HUANG Yulan, XIE Yuanhong, WANG Fang, et al. Research Progress of Fish Drug Residues Detection in Aquatic Products[J]. Science and Technology of Food Industry, 2023, 44(5): 437−450. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022040275.
Citation: HUANG Yulan, XIE Yuanhong, WANG Fang, et al. Research Progress of Fish Drug Residues Detection in Aquatic Products[J]. Science and Technology of Food Industry, 2023, 44(5): 437−450. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022040275.

Research Progress of Fish Drug Residues Detection in Aquatic Products

More Information
  • Received Date: April 23, 2022
  • Available Online: January 03, 2023
  • Malachite green, crystal violet, chloramphenicol and nitrofurans have been widely used to inhibit the growth of microorganisms and to prevent or treat the emergence and spread of bacterial diseases. The above three types of drugs are carcinogenic, teratogenic and mutagenic, which have been banned in many countries. However, due to their advantages of low cost and significant effect, they are still used illegally in the aquaculture process. In order to prevent contaminated products circulating in the food chain and endangering consumer health. Advance analysis of aquatic products is an essential safety protection measure. This paper reviews the analytical methods concerning malachite green, crystal violet, chloramphenicol, nitrofuran and their metabolites residues in aquatic products, describes the application of chromatography, surface-enhanced Raman spectroscopy, enzyme-linked immunosorbent assay, immu-nochromatography assay, chemiluminescence enzyme immunoassay and electrochemical sensors in this field, and systematically summarizes the sample pretreatment procedures, chromatographic conditions and validation results, and discusses the advantages and disadvantages of each method. The aim of this work is to provide new ideas for monitoring residues and to present a thorough overview of current trends in this field. To be specific, high performance liquid chromatography and liquid chromatography tandem-mass spectrometry have low detection limits, yet they require cumbersome pretreatment procedures, expensive instruments and professional labor, which limit the development of this technique. With the development of new nanomaterials, surface-enhance Raman spectroscopy, immunoassay and electrochemical sensors have excellent prospects in assessing fish drug residues, which do not require large instruments, are easy to operate, and can be used for rapid detection in the field, and they will certainly become the effective tools for monitoring illegal fish drugs in aquatic products.
  • [1]
    WANG X Y, CHEN Y L, XIAO X H, et al. Recent advances in sample preparation technologies for analysis of harmful substances in aquatic products[J]. Chromatography,2021,39(1):34−45.
    [2]
    REVERTER M, BONTEMPS N, LECCHINI D, et al. Use of plant extracts in fish aquaculture as an alternative to chemotherapy: Current status and future perspectives[J]. Aquaculture,2014,433:50−61. doi: 10.1016/j.aquaculture.2014.05.048
    [3]
    CHEN J M, SUN R X, PAN C G, et al. Antibiotics and food safety in aquaculture[J]. Journal of Agricultural and Food Chemistry,2020,68(43):11908−11919. doi: 10.1021/acs.jafc.0c03996
    [4]
    ZHANG Y, HU Y, DENG R J, et al. Engineering multivalence aptamer probes for amplified and label-free detection of antibiotics in aquatic products[J]. Journal of Agricultural and Food Chemistry,2020,68(8):2554−2561. doi: 10.1021/acs.jafc.0c00141
    [5]
    SRIVASTAVA S, SINHA R, ROY D. Toxicological effects of malachite green[J]. Aquatic Toxicology,2004,66(3):319−329. doi: 10.1016/j.aquatox.2003.09.008
    [6]
    ZHAO J, WEI D Q, YANG Y L. Magnetic solid-phase extraction for determination of the total malachite green, gentian violet and leucomalachite green, leucogentian violet in aquaculture water by high-performance liquid chromatography with fluorescence detection[J]. Journal of Separation Science,2016,39(12):2347−2355.
    [7]
    CULP S J, MELICK P W, TROTTER R W, et al. Carcinogenicity of malachite green chloride and leucomalachite green in B6C3F1 mice and F344 rats[J]. Food and Chemical Toxicology,2006,44(8):1204−1212. doi: 10.1016/j.fct.2006.01.016
    [8]
    食品动物禁用的兽药及其它化合物清单[J]. 中国兽药杂志, 2012, 46(S1): 48

    List of veterinary drugs and other compounds prohibited for food animals[J]. China Journal of Veterinary Medicine, 2012, 46(S1): 48.
    [9]
    王建平, 吴岚, 司芳, 等. 对欧盟拟修订REACH法规附件XVII的解读[J]. 印染,2016,42(20):46−51, 59. [WANG J P, WU L, SI F, et al. An interpretation of the proposed amendments to annex XVII of the REACH regulations[J]. Dyeing and Finishing,2016,42(20):46−51, 59.
    [10]
    高海岗. 孔雀石绿纳米抗体的制备及其免疫层析检测方法的建立与应用[D]. 扬州: 扬州大学, 2021

    GAO H G. Preparation of malachite green nanobody and establishment and application of immuno-chromatography detection method[D]. Yangzhou: Yangzhou University, 2021.
    [11]
    国家标准化管理委员会. GB/T 19857-2005 水产品中孔雀石绿和结晶紫残留量的测定[S]. 北京: 中国标准出版社, 2005: 1−6

    Standardization Administration. GB/T 19857-2005 Determination of malachite green and crystal violet residues in aquatic product[S]. Beijing: Standards Press of China, 2005: 1−6.
    [12]
    国家标准化管理委员会. GB/T 20361-2006 水产品中孔雀石绿和结晶紫残留量的测定 高效液相色谱荧光检测法[S]. 北京: 中国标准出版社, 2006: 1−3

    Standardization Administration. GB/T 20361-2006 Determination of malachite green and crystalline violet residues in aquatic products high performance liquid chromatography fluorescence detection method[S]. Beijing: Standards Press of China, 2006: 1−3.
    [13]
    农业农村部. 2021年国家产地水产品兽药残留监测抽检合格率为99.9%[J]. 水产科技情报,2022,49(1):58. [Ministry of Agriculture and Rural Affairs of the People’s Republic of China. The sampling rate of veterinary drug residue monitoring in aquatic products of orgin in 2021 is 99.9%[J]. Fisheries Science and Technology Information,2022,49(1):58.
    [14]
    ZHU C Y, WEI J, DONG X F, et al. Fast analysis of malachite green, leucomalachite green, crystal violet and leucocrystal violet in fish tissue based on a modified QuEChERS procedure[J]. Chinese Journal of Chromatography,2014,32(4):419−425. doi: 10.3724/SP.J.1123.2014.01016
    [15]
    NEBOT C, LGLESIAS A, BARREIRO R, et al. A simple and rapid method for the identification and quantification of malachite green and its metabolite in hake by HPLC-MS/MS[J]. Food Control,2013,31(1):102−107. doi: 10.1016/j.foodcont.2012.09.020
    [16]
    HUANG P T, ZHAO P, DAI X P, et al. Trace determination of antibacterial pharmaceuticals in fishes by microwave-assisted extraction and solid-phase purification combined with dispersive liquid-liquid microextraction followed by ultra-high performance liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences,2016,1011:136−144. doi: 10.1016/j.jchromb.2015.12.059
    [17]
    CHEN G Y, MIAO S. HPLC determination and MS confirmation of malachite green, gentian violet, and their leuco metabolite residues in channel catfish muscle[J]. Journal of Agricultural and Food Chemistry,2010,58(12):7109−7114. doi: 10.1021/jf9043925
    [18]
    LIU J Y, ZHAO Q Y, CAO W Q, et al. Simple synthesis of magnetic porous organic cages for adsorption of triphenylmethane dyes in aquatic products[J]. Microchemical Journal,2020,158:105275. doi: 10.1016/j.microc.2020.105275
    [19]
    LONG C Y, MAI Z B, YANG Y F, et al. Determination of multi-residue for malachite green, gentian violet and their metabolites in aquatic products by high-performance liquid chromatography coupled with molecularly imprinted solid-phase extraction[J]. Journal of Chromatography A,2009,1216(12):2275−2281. doi: 10.1016/j.chroma.2009.01.047
    [20]
    XIE J, PENG T, CHEN D D, et al. Determination of malachite green, crystal violet and their leuco-metabolites in fish by HPLC-VIS detection after immunoaffinity column clean-up[J]. Journal of Chromatography B Analytical Technologies in the Biomedical and Life Sciences,2013,913−914:123−128. doi: 10.1016/j.jchromb.2012.12.002
    [21]
    高晓敏, 王琚钢, 马智玲, 等. 快速滤过型净化法结合超高效液相色谱-串联质谱同时检测水产品中孔雀石绿和结晶紫残留量[J]. 食品与发酵工业,2021,47(24):249−255. [GAO X M, WANG J G, MA Z L, et al. Simultaneous determination of malachite green and crystal violet residues in aquatic products by multi-plug filtration cleanup method combined with ultra-performance liquid chromatography-tandem mass spectrometry[J]. Food and Fermentation Industries,2021,47(24):249−255. doi: 10.13995/j.cnki.11-1802/ts.027068
    [22]
    VALLE L, DIAZ C, ZANOCCO A L, et al. Determination of the sum of malachite green and leucomalachite green in salmon muscle by liquid chromatography-atmospheric pressure chemical ionisation-mass spectrometry[J]. Journal of Chromatography A,2005,1067(1-2):101−105. doi: 10.1016/j.chroma.2004.10.049
    [23]
    LEE J B, KIM H Y, JANG Y M, et al. Determination of malachite green and crystal violet in processed fish products[J]. Food Additives and Contaminants Part A-Chemistry Analysis Control Exposure and Risk Assessment,2010,27(7):953−961.
    [24]
    杨贤庆, 孙满义, 李来好, 等. 水产品中孔雀石绿高效液相荧光检测法的改良研究[J]. 食品科学,2008(8):526−529. [YANG X Q, SUN M Y, LI L H, et al. Improvement on determination of malachite green in fishery products by HPLC with fluorescence detector[J]. Food Science,2008(8):526−529. doi: 10.3321/j.issn:1002-6630.2008.08.125
    [25]
    吴蓓琦, 刘畅, 李萍, 等. 水产品中孔雀石绿残留检测方法的优化[J]. 江苏农业科学,2016,44(7):333−335. [WU P Q, LIU C, LI P, et al. Optimization of a method for the determination of malachite green residues in aquatic products[J]. Jiangsu Agricultural Sciences,2016,44(7):333−335. doi: 10.15889/j.issn.1002-1302.2016.07.098
    [26]
    MITROWSKA K, POSYNIAK A, ZMUDZKI J. Determination of malachite green and leucomalachite green in carp muscle by liquid chromatography with visible and fluorescence detection[J]. Journal of Chromatography A,2005,1089(1-2):187−192. doi: 10.1016/j.chroma.2005.07.004
    [27]
    KAPLAN M, OLGUN E O, KARAOGLU O. A rapid and simple method for simultaneous determination of triphenylmethane dye residues in rainbow trouts by liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography A,2014,1349:37−43. doi: 10.1016/j.chroma.2014.04.091
    [28]
    AMELIN V G, KOROTKOV A I, ANDORALOV A M. Simultaneous determination of dyes of different classes in aquaculture products and spice using HPLC-high-resolution quadrupole time-of-flight mass spectrometry[J]. Journal of Analytical Chemistry,2017,72(2):183−190. doi: 10.1134/S1061934817020034
    [29]
    CRAIG A P, FRANCA A S, IRUDAYARAJ J. Surface-enhanced raman spectroscopy applied to food safety[J]. Annual Review of Food Science and Technology,2013,4:369−380. doi: 10.1146/annurev-food-022811-101227
    [30]
    赵瑞. 表面增强拉曼光谱技术在兽药检测方面的研究与应用[D]. 长春: 长春师范大学, 2021

    ZHAO R. Research and application of surface-enhanced raman spectroscopy in veterinary drug detection[D]. Changchun: Changchun Normal University, 2021.
    [31]
    ZHANG R, LAI Y C, ZHAN J H. Enhancing the activity of silver nanowire membranes by electrochemical cyclic voltammetry as highly sensitive flexible SERS substrate for on-site analysis[J]. Nanomaterials,2021,11(3):672. doi: 10.3390/nano11030672
    [32]
    YANG N, YOU T T, GAO Y K, et al. Fabrication of a flexible gold nanorod polymer metafilm via a phase transfer method as a SERS substrate for detecting food contaminants[J]. Journal of Agricultural and Food Chemistry,2018,66(26):6889−6896. doi: 10.1021/acs.jafc.8b01702
    [33]
    YANG G H, FANG X J, JIA Q, et al. Fabrication of paper-based SERS substrates by spraying silver and gold nanoparticles for SERS determination of malachite green, methylene blue, and crystal violet in fish[J]. Microchimica Acta,2020,187(5):310. doi: 10.1007/s00604-020-04262-2
    [34]
    ZHANG M F, SUN H R, CHEN X, et al. The influences of graphene oxide (GO) and plasmonic Ag nanoparticles modification on the SERS sensing performance of TiO2 nanosheet arrays[J]. Journal of Alloys and Compounds,2021,864:158189. doi: 10.1016/j.jallcom.2020.158189
    [35]
    ZHANG M F, YANG J, WANG Y R, et al. Plasmon-coupled 3D porous hotspot architecture for super-sensitive quantitative SERS sensing of toxic substances on real sample surfaces[J]. Physical Chemistry Chemical Physics,2019,21(35):19288−19297. doi: 10.1039/C9CP03058A
    [36]
    ZHANG M F, CHEN Z X, WANG Z E, et al. Graphene oxide coated popcorn-like Ag nanoparticles for reliable sensitive surface-enhanced raman scattering detection of drug residues[J]. Journal of Materials Research,2019,34(17):2935−2943. doi: 10.1557/jmr.2019.78
    [37]
    KIM S, JOO J H, KIM W, et al. A facile, portable surface-enhanced raman spectroscopy sensing platform for on-site chemometrics of toxic chemicals[J]. Sensors and Actuators B-Chemical,2021,343:130102. doi: 10.1016/j.snb.2021.130102
    [38]
    JI H X, XIA C X, XU J, et al. A highly sensitive immunoassay of pesticide and veterinary drug residues in food by tandem conjugation of bi-functional mesoporous silica nanospheres[J]. Analyst,2020,145(6):2226−2232. doi: 10.1039/C9AN02430A
    [39]
    SHEN Y D, DENG X F, SUN Y M. Simultaneous determination of malachite green, brilliant green and crystal violet in grass carp tissues by a broad-specificity indirect competitive enzyme-linked immunosorbent assay[J]. Analytica Chimica Acta,2011,707(1):148−154.
    [40]
    XU H Y, CHEN X L, GUO L, et al. Monoclonal antibody-based enzyme-linked immunosorbent assay for detection of total malachite green and crystal violet residues in fishery products[J]. International Journal of Environmental Analytical Chemistry,2013,93(9):959−969. doi: 10.1080/03067319.2012.672982
    [41]
    CHEN Y Y, DING M L, LI J Q, et al. Fluorescence quenching immunoaffinity test column with quantum dots as fluorescence donors for the quick detection of malachite green and crystal violet in aquatic products[J]. Food Analytical Methods,2018,11(12):3362−3370. doi: 10.1007/s12161-018-1312-0
    [42]
    陈义元. 孔雀石绿和结晶紫的免疫检测新方法研究[D]. 天津: 天津科技大学, 2018

    CHEN Y Y. New immunoassay method for malachite green and crystal violet[D]. Tianjin: Tianjin University of Science and Technology, 2018.
    [43]
    张爽. 基于纳米复合材料的电化学传感器的构建及应用[D]. 烟台: 烟台大学, 2019

    ZHANG S. Construction and application of electronchemical sensors based on nanocomposites[D]. Yantai: Yantai University, 2019.
    [44]
    CESEWSKI E, JOHNSON B N. Electrochemical biosensors for pathogen detection[J]. Biosensors and Bioelectronics,2020,159:112214. doi: 10.1016/j.bios.2020.112214
    [45]
    CAI S X, CHEN X W, LIU J, et al. Highly efficient detection of tricaine methanesulfonate based on the nanoporous gold electrochemical sensor[J]. Materials Letters,2021,301:130286. doi: 10.1016/j.matlet.2021.130286
    [46]
    LIU Z Y, QI W J, XU G B. Recent advances in electrochemiluminescence[J]. Chemistry Society Reviews,2015,44(10):3117−3142. doi: 10.1039/C5CS00086F
    [47]
    WANG S, HAO T T, GUO Z Y. Development of electrochemiluminescent inhibition method for determination of gentian violet in aquatic water[J]. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy,2012,89:25−29. doi: 10.1016/j.saa.2011.12.012
    [48]
    HUANG B M, ZHOU X B, LU X Q. Quenching of the electrochemiluminescence of Ru(bpy)32+/TPA by malachite green and crystal violet[J]. Talanta,2013,106:174−180. doi: 10.1016/j.talanta.2012.12.025
    [49]
    LIU F Y, YANG X, ZHAO Y Q, et al. Detection of malachite green and leucomalachite green based on electrochemiluminescence of mono- and bimetallic ruthenium tris-bipyridyl complexes at an Au electrode[J]. Analytical Methods,2013,5(3):660−665. doi: 10.1039/C2AY26010G
    [50]
    SHAO J T, ZHAO Y M, LIU F Y, et al. Determination of malachite green and leucomalachite green based on electrochemiluminescence of Ru(bpy)32+ at graphene oxide modified glassy carbon electrodes[J]. Rsc Advances,2015,5(19):14547−14552. doi: 10.1039/C4RA09915J
    [51]
    CHEN X H, SHAN X L, LAN Q F, et al. Electrochemiluminescence quenching sensor of a carboxylic carbon nanotubes modified glassy carbon electrode for detecting crystal violet based on nitrogen-doped graphene quantum dots@peroxydisulfate system[J]. Analytical Sciences,2019,35(8):929−934. doi: 10.2116/analsci.19P090
    [52]
    谷孝磊. 海洋渔业环境中几种禁限用渔药的电化学检测研究[D]. 青岛: 青岛科技大学, 2014

    GU X L. Study on the electrochemical detection of several banned and restricted fishery drugs in marine fishery environment[D]. Qingdao: Qingdao University of Science and Technology, 2014.
    [53]
    刘文文. 基于导电碳黑糊电极的电化学传感器对渔业环境中残留药物的检测应用[D]. 青岛: 中国海洋大学, 2015

    LIU W W. Application of electrochemical sensors based on conductive carbon black paste electrode for residual drugs in fishery environment[D]. Qingdao: Ocean University of China, 2015.
    [54]
    XU Y X, LI Q, XUE H G, et al. Metal-organic frameworks for direct electrochemical applications[J]. Coordination Chemistry Reviews,2018,376:292−318. doi: 10.1016/j.ccr.2018.08.010
    [55]
    LI C, WU K. Cu-BTC frameworks based electrochemical sensor for hazardous malachite green in aquaculture[J]. Analytica Chimica Acta,2021,1162:338473. doi: 10.1016/j.aca.2021.338473
    [56]
    ZHOU Y, LI X, PAN Z, et al. Determination of malachite green in fish by a modified MOF-based electrochemical sensor[J]. Food Analytical Methods,2019,12(5):1246−1254. doi: 10.1007/s12161-019-01459-x
    [57]
    DENG P H, FENG J X, WEI Y P, et al. Fast and ultrasensitive trace malachite green detection in aquaculture and fisheries by using hexadecylpyridinium bromide modified electrochemical sensor[J]. Journal of Food Composition and Analysis,2021,102:104003. doi: 10.1016/j.jfca.2021.104003
    [58]
    邵可满, 傅桂瑜, 陈素艳, 等. 稀土配合物分子印迹荧光探针的制备及检测孔雀石绿的残留[J]. 光谱学与光谱分析,2022,42(3):808−813. [SHAO K M, FU G Y, CHEN S Y, et al. Preparation of molecularly imprinted fluorescent probe for rare earth complex and determination of malachite green residue[J]. Spectroscopy and Spectral Analysis,2022,42(3):808−813. doi: 10.3964/j.issn.1000-0593(2022)03-0808-06
    [59]
    陈宏, 靖玉, 孙思阳, 等. 分子印迹电化学传感器检测水产品中孔雀石绿[J]. 化学研究与应用,2020,32(2):208−213. [CHEN H, JING Y, SUN S Y, et al. Determination of malachite green in aquatic products by electrochemical sensor based on molecularly imprinted polymer[J]. Chemical Research and Application,2020,32(2):208−213. doi: 10.3969/j.issn.1004-1656.2020.02.006
    [60]
    WEI S L, WU J Y, HUANG X J, et al. Preparation and application of malachite green electrochemical sensor based on molecularly imprinted polymer[J]. Chinese Journal of Analytical Chemistry,2020,48(1):145−152.
    [61]
    YI H C, QU W Y, HUANG W S. Electrochemical determination of malachite green using a multi-wall carbon nanotube modified glassy carbon electrode[J]. Microchemica Acta,2008,160(1−2):291−296. doi: 10.1007/s00604-007-0814-z
    [62]
    NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306(5696):666−669. doi: 10.1126/science.1102896
    [63]
    WANG Q Q, QIN X F, GENG L P, et al. Label-free electrochemical aptasensor for sensitive detection of malachite green based on Au nanoparticle/graphene quantum dots/tungsten disulfide nanocomposites[J]. Nanomaterials,2019,9(2):229. doi: 10.3390/nano9020229
    [64]
    LUO Y Z, LI Z Y. A sensitive electrochemical sensor manufactured from multi-wall carbon nanotubes-polyethylenimine nanocomposite for malachite green detection[J]. Journal of Alloys and Compounds,2021,897:163216.
    [65]
    刘继超. 新型共价有机框架材料的构建及其在动物源性食品污染物检测中的应用[D]. 西安: 陕西科技大学, 2021

    LIU J C. Construction of novel covalent organic framework materials and their application in the determination of animal-derived food contaminants[D]. Xian: Shaanxi University of Science & Technology, 2021.
    [66]
    VOLKOV I L, SEEFELDT A C, JOHANSSON M. Tracking of single tRNAs for translation kinetics measurements in chloramphenicol treated bacteria[J]. Methods,2019,162:23−30.
    [67]
    PENG B, LU Y, LUO J, et al. Visible light-activated self-powered photoelectrochemical aptasensor for ultrasensitive chloramphenicol detection based on DFT-proved Z-scheme Ag2CrO4/g-C3N4/graphene oxide[J]. Journal of Hazardous Materials,2020,401:123395.
    [68]
    SAMSONVOA J V, CANNAVAN A, ELLIOTT C T. A critical review of screening methods for the detection of chloramphenicol, thiamphenicol, and florfenicol residues in foodstuffs[J]. Critical Reviews in Analytical Chemistry,2012,42(1):50−78. doi: 10.1080/10408347.2012.629951
    [69]
    AMELINE A, TAQUET M C, TERRADE J E, et al. Identification of chloramphenicol in human hair leading to a diagnosis of factitious disorder[J]. Clinical Toxicology,2020,58(9):926−930. doi: 10.1080/15563650.2019.1708375
    [70]
    ZHANG Z, ZHOU H, JIANG C, et al. Molecularly imprinted polymer functionalized flower-like BiOBr microspheres for photoelectrochemical sensing of chloramphenicol[J]. Electrochimica Acta,2020,344:136161. doi: 10.1016/j.electacta.2020.136161
    [71]
    朱文嘉, 王联珠, 郭莹莹, 等. 国内外鱼类产品兽药残留限量标准对比分析[J]. 水产科技情报,2013,40(5):225−231. [ZHU W J, WANG L Z, GUO Y Y, et al. Comparative analysis of veterinary drug residue limit standards for fish products at home and abroad[J]. Fisheries Science and Technology Information,2013,40(5):225−231. doi: 10.3969/j.issn.1001-1994.2013.05.001
    [72]
    刘畅. 氯霉素和二甲基异茨醇单克隆抗体的制备及酶联免疫吸附分析方法的建立[D]. 苏州: 苏州大学, 2019

    LIU C. Preparation of monoclonal antibodies against chloramphenicol and 2-methylisoborneol and establishment of enzyme-linked immunosorbent assays[D]. Suzhou: Suzhou University, 2019.
    [73]
    GIKAS E, KORMALI P, TSIPI D, et al. Development of a rapid and sensitive SPE-LC-ESI MS/MS method for the determination of chloramphenicol in seafood[J]. Journal of Agricultural and Food Chemistry,2004,52(5):1025−1030. doi: 10.1021/jf030485l
    [74]
    BARRETO F, RIBEIRO C, HOFF R B, et al. Determination of chloramphenicol, thiamphenicol, florfenicol and florfenicol amine in poultry, swine, bovine and fish by liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography A,2016,1449:48−53. doi: 10.1016/j.chroma.2016.04.024
    [75]
    CHEN D M, DELMAS J M, HURTAUD-PESSEL D, et al. Development of a multi-class method to determine nitroimidazoles, nitrofurans, pharmacologically active dyes and chloramphenicol in aquaculture products by liquid chromatography-tandem mass spectrometry[J]. Food Chemistry,2020,311:125924. doi: 10.1016/j.foodchem.2019.125924
    [76]
    JUNG H N, PARK D, CHOI Y J, et al. Simultaneous quantification of chloramphenicol, thiamphenicol, florfenicol, and florfenicol amine in animal and aquaculture products using liquid chromatography-tandem mass spectrometry[J]. Frontiers in Nutrition,2022,8:812803. doi: 10.3389/fnut.2021.812803
    [77]
    TYAGI A, VERNEKAR P, KARUNASAGAR I, et al. Determination of chloramphenicol in shrimp by liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS-MS)[J]. Food Additives and Contaminants Part A-Chemistry Analysis Control Exposure and Assessment,2008,25(4):432−437.
    [78]
    BARRETO F, RIBEIRO C, HOFF R B, et al. Determination and confirmation of chloramphenicol in honey, fish and prawns by liquid chromatography-tandem mass spectrometry with minimum sample preparation: validation according to 2002/657/EC directive[J]. Food Additives and Contaminants Part A-Chemistry Analysis Control Exposure and Risk Assessment,2012,29(4):550−558.
    [79]
    MACKIE J, MARLEY E, DONNELLY C. Immunoaffinity column cleanup with LC/MS/MS for the determination of chloramphenicol in honey and orawns: single-laboratory validation[J]. Journal of Aoac International,2013,96(4):910−916. doi: 10.5740/jaoacint.12-320
    [80]
    WU J B, CHEN L Y, MAO P P, et al. Determination of chloramphenicol in aquatic products by graphene-based SPE coupled with HPLC-MS/MS[J]. Journal of Separation Science,2012,35(24):3586−3592. doi: 10.1002/jssc.201200617
    [81]
    SI M Z, KANG Y P, ZHAGN Z G. Surface-enhanced raman scattering (SERS) spectra of chloramphenicol in Ag colloids prepared by microwave heating method[J]. Journal of Raman Spectroscopy,2009,40(9):1319−1323. doi: 10.1002/jrs.2286
    [82]
    吉薇. 表面增强拉曼光谱测定氯霉素及其琥珀酸钠的研究[D]. 无锡: 江南大学, 2013

    JI W. Studies on the detection of chloramphenicol and its sodium succinate by surface-enhanced raman scattering[D]. Wuxi: Jiangnan University, 2013.
    [83]
    JI W, YAO W R. Rapid surface enhanced raman scattering detection method for chloramphenicol residues[J]. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy,2015,144:125−130. doi: 10.1016/j.saa.2015.02.029
    [84]
    SONG J, HUANG Y, FAN Y, et al. Detection of prohibited fish drugs using silver nanowires as substrate for surface-enhanced raman scattering[J]. Nanomaterials,2016,6(9):175. doi: 10.3390/nano6090175
    [85]
    赵燕. 氧化石墨烯复合基底的制备及其在食品安全检测中的应用[D]. 上海: 上海海洋大学, 2019

    ZHAO Y. Fabrication of graphene oxide hybrid substrate and application in food safety detection[D]. Shanghai: Shanghai Ocean University, 2019.
    [86]
    LI H H, GENG W H, HASSAN M M, et al. Rapid detection of chloramphenicol in food using SERS flexible sensor coupled artificial intelligent tools[J]. Food Control,2022,128:108186.
    [87]
    HASSAN M M, HE P H, ZAREEF M, et al. Rapid detection and prediction of chloramphenicol in food employing label-free HAu/Ag NFs-SERS sensor coupled multivariate calibration[J]. Food Chemistry, 2022, 374: 131765.
    [88]
    YU S H, LIU Z G, LI H W, et al. Combination of a graphene SERS substrate and magnetic solid phase micro-extraction used for the rapid detection of trace illegal additives[J]. Analyst,2018,143(4):883−890. doi: 10.1039/C7AN01547J
    [89]
    农业部. 农业部1025号公告-26-2008 动物源食品中氯霉素残留检测 酶联免疫吸附法[S]北京: 中国标准出版社, 2008: 1−4

    Ministry of Agriculture of The PRC. Ministry of agriculture announcement No.1025-26-2008 determination of chloramphenicol in edible animal tissues by immunoassay[S] Beijing: Standards Press of China, 2008: 1−4.
    [90]
    SAI N, CHEN Y P, LIU N, et al. A sensitive immunoassay based on direct hapten coated format and biotin-streptavidin system for the detection of chloramphenicol[J]. Talanta,2010,82(4):1113−1121. doi: 10.1016/j.talanta.2010.06.018
    [91]
    CONTI G O, COPAT C, WANG Z H, et al. Determination of illegal antimicrobials in aquaculture feed and fish: An ELISA study[J]. Food Control,2015,50:937−941. doi: 10.1016/j.foodcont.2014.10.050
    [92]
    CHANG L, DENG D, DI X, et al. Development of a monoclonal antibody based-ELISA for the detection of chloramphenicol in shrimp, feed and milk samples and validation by LC-MS/MS coupled with immunoaffinity clean-up[J]. Analytical Methods,2019,11(4):507−516. doi: 10.1039/C8AY02284D
    [93]
    夏菲, 刘秀英, 高雪, 等. 免疫层析技术在检测食品中硝基呋喃类药物的应用[J]. 中国食品学报,2021,21(11):397−409. [XIA F, LIU X Y, GAO X, et al. Application of immunochromatography in the detection of nitrofurans in food[J]. Journal of Chinese Institute of Food Science and Technology,2021,21(11):397−409. doi: 10.16429/j.1009-7848.2021.11.043
    [94]
    ZHOU C N, ZHANG X Y, HUANG X X, et al. Rapid detection of chloramphenicol residues in aquatic products using colloidal gold immunochromatographic assay[J]. Sensors,2014,14(11):21872−21888. doi: 10.3390/s141121872
    [95]
    SUN Y W, CHAGN Y, JIN Y F, et al. Study of synthesis and spectral property of europium cryptate[J]. Spectroscopy and Spectral Analysis,2018,38(7):2189−2193.
    [96]
    ZHOU B, ZHANG J, FAN J, et al. A new sensitive method for the detection of chloramphenicol in food using time-resolved fluoroimmunoassay[J]. European Food Research and Technology,2015,240(3):619−625. doi: 10.1007/s00217-014-2363-0
    [97]
    FANG Q, WANG L, HUA X, et al. An enzyme-linked chemiluminescent immunoassay developed for detection of Butocarboxim from agricultural products based on monoclonal antibody[J]. Food Chemistry,2015,166:372−379. doi: 10.1016/j.foodchem.2014.06.060
    [98]
    AHMED S, NING J N, PENG D P, et al. Current advances in immunoassays for the detection of antibiotics residues: A review[J]. Food and Agricultural Immunology,2020,31(1):268−290. doi: 10.1080/09540105.2019.1707171
    [99]
    XU C L, PENG C F, HAO K, et al. Chemiluminescence enzyme immunoassay (CLEIA) for the determination of chloramphenicol residues in aquatic tissues[J]. Luminescence,2006,21(2):126−128. doi: 10.1002/bio.892
    [100]
    PAN Y, FEI D W, LIU P H, et al. Surface-enhanced raman scattering-based lateral flow immunoassay for the detection of chloramphenicol antibiotics using Au@Ag nanoparticles[J]. Food Analytical Methods,2021,14(12):2642−2650. doi: 10.1007/s12161-021-02091-4
    [101]
    JIANG W, WANG Z, BEIER R C, et al. Simultaneous determination of 13 fluoroquinolone and 22 sulfonamide residues in milk by a dual-colorimetric enzyme-linked immunosorbent assay[J]. Analytical Chemistry,2013,85(4):1995−1999. doi: 10.1021/ac303606h
    [102]
    DIBLIKOVA I, COPPER K M, KENNEDY D G, et al. Monoclonal antibody-based ELISA for the quantification of nitrofuran metabolite 3-amino-2-oxazolidinone in tissues using a simplified sample preparation[J]. Analytica Chimica Acta,2005,540(2):285−292. doi: 10.1016/j.aca.2005.03.039
    [103]
    FAN W L, YANG S W, GAO W X, et al. Highly sensitive bromide aided SERS detection of furazolidone and 3-Amino-2-oxazolidinone residual in aquaculture products[J]. Microchemical Journal,2021,169(4):106532.
    [104]
    MCCRACKEN R J, SPENCE D E, FLOYD S D, et al. Evaluation of the residues of furazolidone and its metabolite, 3-amino-2-oxazolidinone (AOZ), in eggs[J]. Food Addit Contam,2001,18(11):954−959. doi: 10.1080/02652030110050375
    [105]
    国家卫生健康委员会. GB 31656.13-2021 食品安全国家标准 水产品中硝基呋喃类代谢物多残留的测定 液相色谱-串联质谱法[S]. 北京: 中国农业出版社, 2021: 1−3

    National Health Commission. GB 31656.13-2021 Food safety national standards Determination of multi-residues of nitrofuran metabolites in aquatic products Liquid chromatography-tandem mass spectrometry[S]. Beijing: China Agriculture Press, 2021: 1−3.
    [106]
    苏丽红. 纳米信号探针用于呋喃唑酮免疫层析检测方法的研究[D]. 咸阳: 西北农林科技大学, 2021

    SU L H. Study on lateral flow immunoassay for detection of furazolidone based on nano-signal probe[D]. Xianyang: Northwest A & F University, 2021.
    [107]
    CHUMANEE S, SUTTHIVAIYAKIT S, SUTTHIVAIYAKIT P, et al. New reagent for trace determination of protein-bound metabolites of nitrofurans in shrimp using liquid chromatography with diode array detector[J].Journal of Agricultural & Food Chemistry, 2009, 57(5): 1752-1759.
    [108]
    DU N N, CHEN M M, SHEGN L Q, et al. Determination of nitrofuran metabolites in shrimp by high performance liquid chromatography with fluorescence detection and liquid chromatography-tandem mass spectrometry using a new derivatization reagent[J]. Journal of Chromatography A,2014,1327:90−96. doi: 10.1016/j.chroma.2013.12.065
    [109]
    LUO X Z, YU Y X, KONG X J, et al. Rapid microwave assisted derivatization of nitrofuran metabolites for analysis in shrimp by high performance liquid chromatography-fluorescence detector[J]. Microchemical Journal,2019,150:104189. doi: 10.1016/j.microc.2019.104189
    [110]
    DOUNY C, WIDART J, DEPAUW E, et al. Development of an analytical method to detect metabolites of nitrofurans: application to the study of furazolidone elimination in vietnamese black tiger shrimp (Penaeus monodon)[J]. Aquaculture,2013,376:54−58.
    [111]
    YU Y X, LI N, JIN Q Q, et al. Novel fluorescence labeling reagent 4-(carbazole-9-yl)-benzyl chloroformate and its application in the determination of nitrofuran metabolites compounds in foodstuffs by high performance liquid chromatography with fluorescence detection[J]. Microchemical Journal,2019,145:9−17. doi: 10.1016/j.microc.2018.10.021
    [112]
    OYE B E, COUILLARD F D, VALDERSNES S. Complete validation according to current international criteria of a confirmatory quantitative method for the determination of nitrofuran metabolites in seafood by liquid chromatography isotope dilution tandem mass spectrometry[J]. Food Chemistry,2019,300:125175. doi: 10.1016/j.foodchem.2019.125175
    [113]
    CONNEELY A, NUGENT A, OKEEFFE M. Use of solid phase extraction for the isolation and clean-up of a derivatised furazolidone metabolite from animal tissues[J]. Analyst,2002,127(6):705−709. doi: 10.1039/b203058f
    [114]
    SHEN Y D, XU Z L, ZHANG S W, et al. Development of a monoclonal antibody-based competitive indirect enzyme-linked immunosorbent assay for furaltadone metabolite AMOZ in fish and shrimp samples[J]. Agricultural and Food Chemistry,2012,66(4):10991−10997.
    [115]
    COOPER K M, ELLIOTT C T, KENNEDY D G. Detection of 3-amino-2-oxazolidinone (AOZ), a tissue-bound metabolite of the nitrofuran furazolidone, in prawn tissue by enzyme immunoassay[J]. Food Additives and Contaminaminants Part A-Chemistry Analysis Control Exposure and Risk Assessment,2004,21(9):841−848.
    [116]
    JIANG W X, LUO P J, WNAG X, et al. Development of an enzyme-linked immunosorbent assay for the detection of nitrofurantoin metabolite, 1-amino-hydantoin, in animal tissues[J]. Food Control,2012,23(1):20−25. doi: 10.1016/j.foodcont.2011.05.014
    [117]
    徐冬梅, 李亚英, 李玉静. 呋喃西林代谢物酶联免疫吸附测定方法的建立及性能测定[J]. 食品研究与开发,2020,41(6):164−168. [XU D M, LI Y Y, LI Y J. Establishment of enzyme-linked immunosorbent assay for determination of furacillin metabolites and its properties[J]. Food Research and Development,2020,41(6):164−168. doi: 10.12161/j.issn.1005-6521.2020.06.028
    [118]
    WANG Q, LIU Y C, WANG M Y, et al. A multiplex immunochromatographic test using gold nanoparticles for the rapid and simultaneous detection of four nitrofuran metabolites in fish samples[J]. Analytical and Bioanalytical Chemistry,2018,410(1):223−233. doi: 10.1007/s00216-017-0714-y
    [119]
    DONG X, GAO Y Q, ZHAGN X, et al. Multiplex europium (III) nanoparticles immunochromatographic assay method for the detection of four nitrofuran metabolites in fish sample[J]. Microchemical Journal,2019,150:104207. doi: 10.1016/j.microc.2019.104207
    [120]
    YU W L, LIU M X, LIU R B, et al. Development of biomimetic enzyme-linked immunosorbent assay based on molecular imprinting technique for semicarbazide detection[J]. Food and Agricultural Immunology,2019,31(1):17−32.
    [121]
    CHEN L Y, LUQUE R, LI Y W. Controllable design of tunable nanostructures inside metal-organic frameworks[J]. Chemical Society Reviews,2017,46(15):4616−4630.
    [122]
    GUMEROVA N, ROMPEL A. Synthesis, structures and applications of electron-rich polyoxometalates[J]. Nature Reviews Chemistry,2018,2(2):0122.
    [123]
    齐雯. 含钒多金属氧酸盐抗乳腺癌MCF-7细胞作用研究[D]. 长春: 吉林大学, 2016

    QI W. Research on the antitumor effect of polyoxometalates on human breast cancer MCF-7 cells[D]. Changchun: Jilin University, 2016.
    [124]
    CAI S X, JIAO T H, WANG L, et al. Electrochemical sensing of nitrofurazone on Ru(bpy)32+ functionalized polyoxometalate combined with graphene modified electrode[J]. Food Chemistry,2022,378:132084. doi: 10.1016/j.foodchem.2022.132084
    [125]
    KOKULNATHAN T, WANG T J. Synthesis and characterization of 3D flower-like nickel oxide entrapped on boron doped carbon nitride nanocomposite: An efficient catalyst for the electrochemical detection of nitrofurantoin[J]. Composites Part B-Engineering,2019,174:106914. doi: 10.1016/j.compositesb.2019.106914
    [126]
    KOKULNATHAN T, WANG T J, KUMAR E A, et al. Development of an electrochemical platform based on nanoplate-like zirconium phosphate for the detection of furazolidone[J]. Acs Applied Nano Materials,2020,3(5):4522−4529. doi: 10.1021/acsanm.0c00594
    [127]
    HE B S, DNOG X Z. Powder microelectrode embedded with carboxyl multi-walled carbon nanotubes for sensitive and quantitative detection of nitrofuran residues[J]. Analytical Methods,2018,10(11):1372−1378. doi: 10.1039/C8AY00289D
    [128]
    HE B S, LIU H. Electrochemical determination of nitrofuran residues at gold nanoparticles/graphene modified thin film gold electrode[J]. Microchemical Journal,2019,150:104108. doi: 10.1016/j.microc.2019.104108
    [129]
    YANG G J, JIN W J, WU L P, et al. Development of an impedimetric immunosensor for the determination of 3-amino-2-oxazolidone residue in food samples[J]. Analytica Chimica Acta,2011,706(1):120−127. doi: 10.1016/j.aca.2011.08.018
    [130]
    JIN W J, YANG G J, WU L P, et al. Detecting 5-morpholino-3-amino-2-oxazolidone residue in food with label-free electrochemical impedimetric immunosensor[J]. Food Control,2011,22(10):1609−1616. doi: 10.1016/j.foodcont.2011.03.017
    [131]
    JIN W J, YANG G J, SHAO H X, et al. A label-free impedimetric immunosensor for detection of 1-aminohydantoin residue in food samples based on sol-gel embedding antibody[J]. Food Control,2014,39:185−191. doi: 10.1016/j.foodcont.2013.11.001
    [132]
    YU W L, TANG Y W, SANG Y X, et al. Preparation of a carboxylated single-walled carbon-nanotube-chitosan functional layer and its application to a molecularly imprinted electrochemical sensor to quantify semicarbazide[J]. Food Chemistry,2021,333:127524.
    [133]
    AMALRAJ A J J, MURTHY U N, WANG S F. Ultrasensitive electrochemical detection of an antibiotic drug furaltadone in fish tissue with a ZnO-ZnCo2O4 self-assembled nano-heterostructure as an electrode material[J]. Microchemical Journal,2021,169:106566. doi: 10.1016/j.microc.2021.106566
  • Cited by

    Periodical cited type(6)

    1. 顾宇翔,周羽,刘恕. 护肤类化妆品功效评价理化试验方法的现状和分析. 日用化学工业(中英文). 2024(06): 727-732 .
    2. 岳开妍,毛丙永,唐鑫,张秋香,赵建新,崔树茂. 乳酸菌发酵对花生衣抗糖化缓解皮肤衰老功能的影响. 上海理工大学学报. 2024(04): 364-374 .
    3. 王国凯,龚荣英,杨灵丽,刘文龙,晋海军,田维毅. 槐花水提液发酵工艺优化及其抗氧化活性分析. 食品工业科技. 2024(20): 196-204 . 本站查看
    4. 夏俊英,余海霞,戚仕梅,张富娜,邬婧,肖卫华. 长双歧杆菌胞外多糖对非酶糖基化的抑制作用. 生物学杂志. 2024(05): 6-13+47 .
    5. 谢圆芳,袁道欢,张丽山,黄嘉敏,林霁,田佳佳,贺锐,解勇. 黑松露提取物紧致抗皱功效. 香料香精化妆品. 2024(05): 73-77+149 .
    6. 曾贝贝,吕静,鲁杏茹,智文博,李带根. 牡丹花酶解肽的理化性质及促进皮肤健康功效. 食品工业科技. 2024(22): 314-321 . 本站查看

    Other cited types(0)

Catalog

    Article Metrics

    Article views (426) PDF downloads (18) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return