Citation: | YU Jie, LI Qi, ZHAO Feiyan. Intestinal Flora: A New Target for the Treatment of Parkinson's Disease[J]. Science and Technology of Food Industry, 2022, 43(21): 1−8. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022050347. |
[1] |
沈馨, 孙志宏. 微生物-肠-脑轴与神经系统疾病的研究进展[J]. 生物工程学报,2021,37(11):3781−3788. [SHEN X, SUN Z H. Microbe-gut-brain axis and neurological disorders: A review[J]. Journal of Biological Engineering,2021,37(11):3781−3788. doi: 10.13345/j.cjb.200773
|
[2] |
王晓丹, 纪勇. 帕金森病200年史话[J]. 中国现代神经疾病杂志,2017,17(1):5−8. [WANG X D, JI Y. A 200-year history of Parkinson's disease[J]. Chinese Journal of Contemporary Neurology and Neurosurgery,2017,17(1):5−8.
|
[3] |
代成波, 周秀珍. 帕金森病早期治疗的理论与实践[J]. 中国临床医生,2006(5):48−49. [DAI C B, ZHOU X Z. Theory and practice of early treatment of Parkinson's disease[J]. Chinese Journal for Clinicians,2006(5):48−49.
|
[4] |
KALIA L V, LANG A E. Parkinson's disease[J]. Lancet,2015,386(9996):896−912. doi: 10.1016/S0140-6736(14)61393-3
|
[5] |
汪锡金, 张煜, 陈生弟. 帕金森病发病机制与治疗研究十年进展[J]. 中国现代神经疾病杂志,2010,10(1):36−42. [WANG X J, ZHANG Y, CHEN S D. Progress of research on pathogenesis and treatment of Parkinson's disease for ten years[J]. Chinese Journal of Contemporary Neurology and Neurosurgery,2010,10(1):36−42. doi: 10.3969/j.issn.1672-6731.2010.01.004
|
[6] |
WANG C Y, LAU C V, MA F Q, et al. Genome-wide screen identifies curli amyloid fibril as a bacterial component promoting host neurodegeneration[J]. Proceedings of the National Academy of Sciences of the United States of America,2021,118(34):e2106504118. doi: 10.1073/pnas.2106504118
|
[7] |
WALLEN Z D, STONE W J, FACTOR S A, et al. Exploring human-genome gut-microbiome interaction in Parkinson's disease[J]. Npj Parkinsons Disease,2021,7(1):74. doi: 10.1038/s41531-021-00218-2
|
[8] |
HORSAGER J, ANDERSEN K B, KNUDSEN K, et al. Brain-first versus body-first Parkinson's disease: A multimodal imaging case-control study[J]. Brain,2020,143:3077−3088. doi: 10.1093/brain/awaa238
|
[9] |
BRAAK H, DEVOSR A I, BOHI J, et al. Gastric alpha-synuclein immunoreactive inclusions in Meissner's and Auerbach's plexuses in cases staged for Parkinson's disease-related brain pathology[J]. Neuroscience Letters,2006,396(1):67−72. doi: 10.1016/j.neulet.2005.11.012
|
[10] |
HOLMQVIST S, CHUTNA O, BOUSSET L, et al. Direct evidence of Parkinson pathology spread from the gastrointestinal tract to the brain in rats[J]. Acta Neuropathologica,2014,128(6):805−820. doi: 10.1007/s00401-014-1343-6
|
[11] |
AHN E H, KANG S S, LIU X, et al. Initiation of Parkinson's disease from gut to brain by delta-secretase[J]. Cell Research,2020,30(1):70−87. doi: 10.1038/s41422-019-0241-9
|
[12] |
BOEHME M, GUZZETTA K E, BASTIAANSSEN T F S, et al. Microbiota from young mice counteracts selective age-associated behavioral deficits[J]. Nature Aging,2021,1(8):666−676. doi: 10.1038/s43587-021-00093-9
|
[13] |
CHALLIS C, HORI A, SAMPSON T R, et al. Gut-seeded alpha-synuclein fibrils promote gut dysfunction and brain pathology specifically in aged mice[J]. Nature Neuroscience,2020,23(3):327−336. doi: 10.1038/s41593-020-0589-7
|
[14] |
SERRA D, ALMEIDA L M, DINIS T C P. Dietary polyphenols: A novel strategy to modulate microbiota-gut-brain axis[J]. Trends in Food Science & Technology,2018,78:224−233.
|
[15] |
LI Z, LU G, LI Z, et al. Altered Actinobacteria and Firmicutes phylum associated epitopes in patients with Parkinson's disease[J]. Frontiers in Immunology,2021:12.
|
[16] |
ZHOU X, LU J, WEI K, et al. Neuroprotective effect of ceftriaxone on MPTP-induced Parkinson's disease mouse model by regulating inflammation and intestinal microbiota[J]. Oxidative Medicine and Cellular Iongevity,2021,2021:9424582.
|
[17] |
AHO V T E, HOUSER M C, PEREIRA P A B, et al. Relationships of gut microbiota, short-chain fatty acids, inflammation, and the gut barrier in Parkinson's disease[J]. Molecular Neurodegeneration,2021,16(1):1−14. doi: 10.1186/s13024-020-00420-5
|
[18] |
WANG Y, TONG Q, MA S R, et al. Oral berberine improves brain dopa/dopamine levels to ameliorate Parkinson's disease by regulating gut microbiota[J]. Signal Transduction and Targeted Therapy,2021,6(1):1−20. doi: 10.1038/s41392-020-00451-w
|
[19] |
BAERT F, MATTHYS C, MASELYNE J, et al. Parkinson's disease patients' short chain fatty acids production capacity after in vitro fecal fiber fermentation[J]. Npj Parkinsons Disease,2021,7(1):72. doi: 10.1038/s41531-021-00215-5
|
[20] |
TAN A H, CHONG C W, LIM S Y, et al. Gut microbial ecosystem in Parkinson disease: New clinicobiological insights from multi-omics[J]. Annals of Neurology,2021,89(3):546−559. doi: 10.1002/ana.25982
|
[21] |
OMENETTI S, BUSSI C, METIDJI A, et al. The intestine harbors functionally distinct homeostatic tissue-resident and inflammatory Th17 cells[J]. Immunity,2019,51(1):77−89. doi: 10.1016/j.immuni.2019.05.004
|
[22] |
WALLEN Z D, APPAH M, DEAN M N, et al. Characterizing dysbiosis of gut microbiome in PD: Evidence for overabundance of opportunistic pathogens[J]. Npj Parkinsons Disease,2020,6(1):1−12. doi: 10.1038/s41531-019-0104-6
|
[23] |
CIRSTEA M S, YU A C, GOLZ E, et al. Microbiota composition and metabolism are associated with gut function in Parkinson's disease[J]. Movement Disorders,2020,35(7):1208−1217. doi: 10.1002/mds.28052
|
[24] |
LI W, WU X L, HU X, et al. Structural changes of gut microbiota in Parkinson's disease and its correlation with clinical features[J]. Science China-Life Sciences,2017,60(11):1223−1233. doi: 10.1007/s11427-016-9001-4
|
[25] |
ROMANO S, SAVVA G M, BEDARF J R, et al. Meta-analysis of the Parkinson's disease gut microbiome suggests alterations linked to intestinal inflammation[J]. Npj Parkinsons Disease,2021,7(1):27. doi: 10.1038/s41531-021-00156-z
|
[26] |
HANNINEN A, TOIVONEN R, POYSTI S, et al. Akkermansia muciniphila induces gut microbiota remodelling and controls islet autoimmunity in NOD mice[J]. Gut,2018,67(8):1445−1453. doi: 10.1136/gutjnl-2017-314508
|
[27] |
QU S W, FAN L N, QI Y D, et al. Akkermansia muciniphila alleviates dextran sulfate sodium (DSS)-induced acute colitis by NLRP3 activation[J]. Microbiology Spectrum,2021,9(2):e0073021.
|
[28] |
DEPOMMIER C, EVERARD A, DRUART C, et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: A proof-of-concept exploratory study[J]. Nature Medicine,2019,25(7):1096−1103. doi: 10.1038/s41591-019-0495-2
|
[29] |
QIAN Y W, YANG X D, XU S Q, et al. Alteration of the fecal microbiota in Chinese patients with Parkinson's disease[J]. Brain Behavior and Immunity,2018,70:194−202. doi: 10.1016/j.bbi.2018.02.016
|
[30] |
WRIS S, MEISNER A, SCHWIERTZ A, et al. Association between Parkinson's disease and the faecal eukaryotic microbiota[J]. Npj Parkinsons Disease,2021,7(1):1. doi: 10.1038/s41531-021-00244-0
|
[31] |
CIRSTEA M S, SUNDVICK K, GOLZ E, et al. The gut mycrobiome in Parkinson's disease[J]. Journal of Parkinsons Disease,2021,11(1):153−158. doi: 10.3233/JPD-202237
|
[32] |
LIN C H, CHEN C C, CHIANG H L, et al. Altered gut microbiota and inflammatory cytokine responses in patients with Parkinson's disease[J]. Journal of Neuroinflammation,2019,16(1):1−9. doi: 10.1186/s12974-018-1391-2
|
[33] |
CANNON T, GRUENHEID S. Microbes and Parkinson's disease: From associations to mechanisms[J]. Trends in Microbiology,2022,30(8):749−760. doi: 10.1016/j.tim.2022.01.004
|
[34] |
VANDEPUTTE D, FALONY G, VIEIRA-SILVA S, et al. Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates[J]. Gut,2016,65(1):57−62. doi: 10.1136/gutjnl-2015-309618
|
[35] |
JAYANTI S, MORETTI R, TIRIBELLI C, et al. Bilirubin: A promising therapy for Parkinson's disease[J]. International Journal of Molecular Sciences,2021,22(12):6223. doi: 10.3390/ijms22126223
|
[36] |
REKDAL V M, BESS E N, BISANZ J E, et al. Discovery and inhibition of an interspecies gut bacterial pathway for Levodopa metabolism[J]. Science,2019,364(6445):eaau6323. doi: 10.1126/science.aau6323
|
[37] |
SHANG J M, MA S R, ZANG C X, et al. Gut microbiota mediates the absorption of FLZ, a new drug for Parkinson's disease treatment[J]. Acta Pharmaceutica Sinica B,2021,11(5):1213−1226. doi: 10.1016/j.apsb.2021.01.009
|
[38] |
CHEN K K, JIN Z H, GAO L, et al. Efficacy of short-term multidisciplinary intensive rehabilitation in patients with different Parkinson's disease motor subtypes: A prospective pilot study with 3-month follow-up[J]. Neural Regeneration Research,2021,16(7):1336−1343. doi: 10.4103/1673-5374.301029
|
[39] |
CASSANI E, PRIVITERA G, PEZZOLI G, et al. Use of probiotics for the treatment of constipation in Parkinson's disease patients[J]. Minerva Gastroenterologica e Dietologica,2011,57(2):117−121.
|
[40] |
ARICHELLA M, PACCHETTI C, BOLLIRI C, et al. Probiotics and prebiotic fiber for constipation associated with Parkinson disease: An RCT[J]. Neurology,2016,87(12):1274−1280. doi: 10.1212/WNL.0000000000003127
|
[41] |
TAMTAJI O R, TAGHIZADEH M, KAKHAKI R D, et al. Clinical and metabolic response to probiotic administration in people with Parkinson's disease: A randomized, double-blind, placebo-controlled trial[J]. Clinical Nutrition,2019,38(3):1031−1035. doi: 10.1016/j.clnu.2018.05.018
|
[42] |
TAN A H, LIM S Y, CHONG K K, et al. Probiotics for constipation in Parkinson disease: A randomized placebo-controlled study[J]. Neurology,2021,96(5):E772−E782.
|
[43] |
GEORGESCU D, ANCUSA O E, GEORGESCU L A, et al. Nonmotor gastrointestinal disorders in older patients with Parkinson's disease: Is there hope[J]. Clinical Interventions in Aging,2016,11:1601−1608. doi: 10.2147/CIA.S106284
|
[44] |
SEPPI K, RAY CHAUDHURI K, Coelho M, et al. Update on treatments for nonmotor symptoms of Parkinson's disease-an evidence-based medicine review[J]. Movement Disorders,2019,34(2):180−198. doi: 10.1002/mds.27602
|
[45] |
KEUN J T B, ARNOLDUSSEN I A C, VRIEND C, et al. Dietary approaches to improve efficacy and control side effects of levodopa therapy in Parkinson's disease: A systematic review[J]. Advances in Nutrition,2021,12(6):2265−2287. doi: 10.1093/advances/nmab060
|
[46] |
MAGISTRELLI L, AMORUSO A, MOGNA L, et al. Probiotics may have beneficial effects in Parkinson's disease: In vitro evidence[J]. Frontiers in Immunology,2019,10:969. doi: 10.3389/fimmu.2019.00969
|
[47] |
LEES A J, FERREIRA J, RASCOL O, et al. Opicapone as adjunct to levodopa therapy in patients with Parkinson disease and motor fluctuations a randomized clinical trial[J]. Jama Neurology,2017,74(2):197−206. doi: 10.1001/jamaneurol.2016.4703
|
[48] |
GOYA M E, XUE F, SAMPEDRO-TORRES-QUEVEDO C, et al. Probiotic Bacillus subtilis protects against α-synuclein aggregation in C. elegans[J]. Cell Reports,2020,30(2):367−380. doi: 10.1016/j.celrep.2019.12.078
|
[49] |
BRON P A, KLEEREBEZEM M, BRUMMER R J, et al. Can probiotics modulate human disease by impacting intestinal barrier function?[J]. British Journal of Nutrition,2017,117(1):93−107. doi: 10.1017/S0007114516004037
|
[50] |
SUN H, ZHAO F, LIU Y, et al. Probiotics synergized with conventional regimen in managing Parkinson’s disease[J]. npj Parkinson's Disease,2022,8(1):1−12. doi: 10.1038/s41531-021-00272-w
|
[51] |
SRIVASTAV S, NEUPANE S, BHURTEL S, et al. Probiotics mixture increases butyrate, and subsequently rescues the nigral dopaminergic neurons from MPTP and rotenone-induced neurotoxicity[J]. The Journal of Nutritional Biochemistry,2019,69:73−86. doi: 10.1016/j.jnutbio.2019.03.021
|
[52] |
LUDTMANN M H R, ANGELOVA P R, HORROCKS M H, et al. α-Synuclein oligomers interact with ATP synthase and open the permeability transition pore in Parkinson’s disease[J]. Nature Communications,2018,9(1):1−16. doi: 10.1038/s41467-017-02088-w
|
[53] |
WICHMANN T. Changing views of the pathophysiology of Parkinsonism[J]. Mov Disord,2019,34(8):1130−1143. doi: 10.1002/mds.27741
|