PANG Chunxia, XU Weicheng, GAN Tian, et al. Isolation, Identification and Enzyme Producing Capacity Analysis of Dominant Strain in Traditional Fermented Meitauza[J]. Science and Technology of Food Industry, 2023, 44(5): 107−113. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022050112.
Citation: PANG Chunxia, XU Weicheng, GAN Tian, et al. Isolation, Identification and Enzyme Producing Capacity Analysis of Dominant Strain in Traditional Fermented Meitauza[J]. Science and Technology of Food Industry, 2023, 44(5): 107−113. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022050112.

Isolation, Identification and Enzyme Producing Capacity Analysis of Dominant Strain in Traditional Fermented Meitauza

More Information
  • Received Date: May 10, 2022
  • Available Online: December 25, 2022
  • This study attempted to solve the waste of soybean dregs resources problem and the limited scale production of moldy Meitauza to achieve the high-value utilization of soybean dregs. The traditional fermented Meitauza of Hubei Xianning were used as the material for microbial isolation and identification. A total of 5 bacteria and 3 fungi were obtained, named J1~J8, respectively. The morphological observation, physiological and biochemical analysis, 16S rRNA and ITS sequencing analysis revealed that J1~J5 were Rahnella aquatilis strain B13, Pediococcus pentosaceus strain S1, Pantoea agglomerans strain NSD, Leuconostoc mesenteroides strain 2020GS202 and Bacillus subtilis strain A10, respectively, while J6~J8 were respectively Fusarium proliferatum strain CanR-8, Aspergillus niger strain DZ-4-3-1, and Mucor racemosus f. racemosus strain M-22. In addition, the enzyme-producing ability determination of 8 strains showed that Bacillus subtilis (J5) had strong ability to produce protease and cellulase, reaching 153.247 and 66.552 U/mL, respectively, compared to others strains. The study also found that Bacillus subtilis, Mucor racemosa, and Aspergillus niger might be the main fermentative strains for nutrition and flavor of the traditional Meitauza.
  • [1]
    GE G, GUO W, ZHENG J, et al. Effect of interaction between tea polyphenols with soymilk protein on inactivation of soybean trypsin inhibitor[J]. Food Hydrocolloids,2021:111.
    [2]
    DU Y, ZHANG Q, ZHAO X, et al. Effect of reverse micelle on physicochemical properties of soybean 7S globulins[J]. Journal of Food Engineering,2020,282:11026−11026.
    [3]
    刘原媛. 大豆发酵食品对机体的保健作用[J]. 食品与发酵科技,2020,56(4):65−68. [LIU Y Y. The health function of fermented soybean food to the body[J]. Food and Fermentation Science & Technology,2020,56(4):65−68.
    [4]
    吴永祥, 吴丽萍, 朴银美, 等. 药(食)真菌发酵豆渣的主要功能物质及生物活性变化[J]. 食品与发酵工业,2020,46(15):100−106. [WU Y X, WU L P, PIAO Y M, et al. Changes in main functional substances and biological activities of okara fermented with medicinal and edible fungi[J]. Food and Fermentation Industries,2020,46(15):100−106. doi: 10.13995/j.cnki.11-1802/ts.024045
    [5]
    刘梦琦, 朱媛媛, 倪慧, 等. 荆州地区霉豆渣真菌多样性研究[J]. 食品与发酵工业,2021,47(6):241−246. [LIU M Q, ZHU Y Y, NI H, et al. Fungal diversity in meitauza collected from Jingzhou[J]. Food and Fermentation Industries,2021,47(6):241−246. doi: 10.13995/j.cnki.11-1802/ts.025381
    [6]
    刘彦敏, 沈璐, 王康, 等. 传统大豆发酵食品中纳豆芽孢杆菌的分离及纳豆发酵[J]. 食品科学,2020,41(2):208−214. [LIU Y M, SHEN L, WANG K, et al. lsolation of Bacillus subtilis natto from Chinese traditional fermented soybean foods and their use in fermentation of Natto[J]. Food Science,2020,41(2):208−214. doi: 10.7506/spkx1002-6630-20181116-186
    [7]
    尚雪娇, 方三胜, 朱媛媛, 等. 霉豆渣细菌多样性解析及基因功能预测[J]. 食品与发酵工业,2021,47(3):36−42. [SHANG X J, FANG S S, ZHU Y Y, et al. Bacterial diversity and prediction of gene function in Meitauza[J]. Food and Fermentation Industries,2021,47(3):36−42. doi: 10.13995/j.cnki.11-1802/ts.025193
    [8]
    东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001: 364–398.

    DONG X Z, CAI M Y. Manual for systematic identification of common bacteria[M]. Beijing: Science Press, 2001: 364–398.
    [9]
    GB 4789.2-2016 食品安全国家标准 食品微生物学检验 菌落总数测定[S]. 北京: 中国标准出版社, 2016.

    GB 4789.2-2016 National Food Safety Standards Food Microbiological analysi-determination of total bacterial count[S]. Beijing: China Standards Press, 2016.
    [10]
    贺燕, 谭纯良, 李娜, 等. 腐败鸡蛋干中微生物的分离鉴定[J]. 食品科技,2019,44(12):366−372. [HE Y, TAN C L, LI N, et al. Purification and identification of microbes in egg curd[J]. Food Science and Technology,2019,44(12):366−372. doi: 10.13684/j.cnki.spkj.2019.12.062
    [11]
    GB/T 23527-2009 蛋白酶制剂[S]. 北京: 中国标准出版社, 2009.

    GB/T 23527-2009 Protease preparations[S]. Beijing: China Standards Press, 2009.
    [12]
    QB 2583-2003 纤维素酶制剂[S]. 北京: 中国标准出版社, 2003.

    QB 2583-2003 Cellulases[S]. Beijing: China Standards Press, 2003.
    [13]
    王慧. 豆渣发酵成分分析及其产品开发的研究[D]. 长沙: 湖南农业大学, 2014.

    WANG H. Study on fermentation component analysis and product development of soybean residue[D]. Changsha: Hunan Agricultural University, 2014.
    [14]
    毛欣欣, 雷茜, 陈伟哲, 等. 传统发酵霉豆渣中微生物的分离及其作为豆渣发酵剂的应用[J]. 现代食品科技,2022,38(6):74−83. [MAO X X, LEI X, CHEN W Z, et al. Isolation of microorganisms from traditional fermented meitauza and its use as starter for fermented okara[J]. Modern Food Science and Technology,2022,38(6):74−83. doi: 10.13982/j.mfst.1673-9078.2022.6.0745
    [15]
    徐书泽, 黄丽, 滕建文, 等. 传统发酵霉豆渣产酶优势菌的分离鉴定及性质研究[J]. 食品与发酵工业,2014,40(3):102−106. [XU S Z, HUANG L, TENG J W, et al. lsolation and identification of dominant microorganism in traditional fermentative Meidouzha and characterization of dominant strain[J]. Food and Fermentation Industries,2014,40(3):102−106.
    [16]
    张燕鹏, 杨瑞金, 王贺, 等. 传统豆渣菌的菌相分析及蛋白酶和纤维素酶主要产生菌株的鉴定[J]. 食品工业科技,2012,33(1):171−174. [ZHANG Y P, YANG R J, WANG H, et al. Analysis of the microflora and identification of the protease and cellulase producing strains from the traditional fermentative Douzhajun[J]. Science and Technology of Food Industry,2012,33(1):171−174. doi: 10.13386/j.issn1002-0306.2012.01.044
    [17]
    GUO J, HE Z, WU S, et al. Effects of concentration of flavor compounds on interaction between soy protein isolate and flavor compounds[J]. Food Hydrocolloids,2020:100.
    [18]
    TROISE A D, WILTAFSKY M, FOGLIANO V, et al. The quantification of free Amadori compounds and amino acids allows to model the bound Maillard reaction products formation in soybean products[J]. Food Chemistry,2018,247:29−38. doi: 10.1016/j.foodchem.2017.12.019
    [19]
    索化夷, 赵欣, 骞宇, 等. 永川豆豉发酵过程中质构色泽形成规律[J]. 食品与发酵工业,2016,42(7):80−85. [SUO H Y, ZHAO X, QIAN Y, et al. Texture and color formation of Yongchuan Douchi during fermentation process[J]. Food ang Fermentation Idustries,2016,42(7):80−85. doi: 10.13995/j.cnki.11-1802/ts.201607014
    [20]
    刘松, 李祝, 周礼红, 等. 响应面法优化黑曲霉产纤维素酶的发酵条件[J]. 食品科学,2013,34(17):225−229. [LIU S, LI Z, ZHOU L H, et al. Optimization of fermentation conditions for cellulase production by aspergillus niger using response surface methodology[J]. Food Science,2013,34(17):225−229. doi: 10.7506/spkx1002-6630-201317048
    [21]
    殷休, 袁博, 刘应保, 等. 黑曲霉液体发酵香菇残次品产纤维素酶的培养基优化[J]. 中国酿造,2019,38(12):97−101. [YI X, YUAN B, LIU Y B, et al. Optimization of medium for cellulase production from defective Lentinus edodes with liquid-state fermentation by Aspergillus niger[J]. China Brewing,2019,38(12):97−101. doi: 10.11882/j.issn.0254-5071.2019.12.019
    [22]
    陈怡, 刘洋, 蒋立文, 等. 浏阳豆豉发酵中高产酶活菌株的分离鉴定及酶活性分析[J]. 中国酿造,2020,39(8):37−41. [CHEN Y, LIU Y, JIANG L W, et al. lsolation and identification of strains with high enzyme activity during Liuyang Douchi fermentation and enzyme activity analysis[J]. China Brewing,2020,39(8):37−41. doi: 10.11882/j.issn.0254-5071.2020.08.008
    [23]
    何维, 安天星, 余玲, 等. 四川太和毛霉豆豉中优势发酵菌株的分离鉴定与酶活分析[J]. 安徽农业科学,2021,49(14):157−161. [HE W, AN T X, YU L, et al. lsolation, purification enzyme activity analysis of domianant fermentation strains from Sichuan Taihe Mucor Douchi[J]. Journal of Anhui Agricultural Sciences,2021,49(14):157−161. doi: 10.3969/j.issn.0517-6611.2021.14.042
    [24]
    李寅生, 王璐, 何雅婷, 等. 产毒条件下层出镰刀菌总RNA提取方法的比较研究[J]. 食品安全质量检测学报,2020,11(12):3970−3975. [LI Y S, WANG L, HE Y T, et al. Comparative study on the extraction methods of total RNA from Fusarium proliferatum under toxicity conditions[J]. Journal of Food Safety & Quality,2020,11(12):3970−3975. doi: 10.19812/j.cnki.jfsq11-5956/ts.2020.12.043
    [25]
    MONDANI L, CHIUSA G, PIETRI A, et al. Monitoring the incidence of dry rot caused by Fusarium proliferatum in garlic at harvest and during storage[J]. Postharvest Biology and Technology,2021:173.
    [26]
    BRAUN M S, WINK M. Exposure, occurrence, and chemistry of fumonisins and their cryptic derivatives[J]. Comprehensive Reviews in Food Science and Food Safety,2018,17(3):769−791. doi: 10.1111/1541-4337.12334
  • Cited by

    Periodical cited type(14)

    1. 杨永学,孙晓璐. 基于GC-IMS技术的精酿龙井茶啤酒酿造过程中挥发性风味物质分析. 延边大学农学学报. 2025(01): 87-93 .
    2. 韦金雁,卢志金,韩佳临,刘兴胥,马婷婷. 不同基酒添加对百香果增味精酿啤酒风味影响的对比研究. 食品安全导刊. 2025(09): 109-111+128 .
    3. 何猛超,邬子璇,西玉玲,张德中,陈玉莲,李坤,井会涵,王鸿博,刘海坡,陈杉彬,韩兴林. 通过外源添加芽孢杆菌提升北方地区高温大曲的品质. 食品工业科技. 2024(01): 145-154 . 本站查看
    4. 黄书源,张立强,冉茂芳,魏阳,涂荣坤,杨平,王松涛,宋萍,沈才洪. 不同原料添加提升曲药酱香风味的研究. 中国酿造. 2024(05): 41-46 .
    5. 刘倩,白艳龙,贾建华,肖琳,王晓娟,周小龙,邱然. 基于GC-MS和GC-IMS技术比较不同种类麦芽的挥发性物质. 食品工业科技. 2024(14): 215-223 . 本站查看
    6. 邓仕彬,蔡伊萍,林坍霖,李思瑶. 果酿啤酒的酿造工艺和品质研究进展. 中国酿造. 2023(02): 16-21 .
    7. 宋艺君,庞来祥,袁筱,庞柏均,郭涛. GC-IMS法比较不同酒龄猕猴桃酒特征香气物质差异. 食品与生物技术学报. 2023(02): 58-65 .
    8. 罗跃中,匡燕,李忠英,姚琦. 响应面法优化黄桃精酿啤酒发酵工艺. 武汉轻工大学学报. 2023(06): 99-105 .
    9. 田林平,张琪,李瑞,任小林. 正丁醇处理对‘粉红女士’苹果贮藏期间挥发性物质的影响. 食品工业科技. 2022(18): 337-345 . 本站查看
    10. 邬子璇,杨洋,李美吟,陈礼嘉,许驰,张春艳,林园,王健. 气相色谱-离子迁移谱法结合多元统计学分析不同陈酿时间白兰地的挥发性香气成分差异. 食品安全质量检测学报. 2022(18): 5795-5803 .
    11. 龚霄,陈廷慧,胡小军,范威威,李亚军,赵新强. 基于GC-IMS技术的百香果果啤风味分析. 食品与机械. 2022(11): 46-52+75 .
    12. 方灵,孔宝玉,韦航,颜孙安,刘文静,司瑞茹,史梦竹,梁启富,任丽花,傅建炜. 不同发育阶段黄金百香果挥发性成分差异性研究. 果树学报. 2022(12): 2376-2389 .
    13. 李林波,杭金龙,张士双,杨天佑,王宝石,张明霞. 精酿果啤的酿造工艺及风味影响因素的研究进展. 食品与发酵工业. 2022(24): 337-345 .
    14. 涂京霞,杨青,王玉海,张智皓,陈明. 果酿啤酒酿造工艺与品质的研究. 中外酒业. 2022(21): 28-33 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (166) PDF downloads (25) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return