WANG Bohua, XIANG Qisen, BAI Yanhong. Research Progress on Sublethally Injured of Microorganisms Induced by Non-thermal Processing Technologies and Its Control Methods[J]. Science and Technology of Food Industry, 2023, 44(5): 459−465. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022040292.
Citation: WANG Bohua, XIANG Qisen, BAI Yanhong. Research Progress on Sublethally Injured of Microorganisms Induced by Non-thermal Processing Technologies and Its Control Methods[J]. Science and Technology of Food Industry, 2023, 44(5): 459−465. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022040292.

Research Progress on Sublethally Injured of Microorganisms Induced by Non-thermal Processing Technologies and Its Control Methods

More Information
  • Received Date: April 25, 2022
  • Available Online: December 30, 2022
  • In recent years, non-thermal processing technologies have been received great attentions for their potential application in food sterilization and preservation. However, various studies have showed that some non-thermal processing can cause sublethal injury of microbial cells. Sublethal injury of microorganisms refers to a physiological state in-between life and death, which may represent a potential risk for food safety. This article aimed to review the latest research progress in the formation of sublethally injured microorganisms induced by non-thermal processing technologies, such as pulsed electric field, high-pressure carbon dioxide, cold plasma, and high hydrostatic pressure. In addition, the detection and control methods of sublethally injured microbial cells are also reviewed in this article. Finally, the prospects for future research in the area are also discussed. This review provides a theoretical basis for the research of sublethal injury microorganisms and their control techniques.
  • [1]
    WU D, FEREIDOUN F, ALIRI E B M, et al. Microbial response to some nonthermal physical technologies[J]. Trends in Food Science & Technology,2020,95:107−117.
    [2]
    王雯雯, 相启森, 白艳红. UV-LEDs技术在食品杀菌保鲜领域中的应用研究进展[J]. 轻工学报,2022,37(1):46−54. [WANG W W, XIANG Q S, BAI Y H. Research advance on the application of ultraviolet light-emitting diodes technology in food sterilization and preservation[J]. Journal of Light Industry,2022,37(1):46−54. doi: 10.12187/2022.01.007
    [3]
    CABISCOL E, TAMARIT J, ROS J. Oxidative stress in bacteria and protein damage by reactive oxygen species[J]. International Microbiology,2000,3(1):3−8.
    [4]
    ZHANG R, LAN L S, SHI H. Sublethal injury and recovery of Escherichia coli O157:H7 after freezing and thawing[J]. Food Control,2021,120:107488. doi: 10.1016/j.foodcont.2020.107488
    [5]
    CEBRIAN G, CONDON S, MANAS P. Heat resistance, membrane fluidity and sublethal damage in Staphylococcus aureus cells grown at different temperatures[J]. International Journal of Food Microbiology,2019,289:49−56. doi: 10.1016/j.ijfoodmicro.2018.09.002
    [6]
    BERNEY M, WEILENMANN H U, EGLI T. Adaptation to UVA radiation of E. coli growing in continuous culture[J]. Journal of Photochemistry and Photobiology B-Biology,2007,86(2):149−159. doi: 10.1016/j.jphotobiol.2006.08.014
    [7]
    LI L, MENDIS N, TRIGUI H, et al. The importance of the viable but non-culturable state in human bacterial pathogens[J]. Frontiers in Microbiology,2014,5:00258.
    [8]
    XUAN X T, DING T, LI J, et al. Estimation of growth parameters of Listeria monocytogenes after sublethal heat and slightly acidic electrolyzed water (SAEW) treatment[J]. Food Control,2017,71:17−25. doi: 10.1016/j.foodcont.2016.06.018
    [9]
    SCHOTTROFF F, FROHLING A, ZUNABOVIC-PICHLER M, et al. Sublethal injury and viable but non-culturable (VBNC) state in microorganisms during preservation of food and biological materials by non-thermal processes[J]. Frontiers in Microbiology,2018,9:2773. doi: 10.3389/fmicb.2018.02773
    [10]
    宣晓婷, 丁甜, 刘东红. 食品中亚致死损伤单增李斯特菌的研究进展[J]. 食品科学,2015,36(3):280−284. [XUAN X T, DING T, LIU D H. Progress in understanding sub-lethal injury of Listeria monocytogenes in food[J]. Food Science,2015,36(3):280−284. doi: 10.7506/spkx1002-6630-201503052
    [11]
    LIAO X Y, XIANG Q S, LIU D H, et al. Lethal and sublethal effect of a dielectric barrier discharge atmospheric cold plasma on Staphylococcus aureus[J]. Journal of Food Protection,2017,80(6):928−932. doi: 10.4315/0362-028X.JFP-16-499
    [12]
    ZHAO W, YANG R J, SHEN X H, et al. Lethal and sublethal injury and kinetics of Escherichia coli, Listeria monocytogenes and Staphylococcus aureus in milk by pulsed electric fields[J]. Food Control,2013,32(1):6−12. doi: 10.1016/j.foodcont.2012.11.029
    [13]
    MCEVOY B, LYNCH M, ROWAN N J. Opportunities for the application of real-time bacterial cell analysis using flow cytometry for the advancement of sterilization microbiology[J]. Journal of Applied Microbiology,2021,130(6):1794−1812. doi: 10.1111/jam.14876
    [14]
    ZAND E, SCHOTTROFF F, SCHOENHER C, et al. Single-staining flow cytometry approach using SYTOXTM green to describe electroporation effects on Escherichia coli[J]. Food Control,2022,132:108488. doi: 10.1016/j.foodcont.2021.108488
    [15]
    MATHUR H, MARY C R, VINCENZO F, et al. Flow cytometry as a tool to study the effects of bacteriocins on prokaryotic and eukaryotic cells[J]. Journal of Molecular Biomarkers & Diagnosis,2016,S8:013.
    [16]
    孔晓雪, 韩衍青, 付勇, 等. 流式细胞术在超高压诱导大肠杆菌O157:H7亚致死研究中的应用[J]. 食品科学,2018,39(3):135−141. [KONG X X, HAN Y Q, FU Y, et al. Flow cytometric assessment of sublethal injury of Escherichia coli O157:H7 cells caused by high hydrostatic pressure[J]. Food Science,2018,39(3):135−141. doi: 10.7506/spkx1002-6630-201803021
    [17]
    田燕龙, 王毅, 王箫, 等. 近红外光谱技术在微生物检测中的应用进展[J]. 光谱学与光谱分析,2022,42(1):9−14. [TIAN Y L, WANG Y, WANG X, et al. Advances in detection of microorganisms using near-infrared spectroscopy[J]. Spectroscopy and Spectral Analysis,2022,42(1):9−14. doi: 10.3964/j.issn.1000-0593(2022)01-0009-06
    [18]
    AL-QADIRI H M, AL-HOLY M A, CAVINATO A G, et al. Detection of sublethal thermal injury in Salmonella enterica serotype Typhimurium and Listeria monocytogenes using fourier transform infrared (FT-IR) spectroscopy (4000 to 600 cm−1)[J]. Journal of Food Science,2008,73(2):54−61. doi: 10.1111/j.1750-3841.2007.00640.x
    [19]
    喻文娟, 施春雷, 刘玉敏, 等. 副溶血弧菌的热激亚致死损伤与显微红外光谱检测[J]. 分析化学,2013,41(10):1470−1476. [YU W J, SHI C L, LIU Y M, et al. Detection of sublethal injure and microinfrared spectroscopy of Vibrio parahaemolyysus[J]. Analytical Chemistry,2013,41(10):1470−1476.
    [20]
    SHI H, CHEN Z Z, CHEN D, et al. Sublethal injury and recovery of Escherichia coli O157:H7 and K-12 after exposure to lactic acid[J]. Food Control,2017,82:190−195. doi: 10.1016/j.foodcont.2017.06.017
    [21]
    汪月霞, 侯鹏飞, 索标. 热胁迫下沙门氏菌亚致死规律及机制[J]. 食品科学,2013,34(13):140−143. [WANG Y X, HOU P F, SUO B. Effect and mechanism of sublethal heat stress on Salmonella typhimurium[J]. Food Science,2013,34(13):140−143. doi: 10.7506/spkx1002-6630-201313031
    [22]
    SUO B, YANG H, WANG Y X, et al. comparative proteomic and morphological change analyses of Staphylococcus aureus during resuscitation from prolonged freezing[J]. Frontiers in Microbiology,2018,9:00866. doi: 10.3389/fmicb.2018.00866
    [23]
    杨楠楠. 高压脉冲电场处理对黄酒中酿酒酵母菌致死及亚致死损伤效应探究[D]. 杭州: 浙江大学, 2016.

    YANG N N. Research on lethal and sublethal effects of pulsed electric field treatments on Sarccharomvces cerevisiae in Chinese rice wine[D]. Hangzhou: Zhejiang University, 2016.
    [24]
    PICART L, DUMAY E, CHEFTEL J C. Inactivation of Listeria innocua in dairy fluids by pulsed electric fields: Influence of electric parameters and food composition[J]. Innovative Food Science & Emerging Technologies,2002,3(4):357−369.
    [25]
    YUK H G, GEVEKE D J, ZHANG H Q. Efficacy of supercritical carbon dioxide for nonthermal inactivation of Escherichia coli K12 in apple cider[J]. International Journal of Food Microbiology,2010,138(1-2):91−99. doi: 10.1016/j.ijfoodmicro.2009.11.017
    [26]
    ERKMEN O. Antimicrobial effect of pressurised carbon dioxide on Enterococcus faecalis in physiological saline and foods[J]. Journal of the Science and Agriculture,2000,80:465−470.
    [27]
    HUANG M M, ZHUANG H, WANG J M, et al. Inactivation kinetics of Salmonella typhimurium and Staphylococcus aureus in different media by dielectric barrier discharge non-thermal plasma[J]. Applied Sciences,2018,8(11):2087. doi: 10.3390/app8112087
    [28]
    LIAO X Y, LI J, MUHAMMAD A I, et al. Preceding treatment of non-thermal plasma (NTP) assisted the bactericidal effect of ultrasound on Staphylococcus aureus[J]. Food Control,2018,90:241−248. doi: 10.1016/j.foodcont.2018.03.008
    [29]
    EKONOMOU S I, BULUT S, KARATZAS K A G. Inactivation of Listeria monocytogenes in raw and hot smoked trout fillets by high hydrostatic pressure processing combined with liquid smoke and freezing[J]. Innovative Food Science & Emerging Technologies,2020,64:102427. doi: 10.1016/j.ifset.2020.102427
    [30]
    LI J, MA L Y, LIAO X Y, et al. Ultrasound-induced Escherichia coli O157:H7 cell death exhibits physical disruption and biochemical apoptosis[J]. Frontiers in Microbiology,2018,9:02468. doi: 10.3389/fmicb.2018.02468
    [31]
    GABRIEL A A, MUSNI A C. Prior physicochemical stress exposures and subsequent UV-C resistance of E. coli O157:H7 in coconut liquid endosperm[J]. Food and Bioproducts Processing,2019,117:250−257. doi: 10.1016/j.fbp.2019.06.011
    [32]
    王满生. 脉冲电场作用酿酒酵母亚致死损伤及生理行为研究[D]. 广州: 华南理工大学, 2016.

    WANG M S. The study of sublethal injury and physiological behavior for the Saccharomyces cerevisiae induced by pulsed electric fields (PEFs)[D]. Guangzhou: South China University of Technology, 2016.
    [33]
    齐梦圆, 刘卿妍, 石素素, 等. 高压电场技术在食品杀菌中的应用研究进展[J]. 食品科学,2022,43(11):284−292. [QI M Y, LIU Q Y, SHI S S, et al. Research progress in the application of high-voltage electric field technology in food sterilization[J]. Food Science,2022,43(11):284−292. doi: 10.7506/spkx1002-6630-20210313-175
    [34]
    ZHAO W, YANG R J, GU Y J, et al. Assessment of pulsed electric fields induced cellular damage in Saccharomyces cerevisiae: Change in performance of mitochondria and cellular enzymes[J]. LWT-Food Science and Technology,2014,58(1):55−62. doi: 10.1016/j.lwt.2014.03.009
    [35]
    SOMOLINOS M, GARCIA D, CONDON S, et al. Relationship between sublethal injury and inactivation of yeast cells by the combination of sorbic acid and pulsed electric fields[J]. Applied and Environmental Microbiology,2007,73(12):3817−3821.
    [36]
    GAECIA D, GOMEZ N, MANAS P, et al. Occurrence of sublethal injury after pulsed electric fields depending on the micro-organism, the treatment medium pH and the intensity of the treatment investigated[J]. Journal of Applied Microbiology,2005,99(1):94−104. doi: 10.1111/j.1365-2672.2005.02611.x
    [37]
    WANG L H, WANG M S, ZENG X A, et al. Temperature-mediated variations in cellular membrane fatty acid composition of Staphylococcus aureus in resistance to pulsed electric fields[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes,2016,1858(8):1791−1800. doi: 10.1016/j.bbamem.2016.05.003
    [38]
    毕秀芳. 高压二氧化碳诱导Escherichia coli O157:H7亚致死与细胞复苏机制[D]. 北京: 中国农业大学, 2015.

    BI X F. Sublethal injury and recovery of Escherichia coli O157:H7 by high pressure carbon dioxide[D]. Beijing: China Agricultural University, 2015.
    [39]
    BI X F, WANG Y T, ZHAO F, et al. Sublethal injury and recovery of Escherichia coli O157:H7 by high pressure carbon dioxide[J]. Food Control,2015,50:705−713. doi: 10.1016/j.foodcont.2014.10.014
    [40]
    TAKAHASHI U, HAMADA K, IWAHASHI H. Critical damage to the cellular organelles of Saccharomyces cerevisiae under sublethal conditions upon high pressure carbon dioxide treatment[J]. High Pressure Research,2019,39(2):273−279. doi: 10.1080/08957959.2019.1610747
    [41]
    BI X F, WANG Y T, HU X S, et al. Decreased resistance of sublethally injured Escherichia coil O157:H7 to salt, mild heat, nisin and acids induced by high pressure carbon dioxide[J]. International Journal of Food Microbiology,2018,269:159−165.
    [42]
    相启森, 董闪闪, 郑凯茜, 等. 大气压冷等离子体在食品农药残留和真菌毒素控制领域的应用研究进展[J]. 轻工学报,2022,37(3):1−9. [XIANG Q S, DONG S S, ZHENG K X, et al. Research progress of atmospheric cold plasma in the control of food pesticide residues and mycotoxins[J]. Journal of Light Industry,2022,37(3):1−9. doi: 10.12187/2022.03.001
    [43]
    BOURKE P, ZIUZINA D, BOEHM D, et al. The potential of cold plasma for safe and sustainable food production[J]. Trends in Biotechnology,2018,36(6):615−626. doi: 10.1016/j.tibtech.2017.11.001
    [44]
    相启森, 张嵘, 范刘敏, 等. 大气压冷等离子体在鲜切果蔬保鲜中的应用研究进展[J]. 食品工业科技,2021,42(1):368−372. [XIANG Q S, ZHANG R, FAN L M, et al. Research progress of atmospheric cold plasma in fresh-cut fruits and vegetables preservation[J]. Science and Technology of Food Industry,2021,42(1):368−372. doi: 10.13386/j.issn1002-0306.2020030152
    [45]
    GOVAERT M, SMET C, WALSH J L, et al. Influence of plasma characteristics on the efficacy of cold atmospheric plasma (CAP) for inactivation of Listeria monocytogenes and Salmonella typhimurium biofilms[J]. Innovative Food Science & Emerging Technologies,2019,52:376−386.
    [46]
    PAN Y Y, CHENG J H, LÜ X Y, et al. Assessing the inactivation efficiency of Ar/O2 plasma treatment against Listeria monocytogenes cells: Sublethal injury and inactivation kinetics[J]. LWT-Food Science and Technology,2019,111:318−327. doi: 10.1016/j.lwt.2019.05.041
    [47]
    HUANG M M, ZHAUNG H, ZHAO J Y, et al. Differences in cellular damage induced by dielectric barrier discharge plasma between Salmonella typhimurium and Staphylococcus aureus[J]. Bioelectrochemistry,2020,132:107445. doi: 10.1016/j.bioelechem.2019.107445
    [48]
    GUYON C, MEYNIERA, de LAMBALLERIE M. Protein and lipid oxidation in meat: A review with emphasis on high-pressure treatments[J]. Trends in Food Science & Technology,2016,50:131−143.
    [49]
    贾青, 曹伟峰, 许伟芳. 酱卤肉制品冷杀菌技术应用研究进展[J]. 肉类工业,2020,12(12):44−50. [JIA Q, CAO W F, XU W F. Research progress on application of cold sterilization technology in sauced stewed meat products[J]. Meat Industry,2020,12(12):44−50. doi: 10.3969/j.issn.1008-5467.2020.12.011
    [50]
    MOTA M J, LOPES R P, DELGADILLO I, et al. Microorganisms under high pressure-adaptation, growth and biotechnological potential[J]. Biotechnology Advances,2013,31(8):1426−1434. doi: 10.1016/j.biotechadv.2013.06.007
    [51]
    SOKOLOWSKA B, SKAPSKA S, NIEZGODA J, et al. Inactivation and sublethal injury of Escherichia coli and Listeria innocua by high hydrostatic pressure in model suspensions and beetroot juice[J]. High Pressure Research,2014,34(1):147−155. doi: 10.1080/08957959.2013.877458
    [52]
    ZHU H, XU Y Y, QI G H, et al. Modeling the combined effect of high hydrostatic pressure and mild heat on the sub-lethal injury of Listeria monocytogenes by Box-Behnken design[J]. Journal of Food Process Engineering,2020,43(9):13480. doi: 10.1111/jfpe.13480
    [53]
    NASILOWSKA J, SOKOLOWSKA B, FONBERG-BROEZEK M. Behavior of Listeria innocua strains under pressure treatment-inactivation and sublethal injury[J]. Polish Journal of Food and Nutrition Sciences,2019,59(1):45−52.
    [54]
    程小华, 陆海霞, 吕晓文, 等. 响应面法优化超高压协同乳酸杀灭李斯特菌的参数[J]. 食品科技,2017,42(1):272−279. [CHENG X H, LIU H X, LÜ X W, et al. Optimization of sterilization of Listeria monocytogenes by many times ultra high pressure and lactic acid[J]. Food Science and Technology,2017,42(1):272−279. doi: 10.13684/j.cnki.spkj.2017.01.056
    [55]
    戚伟民. 超高压与Nisin协同作用下的细菌致死机理[D]. 无锡: 江南大学, 2010.

    QI W M. Mechanisms involved in synergistic inactivation of bacterial by high hydrostatic pressure and nisin[D]. Wuxi: Jiangnan University, 2010.
    [56]
    PAN Y Y, ZHANG Y, CHENG J H, et al. Inactivation of Listeria monocytogenes at various growth temperatures by ultrasound pretreatment and cold plasma[J]. LWT-Food Science and Technology,2020,118:108635. doi: 10.1016/j.lwt.2019.108635
    [57]
    陈晓婵, 赵伟, 杨瑞金, 等. 高压脉冲电场处理草莓汁中损伤亚致死大肠杆菌与酿酒酵母的检测[J]. 食品工业科技,2013,34(16):79−83. [CHEN X C, ZHAO W, YANG R J, et al. Occurrence of sublethal injury of Escherichia coli and Saccharomyces cerevisiae after pulsed electric fields in strawberry juice[J]. Science and Technology of Food Industry,2013,34(16):79−83. doi: 10.13386/j.issn1002-0306.2013.16.005
    [58]
    龚怡. 超高压和中温的联合作用机理及其应用[D]. 无锡: 江南大学, 2014.

    GONG Y. The mechanism and application of ultra high hydrostatic pressure combined with mild temperature[D]. Wuxi: Jiangnan University, 2014.
    [59]
    许愈. 酸性电解水结合超声波杀菌机制的初步研究[D]. 上海: 上海海洋大学, 2019.

    XU Y. The preliminary study on bactericidal mechanism of acidic electrolyzed water combined with ultrasound[D]. Shanghai: Shanghai Ocean University, 2019.

Catalog

    Article Metrics

    Article views (192) PDF downloads (13) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return