Citation: | SUN Yue, ZHANG Wenlong, LI Nan, et al. Effect of Ursolic Acid Extracted from Hippophae rhamnoides L. on FXR Signaling Pathway in Liver of Rats with Alcoholic Liver Injury[J]. Science and Technology of Food Industry, 2023, 44(5): 363−370. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022040305. |
[1] |
GAO B, SEKI E, BRENNER D A, et al. Innate immunity in alcoholic liver disease[J]. American Journal of Physiology Gastrointestinal and Liver Physiology,2011,300(4):516−525. doi: 10.1152/ajpgi.00537.2010
|
[2] |
CRAUCIUC D V, STAN C I, RÎŞCANU L A, et al. Hepatic injuries resulting from chronic alcohol abuse identified by forensics[J]. Romanian Journal of Morphology and Embryology,2021,62(3):819−827. doi: 10.47162/RJME.62.3.20
|
[3] |
SMAOUI S, HLIMA H B, MTIBAA A C, et al. Pomegranate peel as phenolic compounds source: Advanced analytical strategies and practical use in meat products[J]. Meat Science,2019,158:107914. doi: 10.1016/j.meatsci.2019.107914
|
[4] |
KUBCZAK M, KHASSENOVA A B, SKALSKI B, et al. Hippophae rhamnoides L. leaf and twig extracts as rich sources of nutrients and bioactive compounds with antioxidant activity[J]. Scientific Reports,2022,12(1):1095. doi: 10.1038/s41598-022-05104-2
|
[5] |
KU C M, LIN J Y. Anti-inflammatory effects of 27 selected terpenoid compounds tested through modulating Th1/Th2 cytokine secretion profiles using murine primary splenocytes[J]. Food Chemistry,2013,141(2):1104−1113. doi: 10.1016/j.foodchem.2013.04.044
|
[6] |
RAUDONE L, PUZERYTĖ V, VILKICKYTE G, et al. Sea buckthorn leaf powders: The impact of cultivar and drying mode on antioxidant, phytochemical, and chromatic profile of valuable resource[J]. Molecules (Basel, Switzerland),2021,26(16):4765.
|
[7] |
SEO D Y, LEE S R, HEO J W, et al. Ursolic acid in health and disease[J]. The Korean Journal of Physiology & Pharmacology: Official Journal of the Korean Physiological Society and the Korean Society of Pharmacology,2018,22(3):235−248.
|
[8] |
王丽聪. 高效液相测定沙棘果皮中熊果酸和齐墩果酸的含量[J]. 河北化工,2009,32(2):64−65. [WANG L C. Determination of ursolic acid and oleanolic acid in Hippophae rhamnoides L. peel by HPLC[J]. Hebei Chemical Industry,2009,32(2):64−65.
|
[9] |
刘飙, 刘燕, 董明勤, 等. 熊果酸对周围神经损伤后BALB/c小鼠神经再生的影响[C]. 中华医学会第10届全国显微外科学术会议暨世界首例断肢再植成功50周年庆典论文集, 2013: 377
LIU B, LIU Y, DONG M Q, et al. Effect of ursolic acid on nerve regeneration in BALB/c mice after peripheral nerve injury[C]. Proceedings of the 10th National Microsurgery Academic Conference of the Chinese Medical Association and the 50th Anniversary Celebration of the World's First Severed Limb Replantation, 2013: 377
|
[10] |
ZHAO H, KONG L, SHAO M, et al. Protective effect of flavonoids extract of Hippophae rhamnoides L. on alcoholic fatty liver disease through regulating intestinal flora and inhibiting TAK1/p38MAPK/p65NF-κB pathway[J]. Journal of Ethnopharmacology,2022,292:115225. doi: 10.1016/j.jep.2022.115225
|
[11] |
潘钰, 于冲, 夏海华, 等. 葛根素、姜黄素、沙棘黄酮复合物对乙醇致小鼠肝损伤的保护作用[J]. 黑龙江科学,2020,11(6):4−7. [PAN Y, YU C, XIA H H, et al. Protective effects of puerarin, curcumin and Hippophae rhamnoides L. flavone complex on ethanol induced liver injury in mice[J]. Heilongjiang Science,2020,11(6):4−7. doi: 10.3969/j.issn.1674-8646.2020.06.002
|
[12] |
李可欣, 张男男, 侯瑞丽, 等. 沙棘熊果酸对酒精性肝病模型大鼠的保护作用[J]. 医药导报,2021,40(5):616−621. [LI K X, ZHANG N N, HOU R L, et al. Protective effect of the ursolic acid extracted from Hippophae rhamnoides L. on rats with alcoholic liver disease[J]. Medical Herald,2021,40(5):616−621.
|
[13] |
杨冬晗, 贾逸林, 张文龙, 等. 基于TLR4信号通路探讨熊果酸改善大鼠酒精性肝损伤的作用机制[J]. 现代预防医学,2021,48(6):1099−1102, 1127. [YANG D H, JIA Y L, ZHANG W L, et al. Study on the mechanism of ursolic acid improving alcoholic liver injury in rats based on TLR4 signaling pathway[J]. Modern Preventive Medicine,2021,48(6):1099−1102, 1127.
|
[14] |
WU W, ZHU B, PENG X, et al. Activation of farnesoid X receptor attenuates hepatic injury in a murine model of alcoholic liver disease[J]. Biochemical and Biophysical Research Communications,2014,443(1):68−73. doi: 10.1016/j.bbrc.2013.11.057
|
[15] |
KONG B, ZHANG M, HUANG M, et al. FXR deficiency alters bile acid pool composition and exacerbates chronic alcohol induced liver injury[J]. Digestive and Liver Disease: Official Journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Live,2019,51(4):570−576.
|
[16] |
GENET C, STREHLE A, SCHMIDT C, et al. Structure-activity relationship study of betulinic acid, a novel and selective TGR5 agonist, and its synthetic derivatives: Potential impact in diabetes[J]. Journal of Medicinal Chemistry,2010,53(1):178−190. doi: 10.1021/jm900872z
|
[17] |
KENICHI I, KUMIKO A, KAZUYOSHI K, et al. Ursolic acid ameliorates cholestatic liver injury caused by bile duct ligation in the rat[J]. Gastroenterology,2012,142(5):1025.
|
[18] |
丁薇. 熊果酸经FXR调控OATP1B3的表达及其机制研究[D]. 南昌: 南昌大学, 2019
DING W. Study on the expression and mechanism of OATP1B3 regulated by ursolic acid via FXR[D]. Nanchang: Nanchang University, 2019
|
[19] |
鲁长征, 山永凯, 李树志, 等. 一种从沙棘中提取熊果酸的方法[P]. 青海: CN101817863A, 2010-09-01
LU C Z, SHAN Y K, LI S Z, et al. A method for extracting ursolic acid from sea buckthorn[P]. Qinghai: CN101817863A, 2010-09-01.
|
[20] |
张男男, 侯瑞丽, 李可欣, 等. 沙棘熊果酸对H22荷瘤小鼠抑瘤活性及其机制的探讨[J]. 食品研究与开发,2019,40(10):6−12. [ZHANG N N, HOU R L, LI K X, et al. Study on the antitumor activity and mechanism of the ursolic acid extracted from Hippophae rhamnoides L. in H22 tumor bearing mice[J]. Food Research and Development,2019,40(10):6−12. doi: 10.3969/j.issn.1005-6521.2019.10.002
|
[21] |
GE N, LIANG H, ZHAO Y Y, et al. Aplysin protects against alcohol-induced liver injury via alleviating oxidative damage and modulating endogenous apoptosis-related genes expression in rats[J]. Journal of Food Science,2018,83(10):2612−2621. doi: 10.1111/1750-3841.14320
|
[22] |
贾逸林, 杨冬晗, 李可欣, 等. 熊果酸对酒精诱导的大鼠小肠黏膜屏障损伤的保护作用[J]. 中国食品学报,2021,21(8):128−135. [JIA Y L, YANG D H, LI K X, et al. Protective effect of ursolic acid on alcohol induced intestinal mucosal barrier injury in rats[J]. Chinese Journal of Food,2021,21(8):128−135. doi: 10.16429/j.1009-7848.2021.08.012
|
[23] |
DE SILVA N M G, BORGES M C, HINGORANI A D, et al. Liver function and risk of type 2 diabetes: Bidirectional mendelian randomization study[J]. Diabetes,2019,68(8):1681−1691. doi: 10.2337/db18-1048
|
[24] |
TILG H, MOSCHEN A R, SZABO G. Interleukin-1 and inflammasomes in alcoholic liver disease/acute alcoholic hepatitis and nonalcoholic fatty liver disease/nonalcoholic steatohepatitis[J]. Hepatology,2016,64(3):955−965. doi: 10.1002/hep.28456
|
[25] |
KANG K, SUN Y, PAN D, et al. Distinctive gut microbial dysbiosis between chronic alcoholic fatty liver disease and metabolic-associated fatty liver disease in mice[J]. Experimental and Therapeutic Medicine,2021,21(5):418. doi: 10.3892/etm.2021.9862
|
[26] |
李松鹏, 徐丽萍, 景红艳. 血清总胆汁酸测定在肝病诊断中的应用价值分析[J]. 中外医疗,2019,38(19):189−192. [LI S P, XU L P, JING H Y. Application value analysis of serum total bile acid in diagnosis of liver diseases[J]. Chinese and Foreign Medical Treatment,2019,38(19):189−192. doi: 10.16662/j.cnki.1674-0742.2019.19.189
|
[27] |
HARTMANN P, HOCHRATH K, HORVATH A, et al. Modulation of the intestinal bile acid/farnesoid X receptor/fibroblast growth factor 15 axis improves alcoholic liver disease in mice[J]. Hepatology,2018,67(6):2150−2166. doi: 10.1002/hep.29676
|
[28] |
ORLICKY D J, ROEDE J R, BALES E, et al. Chronic ethanol consumption in mice alters hepatocyte lipid droplet properties[J]. Alcoholism, Clinical and Experimental Research,2011,35(6):1020−1033. doi: 10.1111/j.1530-0277.2011.01434.x
|
[29] |
YU X, XUE M, LIU Y, et al. Effect of nicotinamide riboside on lipid metabolism and gut microflora-bile acid axis in alcohol-exposed mice[J]. Food Science & Nutrition,2021,9(1):429−440.
|
[30] |
朱静宇, 王峻, 金秀娥, 等. 荞麦蜜对酒精诱导的小鼠肝损伤和肠道菌群失调的改善效果[J]. 华中农业大学学报,2021,40(5):169−178. [ZHU J Y, WANG J, JIN X E, et al. Effect of buckwheat honey on alcohol induced liver injury and intestinal flora imbalance in mice[J]. Journal of Huazhong Agricultural University,2021,40(5):169−178. doi: 10.13300/j.cnki.hnlkxb.2021.05.021
|
[31] |
DONG Y, QIU P, ZHAO L S, et al. Metabolomics study of the hepatoprotective effect of Phellinus igniarius in chronic ethanol-induced liver injury mice using UPLC-Q/TOF-MS combined with ingenuity pathway analysis[J]. Phytomedicine:International Journal of Phytotherapy and Phytopharmacology,2020,74:152697. doi: 10.1016/j.phymed.2018.09.232
|
[32] |
赵亚芳, 李郁茹, 陈玉民, 等. 王不留行炭纳米类成分发现及其对小鼠酒精性肝损伤保护作用[J]. 中草药,2021,52(22):6825−6833. [ZHAO Y F, LI Y R, CHEN Y M, et al. Discovery of carbon nano components of Wangbuliuxing and its protective effect on alcoholic liver injury in mice[J]. Chinese Herbal Medicine,2021,52(22):6825−6833. doi: 10.7501/j.issn.0253-2670.2021.22.007
|
[33] |
周博宇, 孙兰, 隋自洁, 等. 香菇多糖对大鼠酒精性肝损伤的保护作用[J]. 中国卫生工程学,2022,21(1):54−56. [ZHOU B Y, SUN L, SUI Z J, et al. Protective effect of Lentinan on alcoholic liver injury in rats[J]. Chinese Health Engineering,2022,21(1):54−56.
|
[34] |
LYU X C, WU Q, CAO Y J, et al. Ganoderic acid a from Ganoderma lucidum protects against alcoholic liver injury through ameliorating the lipid metabolism and modulating the intestinal microbial composition[J]. Food & Function,2022,13(10):5820−5837.
|
[35] |
JIANG L, ZHANG H, XIAO D, et al. Farnesoid X receptor (FXR): Structures and ligands[J]. Computational and Structural Biotechnology Journal,2021,19:2148−2159. doi: 10.1016/j.csbj.2021.04.029
|
[36] |
LI T, FRANCL J M, BOEHME S, et al. Glucose and insulin induction of bile acid synthesis: Mechanisms and implication in diabetes and obesity[J]. The Journal of Biological Chemistry,2012,287(3):1861−1873. doi: 10.1074/jbc.M111.305789
|
[37] |
GADALETA R M, VAN ERPECUM K J, OLDENBURG B, et al. Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease[J]. Gut,2011,60(4):463−472. doi: 10.1136/gut.2010.212159
|
[38] |
ZHOU W, ANAKK S. Enterohepatic and non-canonical roles of farnesoid X receptor in controlling lipid and glucose metabolism[J]. Molecular and Cellular Endocrinology,2022,549:111616. doi: 10.1016/j.mce.2022.111616
|
[39] |
WANG H, HE Q, WANG G, et al. FXR modulators for enterohepatic and metabolic diseases[J]. Expert Oinion on Therapeutic Patents,2018,28(11):765−782. doi: 10.1080/13543776.2018.1527906
|
[40] |
FENG X H, DERYNCK R. Specificity and versatility in tgf-beta signaling through Smads[J]. Annual Review of Cell and Developmental Biology,2005,21:659−693. doi: 10.1146/annurev.cellbio.21.022404.142018
|
[41] |
ZHANG Y, EDWARDS P A. FXR signaling in metabolic disease[J]. Febs Letters,2008,582(1):10−18. doi: 10.1016/j.febslet.2007.11.015
|
[42] |
SAYIN S I, WAHLSTROM A, FELIN J, et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist[J]. Cell Metabolism,2013,17(2):225−235. doi: 10.1016/j.cmet.2013.01.003
|
[43] |
GUO P Y, XUE M, TENG X, et al. Antarctic krill oil ameliorates liver injury in rats exposed to alcohol by regulating bile acids metabolism and gut microbiota[J]. The Journal of Nutritional Biochemistry,2022:109061.
|
[44] |
SHIMANO H, SATO R. SREBP-regulated lipid metabolism: Convergent physiology-divergent pathophysiology[J]. Nature Reviews Endocrinology,2017,13(12):710−730. doi: 10.1038/nrendo.2017.91
|
[45] |
GAO B, BATALLER R. Alcoholic liver disease: Pathogenesis and new therapeutic targets[J]. Gastroenterology,2011,141(5):1572−1585. doi: 10.1053/j.gastro.2011.09.002
|
[46] |
LIVERO F A, STOLF A M, DREIFUSS A A, et al. The FXR agonist 6ECDCA reduces hepatic steatosis and oxidative stress induced by ethanol and low-protein diet in mice[J]. Chemico-biological Interactions,2014,217:19−27. doi: 10.1016/j.cbi.2014.03.014
|