 31(3): 224-230, 241.
    [18]
    郭金龙, 陈有君, 孙国琴, 等. 苯酚-硫酸法测定杏鲍菇多糖方法的研究[J]. 食品科学,2008,29(12):555−558. [GUO J L, CHEN Y J, SUN G Q, et al. Determination of polysaccharides in Pleudodes eryngii by phenol-sulfuric acid method[J]. Food Science,2008,29(12):555−558.

    GUO J L, CHEN Y J, SUN G Q, et al. Determination of polysaccharides in Pleudodes eryngii by phenol-sulfuric acid method[J]. Food Science, 2008, 29(12): 555-558.
    [19]
    蒋雪松, 刘鹏, 沈飞, 等. 衰减全反射-傅里叶变换红外光谱法对花生仁霉变的分析[J]. 食品科学,2017,38(12):315−320. [JIANG X S, LIU P, SHEN F, et al. Analysis of peanut kernel mildew by attenuated total reflection-fourier transform infrared spectroscopy[J]. Food Science,2017,38(12):315−320.

    JIANG X S, LIU P, SHEN F, et al. Analysis of peanut kernel mildew by attenuated total reflection-fourier transform infrared spectroscopy[J]. Food Science, 2017, 38(12): 315-320.
    [20]
    LI X, ZHANG Q, ZHU Y, et al. Structural characterization of a mannoglucan polysaccharide from Dendrobium huoshanense and evaluation of its osteogenesis promotion activities[J]. International Journal of Biological Macromolecules,2022,211:441−449. doi: 10.1016/j.ijbiomac.2022.05.036
    [21]
    郭元亨, 张利军, 曹丽丽, 等. 植物多糖中单糖组成分析技术的研究进展[J]. 食品科学,2018,39(1):326−332. [GUO Y H, ZHANG L J, CAO L L, et al. Progress in the analysis of monosaccharide composition in plant polysaccharides[J]. Food Science,2018,39(1):326−332.

    GUO Y H, ZHANG L J, CAO L L, et al. Progress in the analysis of monosaccharide composition in plant polysaccharides[J]. Food Science, 2018, 39(1): 326-332.
    [22]
    杨新河, 黄明军, 马蔚, 等. 不同黑茶多糖的组成分析及其抗氧化活性[J]. 食品工业科技,2017,38(20):16−20. [YANG X H, HUANG M J, MA W. et al. Composition analysis and antioxidant activity of different black tea polysaccharides[J]. Science and Technology of Food industry,2017,38(20):16−20.

    YANG X H, HUANG M J, MA W. et al. Composition analysis and antioxidant activity of different black tea polysaccharides[J]. Science and Technology of Food industry, 2017, 38(20): 16-20.
    [23]
    教小磐, 刘云. 甜茶叶多糖的表征、体外抗氧化活性与体内毒性[J]. 食品科学,2020,41(15):201−207. [JIAO X P, LIU Y. Characterization, in vitro antioxidant activity and in vivo toxicity of polysaccharides from sweet tea[J]. Food Science,2020,41(15):201−207.

    JIAO X P, LIU Y. Characterization, in vitro antioxidant activity and in vivo toxicity of polysaccharides from sweet tea[J]. Food Science, 2020, 41(15): 201-207.
    [24]
    刘艺珠, 刘佩冶, 赵玉梅, 等. 黄花菜多糖的表征与抗氧化活性分析[J]. 食品工业科技,2022,43(12):54−61. [LIU Y Z, LIU P Y, ZHAO Y M, et al. Characterization and antioxidant activity analysis of polysaccharides from daylily[J]. Science and Technology of Food Industry,2022,43(12):54−61.

    LIU Y Z, LIU P Y, ZHAO Y M, et al. Characterization and antioxidant activity analysis of polysaccharides from daylily[J]. Science and Technology of Food Industry, 2022, 43(12): 54-61.
    [25]
    ZHANG N, WANG Y, KAN J, et al. In vivo and in vitro anti-inflammatory effects of water-soluble polysaccharide from Arctium lappa[J]. International Journal of Biological Macromolecules,2019,135:717−724. doi: 10.1016/j.ijbiomac.2019.05.171
    [26]
    贾小丽, 程烨, 孙艳辉, 等. 牛蒡根多糖的提取工艺及抗氧化性分析[J]. 粮食与食品工业,2015,22(6):51−56. [JIA X L, CHENG Y, SUN Y H, et al. Extraction technology and antioxidant activity analysis of polysaccharides from burdock[J]. Food and Food Industry,2015,22(6):51−56.

    JIA X L, CHENG Y, SUN Y H, et al. Extraction technology and antioxidant activity analysis of polysaccharides from burdock[J]. Food and Food Industry, 2015, 22(6): 51-56.
    [27]
    董玉玮, 苗敬芝. 纤维素酶辅助提取牛蒡根多糖及牛蒡复合保健茶饮料的研制[J]. 保鲜与加工,2021,21(8):82−88. [DONG Y W, MIAO J Z. Cellulase-assisted extraction of burdock polysaccharide and preparation of burdock compound health tea beverage[J]. Preservation and Processing,2021,21(8):82−88.

    DONG Y W, MIAO J Z. Cellulase-assisted extraction of burdock polysaccharide and preparation of burdock compound health tea beverage[J]. Preservation and Processing, 2021, 21(8): 82-88.
    [28]
    沈晓静, 黄璐璐, 聂凡秋, 等. 云南小粒咖啡花多糖提取工艺优化及其抗氧化活性分析[J]. 食品工业科技,2022,43(4):238−245. [SHEN X J, HUANG L L, SHEN F Q, et al. Optimization of extraction technology and antioxidant activity analysis of polysaccharide from coffee flower of Yunnan[J]. Science and Technology of Food Industry,2022,43(4):238−245.

    SHEN X J, HUANG L L, SHEN F Q, et al. Optimization of extraction technology and antioxidant activity analysis of polysaccharide from coffee flower of Yunnan[J]. Science and Technology of Food Industry, 2022, 43(4): 238-245.
    [29]
    白小东, 程超, 牛黎莉, 等. 响应面法优化超声波辅助提取南瓜皮中果胶的工艺[J]. 中国食品添加剂,2021,32(4):50−56. [BAI X D, CHENG C, NIU L L, et al. Optimization of ultrasound-assisted extraction of pectin from pumpkin peel by response surface methodology[J]. China Food Additives,2021,32(4):50−56.

    BAI X D, CHENG C, NIU L L, et al. Optimization of ultrasound-assisted extraction of pectin from pumpkin peel by response surface methodology[J]. China Food Additives, 2021, 32(4): 50-56.
    [30]
    龚频, 胡峰瑞, 高浩天, 等. 牛蒡子粗多糖的提取及其体外抗氧化活性研究[J]. 陕西科技大学学报,2022,40(2):61−67. [GONG PIN, HU F R, GAO H T, et al. Study on extraction and antioxidant activity of crude polysaccharides from Fructus Arctium lappa L[J]. Journal of Shanxi University of Science and Technology,2022,40(2):61−67.

    GONG PIN, HU F R, GAO H T, et al. Study on extraction and antioxidant activity of crude polysaccharides from Fructus Arctium lappa L[J]. Journal of Shanxi University of Science and Technology, 2022, 40(2): 61-67.
    [31]
    陈谧. 三七多糖的结构分析及抗衰老活性研究[D]. 长春: 东北师范大学, 2020: 64-65

    CHEN M. Structure analysis and anti-aging activity of polysaccharide from Panax notoginseng[D]. Changchun: Northeast Normal University, 2020: 64-65.
    [32]
    WANG S, ZHAO L, LI Q, et al. Rheological properties and chain conformation of soy hull water-soluble polysaccharide fractions obtained by gradient alcohol precipitation[J]. Food Hydrocolloids,2019,91:34−39. doi: 10.1016/j.foodhyd.2018.12.054
    [33]
    CHAI Z, HUANG W Y, ZHAO X, et al. Preparation, characterization, antioxidant activity and protective effect against cellular oxidative stress of polysaccharide from Cynanchum auriculatum Royle ex wight[J]. International Journal of Biological Macromolecules,2018,119:1068−1076. doi: 10.1016/j.ijbiomac.2018.08.024
    [34]
    WANG D, ZHAO Y, SUN Y, et al. Protective effects of Ziyang tea polysaccharides on CCl4-induced oxidative liver damage in mice[J]. Food Chemistry,2014,143:371−378. doi: 10.1016/j.foodchem.2013.08.005
    [35]
    CHEN J L, CHEONG K L, SONG Z, et al. Structure and protective effect on UVB-induced keratinocyte damage of fructan from white garlic[J]. Carbohydrate Polymers,2013,92(1):200−205. doi: 10.1016/j.carbpol.2012.09.068
    [36]
    郑一美, 温正如, 宋宇鹏, 等. 牛蒡多糖组分的高效阴离子交换-脉冲安培分析[J]. 浙江大学学报(理学版),2014,41(5):537−541. [ZHENG Y M, WEN Z R, SONG Y P, et al. High performance anion exchange pulse amperometric analysis of polysaccharides from burdock[J]. Journal of Zhejiang University (Science),2014,41(5):537−541.

    ZHENG Y M, WEN Z R, SONG Y P, et al. High performance anion exchange pulse amperometric analysis of polysaccharides from burdock[J]. Journal of Zhejiang University(science), 2014, 41(5): 537-541.
    [37]
    黄俊彬, 丁婕, 朱海媚, 等. 三个不同种源的铁皮石斛多糖比较及其初步的药理活性评价[J]. 食品工业科技,2022,43(5):71−78. [HUANG J B, DING J, ZHU H M, et al. Comparison of polysaccharides from three different provenances of Dendrobium officinale and preliminary evaluation of their pharmacological activities[J]. Science and Technology of Food Industry,2022,43(5):71−78.

    HUANG J B, DING J, ZHU H M, et al. Comparison of polysaccharides from three different provenances of Dendrobium officinale and preliminary evaluation of their pharmacological activities[J]. Science and Technology of Food Industry, 2022, 43(5): 71-78.
    [38]
    LIU W, WANG J, ZHANG Z, et al. In vitro and in vivo antioxidant activity of a fructan from the roots of Arctium lappa L.[J]. International Journal of Biological Macromolecules,2014,65:446−453. doi: 10.1016/j.ijbiomac.2014.01.062
  • Cited by

    Periodical cited type(7)

    1. 张智恒,赵维武,孙海誉,孙秋慧,郭山,代舒同. ε-聚赖氨酸复配保鲜剂对蛋糕保鲜效果. 食品工业. 2024(03): 100-105 .
    2. 翟彩宁,陈佩,黄镜源,王玮琨. 迷迭香活性成分的提取工艺、功能及其在动物生产中的应用. 饲料研究. 2024(14): 172-176 .
    3. 唐源,刘梦聪,刘燕,李富华,赵吉春,明建. 香辛料提取物改善水产品蛋白质过氧化研究进展. 食品科学. 2024(20): 290-298 .
    4. 马丹凤,朱梓康,王雨旺,杨金铭,顾诗雨,黄志炜. 迷迭香在植物生产中的应用研究进展. 黑龙江农业科学. 2023(07): 113-121 .
    5. 库文娟,杨欢,余丽,徐玉. 从迷迭香中提取天然抗氧化剂的工艺研究进展. 食品工业. 2023(12): 159-161 .
    6. 蒋治国,何莹,林昌华,苏丽娟,黄海权,蒋家霞. 迷迭香提取物降低仔猪断奶氧化应激的机制研究. 饲料研究. 2023(22): 21-25 .
    7. 钟雯雯,杨绍坤,李梓萌,段晓梅. 迷迭香精油GC-MS分析及其体外药理活性研究. 广州化工. 2023(21): 80-84 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (140) PDF downloads (16) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return