PANG Chunxia, XU Weicheng, GAN Tian, et al. Isolation, Identification and Enzyme Producing Capacity Analysis of Dominant Strain in Traditional Fermented Meitauza[J]. Science and Technology of Food Industry, 2023, 44(5): 107−113. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022050112.
Citation: PANG Chunxia, XU Weicheng, GAN Tian, et al. Isolation, Identification and Enzyme Producing Capacity Analysis of Dominant Strain in Traditional Fermented Meitauza[J]. Science and Technology of Food Industry, 2023, 44(5): 107−113. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022050112.

Isolation, Identification and Enzyme Producing Capacity Analysis of Dominant Strain in Traditional Fermented Meitauza

More Information
  • Received Date: May 10, 2022
  • Available Online: December 25, 2022
  • This study attempted to solve the waste of soybean dregs resources problem and the limited scale production of moldy Meitauza to achieve the high-value utilization of soybean dregs. The traditional fermented Meitauza of Hubei Xianning were used as the material for microbial isolation and identification. A total of 5 bacteria and 3 fungi were obtained, named J1~J8, respectively. The morphological observation, physiological and biochemical analysis, 16S rRNA and ITS sequencing analysis revealed that J1~J5 were Rahnella aquatilis strain B13, Pediococcus pentosaceus strain S1, Pantoea agglomerans strain NSD, Leuconostoc mesenteroides strain 2020GS202 and Bacillus subtilis strain A10, respectively, while J6~J8 were respectively Fusarium proliferatum strain CanR-8, Aspergillus niger strain DZ-4-3-1, and Mucor racemosus f. racemosus strain M-22. In addition, the enzyme-producing ability determination of 8 strains showed that Bacillus subtilis (J5) had strong ability to produce protease and cellulase, reaching 153.247 and 66.552 U/mL, respectively, compared to others strains. The study also found that Bacillus subtilis, Mucor racemosa, and Aspergillus niger might be the main fermentative strains for nutrition and flavor of the traditional Meitauza.
  • [1]
    GE G, GUO W, ZHENG J, et al. Effect of interaction between tea polyphenols with soymilk protein on inactivation of soybean trypsin inhibitor[J]. Food Hydrocolloids,2021:111.
    [2]
    DU Y, ZHANG Q, ZHAO X, et al. Effect of reverse micelle on physicochemical properties of soybean 7S globulins[J]. Journal of Food Engineering,2020,282:11026−11026.
    [3]
    刘原媛. 大豆发酵食品对机体的保健作用[J]. 食品与发酵科技,2020,56(4):65−68. [LIU Y Y. The health function of fermented soybean food to the body[J]. Food and Fermentation Science & Technology,2020,56(4):65−68.
    [4]
    吴永祥, 吴丽萍, 朴银美, 等. 药(食)真菌发酵豆渣的主要功能物质及生物活性变化[J]. 食品与发酵工业,2020,46(15):100−106. [WU Y X, WU L P, PIAO Y M, et al. Changes in main functional substances and biological activities of okara fermented with medicinal and edible fungi[J]. Food and Fermentation Industries,2020,46(15):100−106. doi: 10.13995/j.cnki.11-1802/ts.024045
    [5]
    刘梦琦, 朱媛媛, 倪慧, 等. 荆州地区霉豆渣真菌多样性研究[J]. 食品与发酵工业,2021,47(6):241−246. [LIU M Q, ZHU Y Y, NI H, et al. Fungal diversity in meitauza collected from Jingzhou[J]. Food and Fermentation Industries,2021,47(6):241−246. doi: 10.13995/j.cnki.11-1802/ts.025381
    [6]
    刘彦敏, 沈璐, 王康, 等. 传统大豆发酵食品中纳豆芽孢杆菌的分离及纳豆发酵[J]. 食品科学,2020,41(2):208−214. [LIU Y M, SHEN L, WANG K, et al. lsolation of Bacillus subtilis natto from Chinese traditional fermented soybean foods and their use in fermentation of Natto[J]. Food Science,2020,41(2):208−214. doi: 10.7506/spkx1002-6630-20181116-186
    [7]
    尚雪娇, 方三胜, 朱媛媛, 等. 霉豆渣细菌多样性解析及基因功能预测[J]. 食品与发酵工业,2021,47(3):36−42. [SHANG X J, FANG S S, ZHU Y Y, et al. Bacterial diversity and prediction of gene function in Meitauza[J]. Food and Fermentation Industries,2021,47(3):36−42. doi: 10.13995/j.cnki.11-1802/ts.025193
    [8]
    东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001: 364–398.

    DONG X Z, CAI M Y. Manual for systematic identification of common bacteria[M]. Beijing: Science Press, 2001: 364–398.
    [9]
    GB 4789.2-2016 食品安全国家标准 食品微生物学检验 菌落总数测定[S]. 北京: 中国标准出版社, 2016.

    GB 4789.2-2016 National Food Safety Standards Food Microbiological analysi-determination of total bacterial count[S]. Beijing: China Standards Press, 2016.
    [10]
    贺燕, 谭纯良, 李娜, 等. 腐败鸡蛋干中微生物的分离鉴定[J]. 食品科技,2019,44(12):366−372. [HE Y, TAN C L, LI N, et al. Purification and identification of microbes in egg curd[J]. Food Science and Technology,2019,44(12):366−372. doi: 10.13684/j.cnki.spkj.2019.12.062
    [11]
    GB/T 23527-2009 蛋白酶制剂[S]. 北京: 中国标准出版社, 2009.

    GB/T 23527-2009 Protease preparations[S]. Beijing: China Standards Press, 2009.
    [12]
    QB 2583-2003 纤维素酶制剂[S]. 北京: 中国标准出版社, 2003.

    QB 2583-2003 Cellulases[S]. Beijing: China Standards Press, 2003.
    [13]
    王慧. 豆渣发酵成分分析及其产品开发的研究[D]. 长沙: 湖南农业大学, 2014.

    WANG H. Study on fermentation component analysis and product development of soybean residue[D]. Changsha: Hunan Agricultural University, 2014.
    [14]
    毛欣欣, 雷茜, 陈伟哲, 等. 传统发酵霉豆渣中微生物的分离及其作为豆渣发酵剂的应用[J]. 现代食品科技,2022,38(6):74−83. [MAO X X, LEI X, CHEN W Z, et al. Isolation of microorganisms from traditional fermented meitauza and its use as starter for fermented okara[J]. Modern Food Science and Technology,2022,38(6):74−83. doi: 10.13982/j.mfst.1673-9078.2022.6.0745
    [15]
    徐书泽, 黄丽, 滕建文, 等. 传统发酵霉豆渣产酶优势菌的分离鉴定及性质研究[J]. 食品与发酵工业,2014,40(3):102−106. [XU S Z, HUANG L, TENG J W, et al. lsolation and identification of dominant microorganism in traditional fermentative Meidouzha and characterization of dominant strain[J]. Food and Fermentation Industries,2014,40(3):102−106.
    [16]
    张燕鹏, 杨瑞金, 王贺, 等. 传统豆渣菌的菌相分析及蛋白酶和纤维素酶主要产生菌株的鉴定[J]. 食品工业科技,2012,33(1):171−174. [ZHANG Y P, YANG R J, WANG H, et al. Analysis of the microflora and identification of the protease and cellulase producing strains from the traditional fermentative Douzhajun[J]. Science and Technology of Food Industry,2012,33(1):171−174. doi: 10.13386/j.issn1002-0306.2012.01.044
    [17]
    GUO J, HE Z, WU S, et al. Effects of concentration of flavor compounds on interaction between soy protein isolate and flavor compounds[J]. Food Hydrocolloids,2020:100.
    [18]
    TROISE A D, WILTAFSKY M, FOGLIANO V, et al. The quantification of free Amadori compounds and amino acids allows to model the bound Maillard reaction products formation in soybean products[J]. Food Chemistry,2018,247:29−38. doi: 10.1016/j.foodchem.2017.12.019
    [19]
    索化夷, 赵欣, 骞宇, 等. 永川豆豉发酵过程中质构色泽形成规律[J]. 食品与发酵工业,2016,42(7):80−85. [SUO H Y, ZHAO X, QIAN Y, et al. Texture and color formation of Yongchuan Douchi during fermentation process[J]. Food ang Fermentation Idustries,2016,42(7):80−85. doi: 10.13995/j.cnki.11-1802/ts.201607014
    [20]
    刘松, 李祝, 周礼红, 等. 响应面法优化黑曲霉产纤维素酶的发酵条件[J]. 食品科学,2013,34(17):225−229. [LIU S, LI Z, ZHOU L H, et al. Optimization of fermentation conditions for cellulase production by aspergillus niger using response surface methodology[J]. Food Science,2013,34(17):225−229. doi: 10.7506/spkx1002-6630-201317048
    [21]
    殷休, 袁博, 刘应保, 等. 黑曲霉液体发酵香菇残次品产纤维素酶的培养基优化[J]. 中国酿造,2019,38(12):97−101. [YI X, YUAN B, LIU Y B, et al. Optimization of medium for cellulase production from defective Lentinus edodes with liquid-state fermentation by Aspergillus niger[J]. China Brewing,2019,38(12):97−101. doi: 10.11882/j.issn.0254-5071.2019.12.019
    [22]
    陈怡, 刘洋, 蒋立文, 等. 浏阳豆豉发酵中高产酶活菌株的分离鉴定及酶活性分析[J]. 中国酿造,2020,39(8):37−41. [CHEN Y, LIU Y, JIANG L W, et al. lsolation and identification of strains with high enzyme activity during Liuyang Douchi fermentation and enzyme activity analysis[J]. China Brewing,2020,39(8):37−41. doi: 10.11882/j.issn.0254-5071.2020.08.008
    [23]
    何维, 安天星, 余玲, 等. 四川太和毛霉豆豉中优势发酵菌株的分离鉴定与酶活分析[J]. 安徽农业科学,2021,49(14):157−161. [HE W, AN T X, YU L, et al. lsolation, purification enzyme activity analysis of domianant fermentation strains from Sichuan Taihe Mucor Douchi[J]. Journal of Anhui Agricultural Sciences,2021,49(14):157−161. doi: 10.3969/j.issn.0517-6611.2021.14.042
    [24]
    李寅生, 王璐, 何雅婷, 等. 产毒条件下层出镰刀菌总RNA提取方法的比较研究[J]. 食品安全质量检测学报,2020,11(12):3970−3975. [LI Y S, WANG L, HE Y T, et al. Comparative study on the extraction methods of total RNA from Fusarium proliferatum under toxicity conditions[J]. Journal of Food Safety & Quality,2020,11(12):3970−3975. doi: 10.19812/j.cnki.jfsq11-5956/ts.2020.12.043
    [25]
    MONDANI L, CHIUSA G, PIETRI A, et al. Monitoring the incidence of dry rot caused by Fusarium proliferatum in garlic at harvest and during storage[J]. Postharvest Biology and Technology,2021:173.
    [26]
    BRAUN M S, WINK M. Exposure, occurrence, and chemistry of fumonisins and their cryptic derivatives[J]. Comprehensive Reviews in Food Science and Food Safety,2018,17(3):769−791. doi: 10.1111/1541-4337.12334

Catalog

    Article Metrics

    Article views (160) PDF downloads (24) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return