ZHANG Xiaoyang, ZHANG Yiwen, ZHU Siyao, et al. Screening of Three Chitinase-producing Strains, Optimization of Their Chitinase-producing Conditions and Application in the Hydrolysis of Shrimp Shells[J]. Science and Technology of Food Industry, 2023, 44(5): 98−106. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022050078.
Citation: ZHANG Xiaoyang, ZHANG Yiwen, ZHU Siyao, et al. Screening of Three Chitinase-producing Strains, Optimization of Their Chitinase-producing Conditions and Application in the Hydrolysis of Shrimp Shells[J]. Science and Technology of Food Industry, 2023, 44(5): 98−106. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022050078.

Screening of Three Chitinase-producing Strains, Optimization of Their Chitinase-producing Conditions and Application in the Hydrolysis of Shrimp Shells

More Information
  • Received Date: May 08, 2022
  • Available Online: January 02, 2023
  • Objective: This study aimed to screen and identify chitinase-producing strains and optimize the fermentation conditions of the target bacteria, which were eventually applied to the degradation fermentation of shrimp shells. Methods: The chitin degradation bacteria were screened on chitin hydrolysis zone taking marine mud from beach in Yancheng as samples, identified via bioinformatics technology, and analyzed in the form of phylogenetic tree. Fermentation conditions for the target strains were modified depending on the single-factor experiment. Results: Photobacterium sp. LYM-1, Vibrio sp. WM-1, and Shewanella sp. ZXY-1 were isolated and identified via 16S rDNA sequence analysis. The optimal fermentation conditions were determined as follows: For Photobacterium sp. LYM-1, chitin (10 g/L) as the carbon source, NH4Cl (2.0 g/L) as the nitrogen source, the inoculated quantified of 3%, initial medium pH6.5, and 32 ℃ for 1 d, in which the highest chitinase activity in the supernatant reached 15.37±0.55 U/mL, achieving 4.37 times higher than that before optimization. For Vibrio sp. WM-1, chitin (10 g/L) as the carbon source, NH4Cl (2.0 g/L) as the nitrogen source, the inoculated quantified of 3%, initial medium pH7.5, and 22 ℃ for 2 d, in which the highest chitinase activity reached 40.82±6.03 U/mL, achieving 1.60 times higher than that before optimization. For Shewanella sp. ZXY-1, chitin (10 g/L) as the carbon source, (NH4)2SO4 (2.0 g/L) as the nitrogen source, the inoculated quantified of 3%, initial medium pH6.5, and 22 ℃ for 1 d, which contributed the highest chitinase activity to reaching 25.64±3.29 U/mL, achieving 2.47 times higher than that before optimization. All three strains in this study could realize chitinase production under optimized conditions using shrimp shell powder as the sole substrate. The chitinase activities of Photobacterium sp. LYM-1, Vibrio sp. WM-1, and Shewanella sp. ZXY-1 on shrimp shell powders were 10.25±0.95, 32.16±2.25 and 21.81±4.27 U/mL, respectively, which was lower than those on chitin powder. Conclusion: Three chitinase-producing strains were successfully screened from saline-alkali soil, of which the enzyme activity was elevated after optimization. All of them could produce chitinase with the shrimp shell utilized as the substrate, serving as potential strains for chitinase production from the fermentation of shrimp shell.
  • [1]
    HARMSEN R A G, TUVENG T R, ANTONSEN S G, et al. Can we make chitosan by enzymatic deacetylation of chitin?[J]. Molecules (Basel, Switzerland),2019,24(21):3862. doi: 10.3390/molecules24213862
    [2]
    MATANO C, KOLKENBROCK S, HAMER S N, et al. Corynebacterium glutamicum possesses β-N-acetylglucosaminidase[J]. BMC Microbiology,2016,16(1):177. doi: 10.1186/s12866-016-0795-3
    [3]
    YAN Q, HONG E, FONG S S, et al. Study of ChiR function in Serratia marcescens and its application for improving 2,3-butanediol from crystal chitin[J]. Applied Microbiology and Biotechnology,2017,101(20):7567−7578. doi: 10.1007/s00253-017-8488-x
    [4]
    张岩, 关菲菲, 伍宁丰, 等. 几丁质脱乙酰酶的研究进展[J]. 生物技术通报,2019,35(11):179−186. [ZHANG Y, GUAN F F, WU N F, et al. Research progress on chitin deacetylase[J]. Biotechnology Bulletin,2019,35(11):179−186. doi: 10.13560/j.cnki.biotech.bull.1985.2019-0449
    [5]
    MA X, GÖZAYDIN G, YANG H, et al. Upcycling chitin-containing waste into organonitrogen chemicals via an integrated process[J]. Proceedings of the National Academy of Sciences of the United States of America,2020,117(14):7719−7728. doi: 10.1073/pnas.1919862117
    [6]
    WENDISCH V F, BRITO L F, LOPEZ M, et al. The flexible feedstock concept in industrial biotechnology: Metabolic engineering of Escherichia coli, Corynebacterium glutamicum, Pseudomonas, Bacillus and yeast strains for access to alternative carbon sources[J]. Journal of Biotechnology,2016,234:139−157. doi: 10.1016/j.jbiotec.2016.07.022
    [7]
    COMA M, MARTINEZ-HERNANDEZ E, ABELN F, et al. Organic waste as a sustainable feedstock for platform chemicals[J]. Faraday Discussions,2017,202:175−195. doi: 10.1039/C7FD00070G
    [8]
    GHORMADE V, PATHAN E K, DESHPANDE M V, et al. Can fungi compete with marine sources for chitosan production?[J]. International Journal of Biological Macromolecules, 2017, 104 (Pt B): 1415-1421.
    [9]
    NOYES N R, WEINROTH M E, PARKER J K, et al. Enrichment allows identification of diverse, rare elements in metagenomic resistome-virulome sequencing[J]. Microbiome,2017,5(1):142. doi: 10.1186/s40168-017-0361-8
    [10]
    ARNOLD N D, BRÜCK W M, GARBE D, et al. Enzymatic modification of native chitin and conversion to specialty chemical products[J]. Marine Drugs,2020,18(2):93. doi: 10.3390/md18020093
    [11]
    何迎春, 李小湘, 高必达, 等. 含粘质沙雷氏菌几丁质酶SchiA基因的植物转化质粒pBG1112构建和水稻遗传转化[J]. 农业生物技术学报,2003(2):121−126. [HE Y C, LI X X, GAO B D, et al. Construction of a new plant transformation vector pBG1112 with a chitinase gene SchiA from Serratia marcescens and its genetic transformation in rice[J]. Journal of Agricultural Biotechnology,2003(2):121−126. doi: 10.3969/j.issn.1674-7968.2003.02.003
    [12]
    MONGE E C, TUVENG T R, VAAJE-KOLSTAD G, et al. Systems analysis of the glycoside hydrolase family 18 enzymes from Cellvibrio japonicus characterizes essential chitin degradation functions[J]. Journal of Biological Chemistry,2018,293(10):3849−3859. doi: 10.1074/jbc.RA117.000849
    [13]
    WANG Y J, JIANG W X, ZHANG Y S, et al. Structural insight into chitin degradation and thermostability of a novel endochitinase from the glycoside hydrolase family 18[J]. Frontiers in Microbiology,2019(10):2457.
    [14]
    ZHOU Y, KANG L, NIU X, et al. Purification, characterization and physiological significance of a chitinase from the pilei of Coprinopsis cinerea fruiting bodies[J]. FEMS Microbiology Letters,2016,363(12):120. doi: 10.1093/femsle/fnw120
    [15]
    LANGNER T, ÖZTÜRK M, HARTMANN S, et al. Chitinases are essential for cell separation in Ustilago maydis[J]. Eukaryotic Cell,2015,14(9):846−857. doi: 10.1128/EC.00022-15
    [16]
    STAATS C C, FAU K L, FAU L I, et al. Metarhizium anisopliae chitinase CHIT30 is involved in heat-shock stress and contributes to virulence against Dysdercus peruvianus[J]. Fungal Biology,2013,117(2):137−144. doi: 10.1016/j.funbio.2012.12.006
    [17]
    ZHANG Y, AN R. , YATSUNAMI R, et al. Characterization of a haloarchaeal GH family 18 chitinase with additional acidic amino acids on its protein surface[J]. Journal of Japanese Society for Extremophiles,2010,9(2):72−74. doi: 10.3118/jjse.9.72
    [18]
    WENNMANN J T, FAU G A G, JEHLE J A, et al. The genome sequence of Agrotis segetum nucleopolyhedrovirus B (AgseNPV-B) reveals a new baculovirus species within the Agrotis baculovirus complex[J]. Virus Genes,2015,50(2):260−276. doi: 10.1007/s11262-014-1148-7
    [19]
    冯俊丽, 朱旭芬. 微生物几丁质酶的分子生物学研究[J]. 浙江大学学报(农业与生命科学版),2004(1):105−111. [FENG J L, ZHU X F. Study on molecular biology of microbial chitinase[J]. Journal of Zhejiang University (Agriculture and Life Sciences),2004(1):105−111. doi: 10.3321/j.issn:1008-9209.2004.01.022
    [20]
    丁志雯, 刘耀东, 黄志发, 等. 产几丁质酶海洋细菌Dyadobacter sp. CZW019的筛选、鉴定及酶学性质研究[J]. 江苏海洋大学学报(自然科学版),2021,30(2):22−29. [DING Z W, LIU Y D, HUANG Z F, et al. Screening, identification and enzymic properties of a chitinase-producing marine bacterium Dyadobacter sp. CZW019[J]. Journal of Jiangsu Ocean University (Natural Science Edition),2021,30(2):22−29.
    [21]
    陈立功, 吴家葳, 张庆芳, 等. 产低温几丁质酶菌株的筛选、鉴定与产酶条件优化[J]. 食品工业科技,2020,41(23):85−90, 98. [CHEN L G, WU J W, ZHANG Q F, et al. Screening and identification of a cold-adapted chitinolytic bacterium strain and optimization of its chitinase fermentation conditions[J]. Science and Technology of Food Industry,2020,41(23):85−90, 98. doi: 10.13386/j.issn1002-0306.2019120158
    [22]
    张奇, 王一兵, 申乃坤, 等. 产几丁质酶菌株GXUN-20的筛选、鉴定及其产酶条件优化[J]. 食品工业科技,2021,42(24):119−127. [ZHANG Q, WANG Y B, SHEN N K, et al. Screening and identification of chitinase-producing strain GXUN-20 and optimization of its enzyme producing conditions[J]. Science and Technology of Food Industry,2021,42(24):119−127. doi: 10.13386/j.issn1002-0306.2021040118
    [23]
    LIU C, SHEN N, WU J, Cloning, et al. Expression and characterization of a chitinase from Paenibacillus chitinolyticus strain UMBR 0002[J]. Peer J,2020,8:e8964. doi: 10.7717/peerj.8964
    [24]
    傅丽君, 杨磊, 黄锦泉, 等. 产几丁质酶Bt-016菌株发酵条件优化探究[J]. 莆田学院学报,2019,26(5):46−50, 99. [FU L J, YANG L, HUANG J Q, et al. Optimization of Fermentation conditions of chitinase producing Bt-016 strain[J]. Journal of Putian University,2019,26(5):46−50, 99. doi: 10.3969/j.issn.1672-4143.2019.05.013
    [25]
    王海东, 陈飚, 伦镜盛, 等. 产几丁质酶菌株SWCH-6的筛选、鉴定及其产酶条件的优化研究[J]. 微生物学通报,2008(5):705−711. [WANG H D, CHEN B, LUN J S, et al. Screening, identification of a chitinolytic bacterium strain SWCH-6 and its optimal chitinase fermentation conditions[J]. Microbiology China,2008(5):705−711.
    [26]
    田曼丽, 王杰. 微生物生长特性的试验研究[J]. 科学技术创新,2021(8):81−82. [TIAN M L, WANG J. Experimental study on microbial growth characteristics[J]. Scientific and Technological Innovation,2021(8):81−82. doi: 10.3969/j.issn.1673-1328.2021.08.038
    [27]
    张雷, 张蕾, 王玲莉, 等. γ-聚谷氨酸生产菌株的鉴定及发酵培养基优化[J]. 食品工业科技,2020,41(20):64−71. [ZHANG L, ZHANG L, WANG L L, et al. Identification and optimization of fermentational condition of γ-polyglutamic acid producing strain[J]. Science and Technology of Food Industry,2020,41(20):64−71.
    [28]
    杨龙, 邢为国. 酵母提取物对白对虾生长性能、抗氧化及机体成分的影响[J]. 中国饲料,2021(12):70−73. [YANG L, XING W G. Effects of yeast extract on growth performance, antioxidation and body composition of Penaeus vannamei[J]. China Feed,2021(12):70−73. doi: 10.15906/j.cnki.cn11-2975/s.20211218
    [29]
    王丰园, 金海炎, 丁凌飞, 等. 纤维素酶及其活性提升研究进展[J]. 现代农村科技,2022(3):65−68. [WANG F Y, JIN H Y, DING L F, et al. Advances in cellulase and its activity enhancement[J]. Modern Rural Science and Technology,2022(3):65−68. doi: 10.3969/j.issn.1674-5329.2022.03.051
    [30]
    陈艳, 田康明, 李玉, 等. 以蔗糖为底物利用重组大肠杆菌合成甘露醇[J]. 微生物学通报,2014,41(11):2182−2189. [CHEN Y, TIAN K M, LI Y, et al. Mannitol biotransformation from sucrose with recombinant Escherichia coli[J]. Microbiology China,2014,41(11):2182−2189. doi: 10.13344/j.microbiol.china.140075
    [31]
    许尚华. 硝酸钠促地衣芽胞杆菌WX-02高产聚γ-谷氨酸的蛋白质组学研究[D]. 武汉: 华中农业大学, 2013.

    XU S H. Comparative proteomic study of effect of sodium nitrate on poly-gamma-glutamic acid biosynthesis by Bacillus licheniformis WX-02[D]. Wuhan: Huazhong Agricultural University, 2013.
    [32]
    李朝波, 翟秀超, 温琦, 等. 添加不同有机氮源对L-赖氨酸发酵的作用[J]. 粮食与食品工业,2021,28(3):44−47. [LI C B, ZHAI X C, WEN Q, et al. Effects of feeding different organic nitrogen sources on L-lysine fermentation[J]. Cereal & Food Industry,2021,28(3):44−47. doi: 10.3969/j.issn.1672-5026.2021.03.012
    [33]
    马璐, 杨驰, 肖冬来, 等. 碳氮源对广叶绣球菌液体发酵的影响[J]. 中国食用菌,2020,39(10):37−41, 45. [MA L, YANG C, XIAO D L, et al. Liquid fermentation of Sparassis latifolia on different carbon and nitrogen source combinations[J]. Edible Fungi of China,2020,39(10):37−41, 45. doi: 10.13629/j.cnki.53-1054.2020.10.007
    [34]
    汪伟, 蔡海波, 谭文松, 等. pH调控方式和温度对透明质酸发酵过程的影响[J]. 现代食品科技,2019,35(8):207−213. [WANG W, CAI H B, TAN W S, et al. Effects of pH control modes on hyaluronic acid fermentation process[J]. Modern Food Science and Technology,2019,35(8):207−213. doi: 10.13982/j.mfst.1673-9078.2019.8.030
    [35]
    朱伟, 冯培功, 马君军, 等. 温度对粪便发酵过程中耗氧气量和有害气体排放量的影响[J]. 黑龙江畜牧兽医,2018(20):43−45, 49. [ZHU W, FENG P G, MA J J, et al. The effect of environment temperature on the emission of harmful gases from faecal fermentation[J]. Heilongjiang Animal Science and Veterinary Medicine,2018(20):43−45, 49. doi: 10.13881/j.cnki.hljxmsy.2018.04.0383
    [36]
    程小飞, 宋锐, 洪波, 等. 虾壳粉氨基酸和脂肪酸营养成分分析[J]. 中国饲料,2020(23):66−70. [CHEN X F, SONG R, HONG B, et al. Analysis of nutritional components of amino acids and fatty acids in Procrustus clarkii crawfish shell meal[J]. China Feed,2020(23):66−70. doi: 10.15906/j.cnki.cn11-2975/s.20202315
    [37]
    王敏, 辛二娜, 王瑶, 等. 几丁质降解菌的分离鉴定与产酶条件探究[J]. 山西农业科学,2021,49(4):420−424. [WANG M, XIN E N, WANG Y, et al. Isolation and identification of chitin-degrading bacterium and exploration of the optimal culture conditions for enzyme production[J]. Journal of Shanxi Agricultural Sciences,2021,49(4):420−424. doi: 10.3969/j.issn.1002-2481.2021.04.05
  • Cited by

    Periodical cited type(6)

    1. 洪梦杰,景奕文,于白音,张朝玉,石海英,常圣鑫. 基于网络药理学和分子对接探讨葛根素抗炎的关键靶点. 韶关学院学报. 2025(02): 41-46 .
    2. 鲁森,王瑞,高雄,林慧纯,陈忠正,张媛媛,陈旭洁,黄秋颜,李斌,林晓蓉. 基于高分辨质谱和网络药理学探究南昆山毛叶红茶的抗炎机理. 食品工业科技. 2024(02): 30-39 . 本站查看
    3. 李思蒙,田荣,殷明婧,谷巍. 基于网络药理学和分子对接探讨中药芫花治疗原发性痛经的作用机制. 亚热带植物科学. 2024(01): 31-39 .
    4. 李镁娟,张军,张云数,李乾伟,张娜,刘梦娇,张人平. 网络药理学结合分子对接技术揭示芹菜籽抑制痛风的潜在分子机制. 食品与机械. 2024(03): 44-51 .
    5. 张淼,黄菲,江思思,刘小芬. 闽台“一条根”类青草药次生代谢产物研究进展. 中国民族民间医药. 2023(16): 62-67 .
    6. 殷春燕,董占军,陈江魁. 基于网络药理学和分子对接技术研究花生红衣多酚抗动脉粥样硬化的作用机制. 食品与发酵工业. 2023(20): 242-249 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (319) PDF downloads (46) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return