YU Jie, LI Qi, ZHAO Feiyan. Intestinal Flora: A New Target for the Treatment of Parkinson's Disease[J]. Science and Technology of Food Industry, 2022, 43(21): 1−8. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022050347.
Citation: YU Jie, LI Qi, ZHAO Feiyan. Intestinal Flora: A New Target for the Treatment of Parkinson's Disease[J]. Science and Technology of Food Industry, 2022, 43(21): 1−8. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022050347.

Intestinal Flora: A New Target for the Treatment of Parkinson's Disease

More Information
  • Received Date: May 29, 2022
  • Available Online: August 20, 2022
  • Parkinson's disease (PD) is a neurodegenerative disease influenced by genetic and environmental factors, and its pathogenesis is still unclear. Compared with healthy people, the intestinal flora of patients with PD is disturbed, which is manifested by an increase in the abundance of intestinal microbial and an increase in specific bacteria. Probiotics can effectively improve the quality of PD patients' life by regulating the intestinal flora and improving symptoms such as inflammation, constipation and abdominal pain. Based on these properties, probiotics are expected to become an adjunct to the treatment of Parkinson's disease in real life. Starting from the aspects of intestinal flora, disease course and treatment methods of Parkinson's patients, this paper reviews the research reports in recent years. Moreover, this paper summarizes the characteristics of intestinal flora of Parkinson's patients and the relationship between them, and discusses the new therapeutic methods of probiotic intervention, which provides a new reference for the treatment of Parkinson's disease.
  • [1]
    沈馨, 孙志宏. 微生物-肠-脑轴与神经系统疾病的研究进展[J]. 生物工程学报,2021,37(11):3781−3788. [SHEN X, SUN Z H. Microbe-gut-brain axis and neurological disorders: A review[J]. Journal of Biological Engineering,2021,37(11):3781−3788. doi: 10.13345/j.cjb.200773
    [2]
    王晓丹, 纪勇. 帕金森病200年史话[J]. 中国现代神经疾病杂志,2017,17(1):5−8. [WANG X D, JI Y. A 200-year history of Parkinson's disease[J]. Chinese Journal of Contemporary Neurology and Neurosurgery,2017,17(1):5−8.
    [3]
    代成波, 周秀珍. 帕金森病早期治疗的理论与实践[J]. 中国临床医生,2006(5):48−49. [DAI C B, ZHOU X Z. Theory and practice of early treatment of Parkinson's disease[J]. Chinese Journal for Clinicians,2006(5):48−49.
    [4]
    KALIA L V, LANG A E. Parkinson's disease[J]. Lancet,2015,386(9996):896−912. doi: 10.1016/S0140-6736(14)61393-3
    [5]
    汪锡金, 张煜, 陈生弟. 帕金森病发病机制与治疗研究十年进展[J]. 中国现代神经疾病杂志,2010,10(1):36−42. [WANG X J, ZHANG Y, CHEN S D. Progress of research on pathogenesis and treatment of Parkinson's disease for ten years[J]. Chinese Journal of Contemporary Neurology and Neurosurgery,2010,10(1):36−42. doi: 10.3969/j.issn.1672-6731.2010.01.004
    [6]
    WANG C Y, LAU C V, MA F Q, et al. Genome-wide screen identifies curli amyloid fibril as a bacterial component promoting host neurodegeneration[J]. Proceedings of the National Academy of Sciences of the United States of America,2021,118(34):e2106504118. doi: 10.1073/pnas.2106504118
    [7]
    WALLEN Z D, STONE W J, FACTOR S A, et al. Exploring human-genome gut-microbiome interaction in Parkinson's disease[J]. Npj Parkinsons Disease,2021,7(1):74. doi: 10.1038/s41531-021-00218-2
    [8]
    HORSAGER J, ANDERSEN K B, KNUDSEN K, et al. Brain-first versus body-first Parkinson's disease: A multimodal imaging case-control study[J]. Brain,2020,143:3077−3088. doi: 10.1093/brain/awaa238
    [9]
    BRAAK H, DEVOSR A I, BOHI J, et al. Gastric alpha-synuclein immunoreactive inclusions in Meissner's and Auerbach's plexuses in cases staged for Parkinson's disease-related brain pathology[J]. Neuroscience Letters,2006,396(1):67−72. doi: 10.1016/j.neulet.2005.11.012
    [10]
    HOLMQVIST S, CHUTNA O, BOUSSET L, et al. Direct evidence of Parkinson pathology spread from the gastrointestinal tract to the brain in rats[J]. Acta Neuropathologica,2014,128(6):805−820. doi: 10.1007/s00401-014-1343-6
    [11]
    AHN E H, KANG S S, LIU X, et al. Initiation of Parkinson's disease from gut to brain by delta-secretase[J]. Cell Research,2020,30(1):70−87. doi: 10.1038/s41422-019-0241-9
    [12]
    BOEHME M, GUZZETTA K E, BASTIAANSSEN T F S, et al. Microbiota from young mice counteracts selective age-associated behavioral deficits[J]. Nature Aging,2021,1(8):666−676. doi: 10.1038/s43587-021-00093-9
    [13]
    CHALLIS C, HORI A, SAMPSON T R, et al. Gut-seeded alpha-synuclein fibrils promote gut dysfunction and brain pathology specifically in aged mice[J]. Nature Neuroscience,2020,23(3):327−336. doi: 10.1038/s41593-020-0589-7
    [14]
    SERRA D, ALMEIDA L M, DINIS T C P. Dietary polyphenols: A novel strategy to modulate microbiota-gut-brain axis[J]. Trends in Food Science & Technology,2018,78:224−233.
    [15]
    LI Z, LU G, LI Z, et al. Altered Actinobacteria and Firmicutes phylum associated epitopes in patients with Parkinson's disease[J]. Frontiers in Immunology,2021:12.
    [16]
    ZHOU X, LU J, WEI K, et al. Neuroprotective effect of ceftriaxone on MPTP-induced Parkinson's disease mouse model by regulating inflammation and intestinal microbiota[J]. Oxidative Medicine and Cellular Iongevity,2021,2021:9424582.
    [17]
    AHO V T E, HOUSER M C, PEREIRA P A B, et al. Relationships of gut microbiota, short-chain fatty acids, inflammation, and the gut barrier in Parkinson's disease[J]. Molecular Neurodegeneration,2021,16(1):1−14. doi: 10.1186/s13024-020-00420-5
    [18]
    WANG Y, TONG Q, MA S R, et al. Oral berberine improves brain dopa/dopamine levels to ameliorate Parkinson's disease by regulating gut microbiota[J]. Signal Transduction and Targeted Therapy,2021,6(1):1−20. doi: 10.1038/s41392-020-00451-w
    [19]
    BAERT F, MATTHYS C, MASELYNE J, et al. Parkinson's disease patients' short chain fatty acids production capacity after in vitro fecal fiber fermentation[J]. Npj Parkinsons Disease,2021,7(1):72. doi: 10.1038/s41531-021-00215-5
    [20]
    TAN A H, CHONG C W, LIM S Y, et al. Gut microbial ecosystem in Parkinson disease: New clinicobiological insights from multi-omics[J]. Annals of Neurology,2021,89(3):546−559. doi: 10.1002/ana.25982
    [21]
    OMENETTI S, BUSSI C, METIDJI A, et al. The intestine harbors functionally distinct homeostatic tissue-resident and inflammatory Th17 cells[J]. Immunity,2019,51(1):77−89. doi: 10.1016/j.immuni.2019.05.004
    [22]
    WALLEN Z D, APPAH M, DEAN M N, et al. Characterizing dysbiosis of gut microbiome in PD: Evidence for overabundance of opportunistic pathogens[J]. Npj Parkinsons Disease,2020,6(1):1−12. doi: 10.1038/s41531-019-0104-6
    [23]
    CIRSTEA M S, YU A C, GOLZ E, et al. Microbiota composition and metabolism are associated with gut function in Parkinson's disease[J]. Movement Disorders,2020,35(7):1208−1217. doi: 10.1002/mds.28052
    [24]
    LI W, WU X L, HU X, et al. Structural changes of gut microbiota in Parkinson's disease and its correlation with clinical features[J]. Science China-Life Sciences,2017,60(11):1223−1233. doi: 10.1007/s11427-016-9001-4
    [25]
    ROMANO S, SAVVA G M, BEDARF J R, et al. Meta-analysis of the Parkinson's disease gut microbiome suggests alterations linked to intestinal inflammation[J]. Npj Parkinsons Disease,2021,7(1):27. doi: 10.1038/s41531-021-00156-z
    [26]
    HANNINEN A, TOIVONEN R, POYSTI S, et al. Akkermansia muciniphila induces gut microbiota remodelling and controls islet autoimmunity in NOD mice[J]. Gut,2018,67(8):1445−1453. doi: 10.1136/gutjnl-2017-314508
    [27]
    QU S W, FAN L N, QI Y D, et al. Akkermansia muciniphila alleviates dextran sulfate sodium (DSS)-induced acute colitis by NLRP3 activation[J]. Microbiology Spectrum,2021,9(2):e0073021.
    [28]
    DEPOMMIER C, EVERARD A, DRUART C, et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: A proof-of-concept exploratory study[J]. Nature Medicine,2019,25(7):1096−1103. doi: 10.1038/s41591-019-0495-2
    [29]
    QIAN Y W, YANG X D, XU S Q, et al. Alteration of the fecal microbiota in Chinese patients with Parkinson's disease[J]. Brain Behavior and Immunity,2018,70:194−202. doi: 10.1016/j.bbi.2018.02.016
    [30]
    WRIS S, MEISNER A, SCHWIERTZ A, et al. Association between Parkinson's disease and the faecal eukaryotic microbiota[J]. Npj Parkinsons Disease,2021,7(1):1. doi: 10.1038/s41531-021-00244-0
    [31]
    CIRSTEA M S, SUNDVICK K, GOLZ E, et al. The gut mycrobiome in Parkinson's disease[J]. Journal of Parkinsons Disease,2021,11(1):153−158. doi: 10.3233/JPD-202237
    [32]
    LIN C H, CHEN C C, CHIANG H L, et al. Altered gut microbiota and inflammatory cytokine responses in patients with Parkinson's disease[J]. Journal of Neuroinflammation,2019,16(1):1−9. doi: 10.1186/s12974-018-1391-2
    [33]
    CANNON T, GRUENHEID S. Microbes and Parkinson's disease: From associations to mechanisms[J]. Trends in Microbiology,2022,30(8):749−760. doi: 10.1016/j.tim.2022.01.004
    [34]
    VANDEPUTTE D, FALONY G, VIEIRA-SILVA S, et al. Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates[J]. Gut,2016,65(1):57−62. doi: 10.1136/gutjnl-2015-309618
    [35]
    JAYANTI S, MORETTI R, TIRIBELLI C, et al. Bilirubin: A promising therapy for Parkinson's disease[J]. International Journal of Molecular Sciences,2021,22(12):6223. doi: 10.3390/ijms22126223
    [36]
    REKDAL V M, BESS E N, BISANZ J E, et al. Discovery and inhibition of an interspecies gut bacterial pathway for Levodopa metabolism[J]. Science,2019,364(6445):eaau6323. doi: 10.1126/science.aau6323
    [37]
    SHANG J M, MA S R, ZANG C X, et al. Gut microbiota mediates the absorption of FLZ, a new drug for Parkinson's disease treatment[J]. Acta Pharmaceutica Sinica B,2021,11(5):1213−1226. doi: 10.1016/j.apsb.2021.01.009
    [38]
    CHEN K K, JIN Z H, GAO L, et al. Efficacy of short-term multidisciplinary intensive rehabilitation in patients with different Parkinson's disease motor subtypes: A prospective pilot study with 3-month follow-up[J]. Neural Regeneration Research,2021,16(7):1336−1343. doi: 10.4103/1673-5374.301029
    [39]
    CASSANI E, PRIVITERA G, PEZZOLI G, et al. Use of probiotics for the treatment of constipation in Parkinson's disease patients[J]. Minerva Gastroenterologica e Dietologica,2011,57(2):117−121.
    [40]
    ARICHELLA M, PACCHETTI C, BOLLIRI C, et al. Probiotics and prebiotic fiber for constipation associated with Parkinson disease: An RCT[J]. Neurology,2016,87(12):1274−1280. doi: 10.1212/WNL.0000000000003127
    [41]
    TAMTAJI O R, TAGHIZADEH M, KAKHAKI R D, et al. Clinical and metabolic response to probiotic administration in people with Parkinson's disease: A randomized, double-blind, placebo-controlled trial[J]. Clinical Nutrition,2019,38(3):1031−1035. doi: 10.1016/j.clnu.2018.05.018
    [42]
    TAN A H, LIM S Y, CHONG K K, et al. Probiotics for constipation in Parkinson disease: A randomized placebo-controlled study[J]. Neurology,2021,96(5):E772−E782.
    [43]
    GEORGESCU D, ANCUSA O E, GEORGESCU L A, et al. Nonmotor gastrointestinal disorders in older patients with Parkinson's disease: Is there hope[J]. Clinical Interventions in Aging,2016,11:1601−1608. doi: 10.2147/CIA.S106284
    [44]
    SEPPI K, RAY CHAUDHURI K, Coelho M, et al. Update on treatments for nonmotor symptoms of Parkinson's disease-an evidence-based medicine review[J]. Movement Disorders,2019,34(2):180−198. doi: 10.1002/mds.27602
    [45]
    KEUN J T B, ARNOLDUSSEN I A C, VRIEND C, et al. Dietary approaches to improve efficacy and control side effects of levodopa therapy in Parkinson's disease: A systematic review[J]. Advances in Nutrition,2021,12(6):2265−2287. doi: 10.1093/advances/nmab060
    [46]
    MAGISTRELLI L, AMORUSO A, MOGNA L, et al. Probiotics may have beneficial effects in Parkinson's disease: In vitro evidence[J]. Frontiers in Immunology,2019,10:969. doi: 10.3389/fimmu.2019.00969
    [47]
    LEES A J, FERREIRA J, RASCOL O, et al. Opicapone as adjunct to levodopa therapy in patients with Parkinson disease and motor fluctuations a randomized clinical trial[J]. Jama Neurology,2017,74(2):197−206. doi: 10.1001/jamaneurol.2016.4703
    [48]
    GOYA M E, XUE F, SAMPEDRO-TORRES-QUEVEDO C, et al. Probiotic Bacillus subtilis protects against α-synuclein aggregation in C. elegans[J]. Cell Reports,2020,30(2):367−380. doi: 10.1016/j.celrep.2019.12.078
    [49]
    BRON P A, KLEEREBEZEM M, BRUMMER R J, et al. Can probiotics modulate human disease by impacting intestinal barrier function?[J]. British Journal of Nutrition,2017,117(1):93−107. doi: 10.1017/S0007114516004037
    [50]
    SUN H, ZHAO F, LIU Y, et al. Probiotics synergized with conventional regimen in managing Parkinson’s disease[J]. npj Parkinson's Disease,2022,8(1):1−12. doi: 10.1038/s41531-021-00272-w
    [51]
    SRIVASTAV S, NEUPANE S, BHURTEL S, et al. Probiotics mixture increases butyrate, and subsequently rescues the nigral dopaminergic neurons from MPTP and rotenone-induced neurotoxicity[J]. The Journal of Nutritional Biochemistry,2019,69:73−86. doi: 10.1016/j.jnutbio.2019.03.021
    [52]
    LUDTMANN M H R, ANGELOVA P R, HORROCKS M H, et al. α-Synuclein oligomers interact with ATP synthase and open the permeability transition pore in Parkinson’s disease[J]. Nature Communications,2018,9(1):1−16. doi: 10.1038/s41467-017-02088-w
    [53]
    WICHMANN T. Changing views of the pathophysiology of Parkinsonism[J]. Mov Disord,2019,34(8):1130−1143. doi: 10.1002/mds.27741
  • Cited by

    Periodical cited type(5)

    1. 梅天娇,司家勇,张治中,刘佳妮,黄博荣,仪锦文. 基于油茶茶枯的生物质碳点制备及对Fe~(3+)检测研究. 化学世界. 2025(01): 25-32 .
    2. 何芳,张颖,张运良,孙双姣. 电化学法制备碳点荧光探针测定氯霉素含量的研究. 邵阳学院学报(自然科学版). 2024(01): 57-65 .
    3. 刘凯. 基于荧光探针技术的畜产品兽药残留检测方法. 饲料博览. 2024(01): 35-39 .
    4. 刘梅,米琳静,张雅欣,周怡伽,唐青愉,王艳虹,陈红,廉向金,付春梅. 荧光氮掺杂碳点构建鸡肉中氟喹诺酮类药物的高通量检测方法. 中国测试. 2024(11): 73-81 .
    5. 王小燕,刘峥,郭容婷,丁智远,吕奕菊,孔翔飞. 荧光可视化技术在食品分析中的应用进展. 理化检验-化学分册. 2023(11): 1357-1364 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (327) PDF downloads (40) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return