LIU Yanyan, CHEN Wenlu, LI Jianli, et al. Study on the Interaction Mechanism between Compound Protective Agent and Bovine IgG[J]. Science and Technology of Food Industry, 2023, 44(11): 45−53. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022050111.
Citation: LIU Yanyan, CHEN Wenlu, LI Jianli, et al. Study on the Interaction Mechanism between Compound Protective Agent and Bovine IgG[J]. Science and Technology of Food Industry, 2023, 44(11): 45−53. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022050111.

Study on the Interaction Mechanism between Compound Protective Agent and Bovine IgG

More Information
  • Received Date: May 10, 2022
  • Available Online: April 04, 2023
  • In this study, ultraviolet absorption spectroscopy, fluorescence spectroscopy, Fourier transform infrared spectroscopy, circular dichroism, Raman spectroscopy, scanning electron microscopy and differential scanning calorimetry were used to study the interaction of composite protectants with IgG mechanisms and changes in IgG structure. The results showed that the compound protective agent had little effect on the peptide skeleton of IgG, but had a great effect on the microenvironment of amino acid residues, which enhanced the polarity of the microenvironment of amino acid residues in IgG. The interaction of compound protective agent and IgG mainly involved hydrogen bond, electrostatic force and hydrophobic force, and caused the secondary structure from to changed from α-helix structure to β-folding, β-turning and random curl structure of IgG tended to disorder the secondary structure. The IgG disulfide bond configurations gradually changed from g-g-g to g-g-t and t-g-t. The results of SEM showed that the compound protective agent formed irregular prismatic crystal complexes on the surface of IgG molecules, differential scanning calorimetry showed that the compound protective agent increased the denaturation temperature of IgG from 71.76 ℃ to 87.22 ℃, and decreased the enthalpy change of IgG from 6.51 J/g to 4.68 J/g. The results showed that the conformation of IgG molecule was changed by compound protective agent, which enhanced the thermal stability of IgG.
  • [1]
    王慧, 方洛云, 熊本海, 等. 牛乳生物活性成分及其研究进展[J]. 中国乳业,2018(8):62−67. [WANG H, FANG L Y, XIONG B H, et al. Bioactive components of bovine milk and their research progress[J]. China Dairy,2018(8):62−67. doi: 10.16172/j.cnki.114768.2018.08.013
    [2]
    陆东林, 刘朋龙, 徐敏, 等. 我国牛初乳资源及其安全性评价[J]. 中国乳业,2020(9):62−66. [LU D L, LIU P L, XU M, et al. Resource and safety evaluation of bovine colostrum in China[J]. China Dairy,2020(9):62−66.
    [3]
    UIFMAN L H, LEUSEN J H W, SAVELKOUL H F J, et al. Effects of bovine immunoglobulin on immune function, allergy, and infection[J]. Frontiers in Nutrition,2018,5:52−58. doi: 10.3389/fnut.2018.00052
    [4]
    秦兰霞. 牛初乳粉中免疫球蛋白IgG增强免疫力功能的研究[J]. 现代食品,2018(17):111−115. [QIN L X. Study on immunoglobulin IgG in bovine colostrum powder enhanced immune function[J]. Modern Food,2018(17):111−115.
    [5]
    BARAKAT S H, MEHEISSEN M A, OMAR O M, et al. Bovine colostrum in the treatment of acute diarrhea in children: A double-blinded randomized controlled trial[J]. Journal of Tropical Pediatrics,2020,66(1):79−82.
    [6]
    BLUM J W. Nutritional physiology of neonatal calves[J]. Journal of Animal Physiology and Animal Nutrition,2006,90(1−2):1−11. doi: 10.1111/j.1439-0396.2005.00614.x
    [7]
    HUNG L H, WU C H, LIN B F, et al. Hyperimmune colostrum alleviates rheumatoid arthritis in a collagen-induced arthritis murine model[J]. Journal of Dairy Science,2018,9:12−16.
    [8]
    包晓宇, 陈美霞, 王加启, 等. 牛乳中活性蛋白生物学功能研究进展[J]. 食品科学,2017,38(19):315−324. [BAO X Y, CHEN M X, WANG J Q, et al. Advances in bioactive functions of milk proteins[J]. Food Science,2017,38(19):315−324. doi: 10.7506/spkx1002-6630-201719049
    [9]
    提伟钢, 邵士凤, 邹佩文, 等. 牛初乳加工技术研究进展[J]. 饮料工业,2013,16(1):9−12. [TI W G, SHAO S F, ZOU P W, et al. Advances in study on processing technology of bovine colostrums-based products[J]. Beverage Industry,2013,16(1):9−12. doi: 10.3969/j.issn.1007-7871.2013.01.002
    [10]
    NGUYEN D N, CURRIE A J, REN S, et al. Heat treatment and irradiation reduce anti-bacterial and immune-modulatory properties of bovine colostrum[J]. Journal of Functional Foods,2019,57:182−189. doi: 10.1016/j.jff.2019.04.012
    [11]
    刘伟. 牛初乳免疫球蛋白(IgG)稳定性的研究及改善[D]. 北京: 中国农业大学, 2005.

    LIU W. Study and improvement on the stability of bovine colosturm immunoglobulin G[D]. Beijing: China Agricultural University, 2005.
    [12]
    雷昌贵, 孟宇竹, 蔡华真, 等. 食品添加剂对牛初乳免疫球蛋白(IgG)稳定性的影响[J]. 中国食品添加剂,2013(3):137−142. [LEI C G, MENG Y Z, CAI H Z, et al. Influence of food additives on the stability of bovine colostrums immunoglobulin G[J]. China Food Additives,2013(3):137−142. doi: 10.3969/j.issn.1006-2513.2013.03.016
    [13]
    徐思思. 牛初乳粉制备中稳定性保护关键技术研究[D]. 长春: 吉林大学, 2016.

    XUE S S. Key technologies of the stability protection in the preparation of colostrum powder[D]. Changchun: Jilin University, 2016.
    [14]
    李雪, 王丽, 刘光宪, 等. 光谱技术分析尿素对BSA糖基化反应的影响[J]. 光谱学与光谱分析,2021,41(2):478−483. [LI X, WANG L, LIU G X, et al. Effect of urea on glycosylation of BSA based on spectral techniques[J]. Spectroscopy and Spectral Analysis,2021,41(2):478−483.
    [15]
    王晓霞, 吴昊, 聂智华, 等. 多光谱法和分子对接模拟法研究黄腐植酸和牛血清白蛋白的相互作用[J]. 光谱学与光谱分析,2021,41(9):2904−2910. [WANG X X, WU H, NIE Z H, et al. Study on the interaction between fulvic acid and bovine serum albumin by multispectral and molecular docking[J]. Spectroscopy and Spectral Analysis,2021,41(9):2904−2910.
    [16]
    潘明喆. 环境因素和糖醇化合物对大豆蛋白结构和功能特性的影响[D]. 沈阳: 沈阳农业大学, 2016.

    PAN M Z. Effects of Environmental factors and sugar alcohols on structural and functional properties of soybean protein[D]. Shenyang: Shenyang Agricultural University, 2016.
    [17]
    王丽颖. 多酚与麦醇溶蛋白复合物的形成机制及结构表征[D]. 重庆: 西南大学, 2018.

    WANG L Y. Fabrication mechanism and structure characterization of polyphenols and gliadin complexes[D]. Chongqing: Southwest University, 2018.
    [18]
    LIU R, SHI C, SONG Y, et al. Impact of oligomeric procyanidins on wheat gluten microstructure and physicochemical properties[J]. Food Chemistry,2018,260:37−43. doi: 10.1016/j.foodchem.2018.03.103
    [19]
    朱颖, 吴隆坤, 贾有青, 等. 超声处理对黑豆蛋白与可溶性多糖复合物功能性质及结构的影响[J]. 中国食品学报,2020,20(5):181−186. [ZHU Y, WU L K, JIA Y Q, et al. The effects of ultrasonic treatment on the physical properties and structure of black soybean protein and soluble polysaccharide complexes[J]. Journal of Chinese Institute of Food Science and Technology,2020,20(5):181−186. doi: 10.16429/j.1009-7848.2020.05.023
    [20]
    李杨, 李明达, 王中江, 等. 基于光谱技术的维生素B12与大豆分离蛋白相互作用分析[J]. 农业机械学报,2020,51(1):341−348. [LI Y, LI M D, WANG Z J, et al. Spectroscopy analysis of interaction between vitamin B12 and soybean protein isolate[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(1):341−348. doi: 10.6041/j.issn.1000-1298.2020.01.037
    [21]
    谭慧姣, 党睿. 拉曼光谱和色差法在丝质文物色彩损伤评估中的比较[J]. 光谱学与光谱分析,2021,41(8):2474−2479. [TAN H J, DANG R. Comparison of raman spectroscopy and color difference in the light-induced color damage evaluation of cultural heritages with silk[J]. Spectroscopy and Spectral Analysis,2021,41(8):2474−2479.
    [22]
    罗珍. 核桃壳多糖的分离鉴定及消化代谢特性研究[D]. 秦皇岛: 燕山大学, 2021.

    LUO Z. Isolation and identification of polysaccha ride from Juglans regia L and its digestion and meta bolism characteristics[D]. Qinhuangdao: Yanshan University, 2021.
    [23]
    张驰. 多酚与花生蛋白相互作用及其对花生蛋白致敏性的影响[D]. 重庆: 西南大学, 2021.

    ZHANG C. The Interaction of polyphenols with peanut protein and its effect on the allergenicity of peanut protein[D]. Chongqing: Southwest University, 2021.
    [24]
    汲聪玲, 陆剑锋, 吕顺, 等. 不同提取温度对白鲢鱼皮明胶理化性质的影响[J]. 食品科学,2016,37(9):117−122. [JI C L, LU J F, LÜ S, et al. Effect of extraction temperature on physical and chemical properties of gelatin from silver carp skin[J]. Food Science,2016,37(9):117−122. doi: 10.7506/spkx1002-6630-201609022
    [25]
    郑海英. 利用微胶囊化提高牛乳免疫球蛋白稳定性的研究[D]. 哈尔滨: 东北农业大学, 2000.

    ZHENG H Y. Study on improving the stability of bovine milk immunoglobulins by microencapsulation[D]. Harbin: Northeast Agricultural University, 2000.
    [26]
    杨红, 刘爱国, 刘立增, 等. 响应面法优化牛初乳免疫球蛋白热保护剂的配方[J]. 食品工业科技,2022,43(12):108−116. [YANG H, LIU A G, LIU L Z, et al. Optimization of formula of bovine colostrum immunoglobulin thermal protective agent by response surface methodology[J]. Science and Technology of Food Industry,2022,43(12):108−116. doi: 10.13386/j.issn1002-0306.2021090302
    [27]
    罗磊. 猪血G型免疫球蛋白的分离提取研究[D]. 无锡: 江南大学, 2006.

    LU L. Studies on fractionation and extraction of immunoglobulinG from porcine blood[D]. Wuxi: Jiangnan University, 2006.
    [28]
    QIAO H, ZHANG S W, WANG W. Fluorescence spectroscopic and viscosity studies of hydrogen bonding in Chinese Fenjiu[J]. Journal of Bioscience and Bioengineering,2013,115:405−411. doi: 10.1016/j.jbiosc.2012.10.023
    [29]
    MALLIKA P, DEEPTI S, NAVNEET S, et al. Spectroscopic and thermodynamic studies of the binding mechanism of metformin to pepsin[J]. Journal of Molecular Structure,2018,1166:183. doi: 10.1016/j.molstruc.2018.04.032
    [30]
    王晓霞, 李松波, 马力通, 等. 三维荧光光谱法和圆二色谱法研究氨基比林与牛血清白蛋白分子的相互作用[J]. 中国测试,2017,43(9):74−80. [WANG X X, LI S B, MA L T, et al. Study on the interaction between aminopyrine and bovine serum albumin by three-dimensional fluorescence spectrometry and circular dichroism spectrum[J]. China Measurement & Test,2017,43(9):74−80. doi: 10.11857/j.issn.1674-5124.2017.09.014
    [31]
    刘丹, 靳宁, 杨婷, 等. 光谱法研究DDAB与人免疫球蛋白G的结合作用[J]. 山西医科大学学报,2018,49(7):773−778. [LIU D, JIN N, YANG T, et al. Spectroscopic study on the interaction between dimethyldioctadecylammonium bromide and human immunoglobulin G[J]. Journal of Shanxi Medical University,2018,49(7):773−778. doi: 10.13753/j.issn.1007-6611.2018.07.006
    [32]
    BRUSTEIN E A, VEDENKINA N S, IRKOV A M. Fluorescence and the location of tryptophan residues in proteinmolecules[J]. Photochem PhotobiolA,1973,18(4):263−279. doi: 10.1111/j.1751-1097.1973.tb06422.x
    [33]
    赵刚, 李东玲, 王思宇, 等. 邻苯二甲酸二乙酯与牛血清白蛋白相互作用的光谱学研究[J]. 化学研究与应用,2019,31(6):1047−1051. [ZHAO G, LI D L, WANG S Y, et al. Spectroscopic analysis on the interaction of diethyl phthalate with bovine serum albumin[J]. Chemical Research and Application,2019,31(6):1047−1051. doi: 10.3969/j.issn.1004-1656.2019.06.008
    [34]
    YU X Y, JIANG B F, LIAO Z X, et al. Study on the interaction between besifloxacin and bovine serun albumin by spectroscopic techniques[J]. Spectrochim Acta A,2015,149:116. doi: 10.1016/j.saa.2015.04.023
    [35]
    李波, 秦小茹, AJAB Khan, 等. 木犀草素与人免疫球蛋白G的作用机制研究[J]. 化学研究与应用,2021,33(11):2195−2202. [LI B, QIN X R, AJAB K, et al. Mechanism of interaction between luteolin and human immunoglobulin G[J]. Chemical Research and Application,2021,33(11):2195−2202.
    [36]
    邓林波. 荧光光谱法研究不同溶液环境中牛血清白蛋白的变化[D]. 杭州: 中国计量大学, 2019.

    DENG L B. Fluorescence spectroscopy study on the changes of bovine serum albumin in different solution environments[D]. Hangzhou: China Jiliang University, 2019.
    [37]
    LV Y, LIANG Q, LI Y, et al. Study of the binding mechanism between hydroxytyrosol and bovine serum albumin using multispectral and molecular docking[J]. Food Hydrocolloids,2022,122:107072. doi: 10.1016/j.foodhyd.2021.107072
    [38]
    CHEN Y, MA M. Foam and conformational changes of egg white as affected by ultrasonic pretreatment and phenolic binding at neutral pH[J]. Food Hydrocolloids,2020,102:105568. doi: 10.1016/j.foodhyd.2019.105568
    [39]
    王晓霞, 聂智华, 李松波, 等. 多光谱法与分子对接法研究盐酸四环素与牛血清白蛋白的相互作用[J]. 光谱学与光谱分析,2018,38(8):2468−2476. [WANG X X, NIE Z H, LI S B, et al. Study on the interaction between tetracycline hydrochloride and bovine serum albumin by multispectral and molecular docking[J]. Spectroscopy and Spectral Analysis,2018,38(8):2468−2476.
    [40]
    LIU F, MA C, MCCLEMENTS D J, et al. A comparative study of covalent and non-covalent interactions between zein and polyphenols in ethanol-water solution[J]. Food Hydrocolloids,2017,63:625−634. doi: 10.1016/j.foodhyd.2016.09.041
    [41]
    KONG J, SHAO N Y. Fourier transform infrared spectroscopic analysis of protein secondary structures[J]. Acta Biochimicaet Biophysica Sinica,2007,39(8):549−559. doi: 10.1111/j.1745-7270.2007.00320.x
    [42]
    ALAVI F, EMAM D Z, Yarmand M S, et al. Cold gelation of curcumin loaded whey protein aggregates mixed with k-carrageenan: Impact of gel microstructure on the gastrointestinal fate of curcumin[J]. Food Hydrocolloids,2018,85:267−280. doi: 10.1016/j.foodhyd.2018.07.012
    [43]
    PU H L, JIANG H, CHEN R R, et al. Studies on the interaction between vincamine and human serum albumin: A spectroscopic approach[J]. Luminescence,2014,29(5):471−479. doi: 10.1002/bio.2572
    [44]
    LIU R, WU L, FENG H, et al. The study on the interactions of two 1, 2, 3-triazoles with several biological macromolecules by multiple spectroscopic methodologies and molecular docking[J]. Spectrochim Acta A,2020,243:118795. doi: 10.1016/j.saa.2020.118795
    [45]
    ZOU Y, SHI H, CHEN X, et al. Modifying the structure, emulsifying and rheological properties of water-soluble protein from chicken liver by low-frequency ultrasound treatment[J]. International Journal of Biological Macromolecules,2019,139:810−817. doi: 10.1016/j.ijbiomac.2019.08.062
    [46]
    李可, 李三影, 杜曼婷, 等. 超声处理对类PSE鸡肉分离蛋白结构和乳化特性的影响[J]. 食品科学,2021,42(23):114−122. [LI K, LI S Y, DU M T, et al. Effect of ultrasonic treatment on the structure and emulsifying properties of PSE (pale, soft and exudative)-like chicken meat protein isolate[J]. Food Science,2021,42(23):114−122. doi: 10.7506/spkx1002-6630-20201218-217
    [47]
    ZHAO X, BAI Y, XING T, et al. Use of an isoelectric solubilization/precipitation process to modity the functional properties of PSE (pale, soft, exudative)-like chicken meat protein: A mechanistic approach[J]. Food Chemistry,2018,248:201−209. doi: 10.1016/j.foodchem.2017.12.048
    [48]
    李可, 李三影, 扶磊, 等. 低频高强度超声波对鸡胸肉肌原纤维蛋白性质的影响[J]. 食品科学,2020,41(23):122−129. [LI K, LI S Y, FU L. Effect of low-frequency and high-intensity uitrasound treatment on characteristics of chicken breast myofibrillar protein[J]. Food Science,2020,41(23):122−129. doi: 10.7506/spkx1002-6630-20191205-067
    [49]
    AGNIESZKA N, MONIKA S C, ANTONI M, et al. Effect of dietary fibre polysaccharides on structure and thermal properties of gluten proteins-A study on gluten dough with application of FT-Raman spectroscopy, TGA and DSC[J]. Food Hydrocolloids,2017,69:410−421. doi: 10.1016/j.foodhyd.2017.03.012
    [50]
    谢凤英, 马岩, 王晓君, 等. 拉曼光谱分析荞麦多酚对米糠蛋白结构的影响[J]. 食品科学,2017,38(3):32−36. [XIE F Y, MA Y, WANG X J, et al. Effect of buckwheat polyphenols on the structure of rice bran proteins analyzed by raman spectroscopy[J]. Food Science,2017,38(3):32−36.
    [51]
    NOISUWANA A, BRONLUNDB J, WILKNSON B, et al. Effect of milk protein products on the rheological and thermal (DSC) properties of normal rice starch and waxy rice starch[J]. Food Hydrocolloids,2008(22):174−183.
  • Cited by

    Periodical cited type(13)

    1. 孙永进,曾惠梅,黄静,赵云龙,蔡锦源,孙松. 吴茱萸多糖的分离纯化、结构表征及体外降脂活性. 食品工业科技. 2025(08): 33-42 . 本站查看
    2. 王磊,李国龙,唐志书,宋忠兴,袁书会,刘红波,史鑫波,陈佳昕. 不同生长时期酸枣果肉多糖相对分子质量分布和单糖组成及抗氧化活性研究. 食品工业科技. 2024(07): 1-7 . 本站查看
    3. 夏谍,李铭,丁俞珍,邓萌玥,位盼盼,晏子俊,张磊,陈彤. 不同脱色方法对三七多糖物理性质及体外抗氧化活性的影响. 化学研究与应用. 2024(03): 509-521 .
    4. 李瑶,熊彩明,张佳乐,冯学珍,冯书珍. 磷酸化裙带菜多糖的制备及结构表征和生物活性分析. 食品科学. 2024(07): 35-42 .
    5. 郭雅娟,范军刚,李建珍. 不同干燥方式对骏枣中香气成分的影响. 中国调味品. 2024(04): 173-177 .
    6. 刘春阳,白金波,杨尚青,史进阳,秦亚敏,吴德玲,解松子. 枳椇子多糖的酸提取工艺优化及其理化性质与抗氧化活性研究. 食品与发酵工业. 2024(09): 148-156 .
    7. 魏炳琦,高小雨,刘延鑫,王义翠. 红枣多糖的结构、生物学活性及产品开发进展. 食品工业科技. 2024(12): 1-9 . 本站查看
    8. 董小强,文畅,许金丹,史乐雪,胡玉龙,李杰明,董春红,丁侃. 鼠李科植物枣多糖的活性机制及其结构特征研究进展. 中国药科大学学报. 2024(04): 443-453 .
    9. 吴喆,朱佳敏,刘军,符小玉,娄磊,涂亦娴,秦新政,艾合买提江·艾海提. 红枣主要活性成分及其功能活性研究进展. 现代食品科技. 2024(09): 359-369 .
    10. 张雅施,李文文,宗爱珍,左兆河,郑振佳,张斌. 菊芋多糖锌的制备及其抗氧化活性评价. 食品工业科技. 2023(12): 251-259 . 本站查看
    11. 刘迎欣,伊娟娟,邵怡雯,崔燕,李雪,王金柱,郝利民,鲁吉珂. 布拉氏酵母发酵山药多糖的分离鉴定与体外生物活性探究. 食品工业科技. 2023(14): 154-162 . 本站查看
    12. 石训,石勇,孙晓瑞. 基于文献计量的枣多糖研究趋势分析. 现代食品. 2023(21): 55-58 .
    13. 代琪,白苑丁,叶俏波,杨小艳,赵小勤,王欣. 不同产地大枣化学成分及其药理作用研究进展. 中国药物评价. 2023(06): 506-511 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (196) PDF downloads (13) Cited by(18)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return