QING Guo, XU Jian, MIAO Yanyan, et al. Study on the Microwave Vacuum Drying Characteristics and Drying Kinetic Model of Lycium barbarum Extract[J]. Science and Technology of Food Industry, 2023, 44(5): 222−229. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022040215.
Citation: QING Guo, XU Jian, MIAO Yanyan, et al. Study on the Microwave Vacuum Drying Characteristics and Drying Kinetic Model of Lycium barbarum Extract[J]. Science and Technology of Food Industry, 2023, 44(5): 222−229. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022040215.

Study on the Microwave Vacuum Drying Characteristics and Drying Kinetic Model of Lycium barbarum Extract

More Information
  • Received Date: April 19, 2022
  • Available Online: December 23, 2022
  • In order to investigate the microwave vacuum drying characteristics of Lycium barbarum extract, the prediction model of drying kinetics of the relationship between its moisture ratio and drying time was established by investigating the influence rule of microwave power density and the initial relative density of the extract on the temperature, dry basis moisture content and water loss rate of the extract, and the model was validated. The experimental results showed that the microwave vacuum drying process of Lycium barbarum extract could be divided into two stages: The extract was transformed from a fluid state to a semi-fluid state (stage I) and from a semi-fluid state to a dry paste state (stage II). The higher the microwave power density and the initial relative density, the rising trend of the temperature of the extract seemed more obvious. The faster the water content of the dry base decreased, the greater the change in the rate of water loss, and the shorter the drying time required. By fitting six commonly used empirical models for thin-layer drying, among which the Wang model R2 was between 0.98878~0.99902, X2 and SSE were less than 0.0017 and 0.00849, which were the smallest values among the six models. And after verification, the predicted values of the model were basically fitted with the experimental values, which could better predict the moisture of Lycium barbarum extract during microwave vacuum drying change rule.
  • [1]
    魏雪松, 王海洋, 孙智轩, 等. 宁夏枸杞化学成分及其药理活性研究进展[J]. 中成药,2018,40(11):2513−2520. [WEI X S, WANG H Y, SUN Z X, et al. Research progress on chemical composition and pharmacological activity of Ningxia goji berry[J]. Chinese Traditional Patene medicine,2018,40(11):2513−2520. doi: 10.3969/j.issn.1001-1528.2018.11.029
    [2]
    汪明金, 龙玲. 枸杞多糖的提取、纯化、结构鉴定及药理作用研究进展[J]. 食品与发酵科技,2022,58(1):131−135. [WANG M J, LONG L. Research progress on extraction, purification, structural identification and pharmacological effects of goji berry polysaccharides[J]. Food and Fermentation Science & Technology,2022,58(1):131−135. doi: 10.3969/j.issn.1674-506X.2022.01-018
    [3]
    詹娟娟, 伍振峰, 尚悦, 等. 中药浸膏干燥工艺现状及存在的问题分析[J]. 中草药,2017,48(12):2365−2370. [ZHAN J J, WU Z F, SHANG Y, et al. Current situation of drying methods for Chinese materia medica extract and analysis on existing problem[J]. Chinese Traditional and Herbal Drugs,2017,48(12):2365−2370.
    [4]
    唐欣, 李远辉, 谢好, 等. 中药浸膏真空干燥过程中表面结壳行为的成因、影响因素与研究策略[J]. 中草药,2022,53(2):619−626. [TANG X, LI Y H, XIE H, et al. Discussion of causes, influencing factors and research strategies of surface crusting behavior of traditional Chinese medicine extracts during vacuum drying[J]. Chinese Traditional and Herbal Drugs,2022,53(2):619−626.
    [5]
    张永萍, 徐剑, 黄燕琼. 微波真空干燥对中药有效成分的影响[J]. 中成药,2007(3):439−440. [ZHANG Y P, XU J, HUANG Y Q. Effect of microwave vacuum drying on active ingredients in traditional Chinese medicine[J]. Chinese Traditional Patene medicine,2007(3):439−440. doi: 10.3969/j.issn.1001-1528.2007.03.038
    [6]
    LI Y H, LI Y N, LI H T, et al. Comparative study of microwave-vacuum and vacuum drying on the physicochemical properties and antioxidant capacity of licorice extract powder[J]. Powder Technology,2017,320:540−545. doi: 10.1016/j.powtec.2017.07.076
    [7]
    何方健, 李静, 刘明宝, 等. 山楂微波干燥特性及含水率预测[J]. 食品工业科技,2021,42(12):32−38. [HE F J, LI J, LIU M B, et al. Prediction of microwave drying characteristics and moisture content of hawthorn[J]. Science and Technology of Food Industry,2021,42(12):32−38.
    [8]
    王定仙, 孙慧英, 杜海燕, 等. 微波干燥马铃薯预处理工艺研究[J]. 农产品加工,2021(22):17−20. [WANG D X, SUN H Y, DU H Y, et al. Study on the pretreatment process of microwave dring potato[J]. Farm Products Processing,2021(22):17−20. doi: 10.16693/j.cnki.1671-9646(X).2021.11.039
    [9]
    余炼, 颜栋美, 侯金东. 牡蛎微波干燥特性及动力学研究[J]. 食品科学,2012,33(11):111−115. [YU L, YAN D M, HOU J D. Characteristics and kinetics of microwave drying for oyster[J]. Food Science,2012,33(11):111−115.
    [10]
    滕凯旋, 傅豪, 王中昌, 等. 基于物理指纹图谱的养胃颗粒浸膏质量一致性评价方法[J]. 中草药,2022,53(3):712−719. [TENG K X, FU H, WANG Z C, et al. Quality consistency evaluation method of Yangwei Granulr extract based on physical fingerprint[J]. Chinese Traditional and Herbal Drugs,2022,53(3):712−719.
    [11]
    马锦, 芈韶雷, 朱德泉, 等. 山核桃微波干燥动力学模型研究[J]. 食品工业科技,2015,36(5):108−112. [MA J, MI S L, ZHU D Q, et al. Study on the kinetic model of microwave drying of pecans[J]. Science and Technology of Food Industry,2015,36(5):108−112.
    [12]
    TARAFDAR A, SHAHI N C, SINGH A. Freeze-drying behaviour prediction of button mushrooms using artificial neural network and comparison with semi-empirical models[J]. Neural Computing and Applications,2019,31(11):7257−7268. doi: 10.1007/s00521-018-3567-1
    [13]
    毕海丹, 崔旭海, 于滨. 预处理方法对生姜热风干燥动力学和品质的影响[J]. 食品与发酵工业,2017,43(1):143−149. [BI H D, CUI X H, YU B. Pretreatment methods on drying kinetics and the quality of ginger[J]. Food and Fermentation Science & Technology,2017,43(1):143−149. doi: 10.13995/j.cnki.11-1802/ts.201701024
    [14]
    MORADI M, NIAKOUSARI M, KHANEGHAH A M. Kinetics and mathematical modeling of thin layer drying of osmo-treated Aloe vera (Aloe barbadensis) gel slices[J]. Journal of Food Process Engineering,2019,42(6):1−13.
    [15]
    DOYMA Z. Effect of pre-treatments using potassium metabisulphide and alkaline ethyl oleate on the drying kinetics of apricots[J]. Biosystems Engineering,2004,89(3):281−287. doi: 10.1016/j.biosystemseng.2004.07.009
    [16]
    和大奎, 朱文学, 于斌, 等. 地黄浸膏超声真空干燥特性和动力学研究[J]. 江苏农业科学,2017,45(13):157−164. [HE D K, ZHU W X, YU B, et al. Study on ultrasonic vacuum drying characteristics and kinetics of rehmannia extract[J]. Jiangsu Agricultural Sciences,2017,45(13):157−164. doi: 10.15889/j.issn.1002-1302.2017.13.045
    [17]
    赵梦月, 段续, 任广跃, 等. 山茱萸微波冷冻干燥动力学及品质变化分析[J]. 食品与机械,2021,37(11):111−117, 129. [ZHAO M Y, DUAN X, REN G Y, et al. Drying kinetics and quality change of cornus officinalis dried by microwave freeze-drying[J]. Food & Machinery,2021,37(11):111−117, 129. doi: 10.13652/j.issn.1003-5788.2021.11.020
    [18]
    LEITE D, QUEIROZ A, RMFD F, et al. Mathematical drying kinetics modeling of jackfruit seeds (Artocarpus heterophyllus Lam.)[J]. Revista Ciencia Agronomica,2019,50:361−369.
    [19]
    HARISH A, RASHMI M, MURTHY T, et al. Mathematical modeling of thin layer microwave drying kinetics of elephant foot yam (Amorphophallus paeoniifolius)[J]. International Food Research Journal,2014,21(3):1045−1051.
    [20]
    DHANISHKODI S, WILSON V H, SUDHAKAR K. Mathematical modeling of drying behavior of cashew in a solar biomass hybrid dryer[J]. Resource Efficient Technologies,2017,3(4):359−364. doi: 10.1016/j.reffit.2016.12.002
    [21]
    孙辉, 毛志幸, 陈宗道. 锥栗脆球微波干燥动力学模型研究[J]. 热带作物学报,2021,42(7):2067−2075. [SUN H, MAO Z X, CHEN Z D. Microwave drying dynamic model of castanea Henryi crisp ball[J]. Chinese Journal of Tropical Crops,2021,42(7):2067−2075. doi: 10.3969/j.issn.1000-2561.2021.07.034
    [22]
    李亚南, 吴建, 陈治华, 等. 云南小粒种咖啡热风干燥特性及其数学模型[J]. 热带作物学报,2022,43(3):622−633. [LI Y N, WU J, CHEN Z H, et al. Hot air drying characteristics of Yunnan small seed coffee and its mathematical model[J]. Chinese Journal of Tropical Crops,2022,43(3):622−633. doi: 10.3969/j.issn.1000-2561.2022.03.022
    [23]
    宋树杰, 王蒙. 熟化紫薯片微波干燥特性及数学模型[J]. 食品与发酵工业,2020,46(2):85−93. [SONG S J, WANG M. Microwave drying characteristics and kinetic model of cooked purple potato slice[J]. Food and Fermentation Science & Technology,2020,46(2):85−93. doi: 10.13995/j.cnki.11-1802/ts.021979
    [24]
    周崇银, 范方宇, 赵国瑜, 等. 无籽刺梨干燥特性及动力学模型[J]. 食品科技,2020,45(6):39−45. [ZHOU C Y, FAN F Y, ZHAO G Y, et al. Drying characteristics and kinetic model of seedless prickly pear[J]. Food Science and Technology,2020,45(6):39−45. doi: 10.13684/j.cnki.spkj.2020.06.007
    [25]
    秦庆雨, 郑先哲, 王磊, 等. 树莓果浆微波泡沫干燥过程能量吸收与利用[J]. 食品科学,2020,41(15):124−133. [QIN Q Y, ZHENG X Z, WANG L, et al. Energy absorption and utilization during microwave foam drying of raspberry pulp[J]. Food Science and Technology,2020,41(15):124−133. doi: 10.7506/spkx1002-6630-20190730-406
    [26]
    许为鲸. 试论微波干燥技术在食品中的应用[J]. 食品安全导刊,2019(6):149. [XU W J. Let's discuss the application of microwave drying technology in food[J]. China Food Safety Magazine,2019(6):149. doi: 10.16043/j.cnki.cfs.2019.06.119
    [27]
    马壮, 邸文静, 王帅, 等. 基于Origin 7.0软件非线性拟合白浆土胡敏酸吸附Zn2+的热力学过程[J]. 中国农学通报,2014,30(32):159−164. [MA Z, DI W J, WANG S, et al. Thermodynamic process of Zn2+ adsorbed on humic acid extracted from albic soil fitted by the Non-linear curve from the Origin 7.0 software[J]. Chinese Agricultural Science Bulletin,2014,30(32):159−164. doi: 10.11924/j.issn.1000-6850.2014-0521
    [28]
    DONG Z, GU F, FEI X, et al. Comparison of four kinds of extraction techniques and kinetics of microwave-assisted extraction of vanillin from Vanilla planifolia andrews[J]. Food Chemistry,2014,149(15):54−61.
    [29]
    田华, 韩艳婷. 苦瓜微波干燥特性及动力学模型[J]. 食品研究与开发,2017,38(23):125−129. [TIAN H, HAN Y T. Microwave drying characteristics and dynamic model of balsam pear[J]. Food Research and Development,2017,38(23):125−129. doi: 10.3969/j.issn.1005-6521.2017.23.023
    [30]
    王仁杰, 王凯玉, 何昕炜, 等. 乌梅浸膏真空带式干燥工艺的优化[J]. 中成药,2021,43(2):468−471. [WANG R J, WANG K Y, HE X W, et al. Optimization of vacuum belt drying process of wumei extract[J]. Proprietary Chinese Medicine,2021,43(2):468−471.
    [31]
    LI Y, QI Y, WU Z, et al. Comparative study of microwave-vacuum and vacuum drying on the drying characteristics, dissolution, physicochemical properties, and antioxidant capacity of Scutellaria extract powder[J]. Powder Technology,2017,317:430−437. doi: 10.1016/j.powtec.2017.05.016
    [32]
    王莹, 李页瑞, 刘雪松, 等. 赤芍浸膏微波真空低温干燥特性及动力学模型研究[J]. 中国药学杂志,2011,46(12):921−925. [WANG Y, LI Y R, LIU X S, et. al. Microwave vacuum drying properities and kinetics model of radix paeoniae rubra extract[J]. Chinese Pharmaceutical Journal,2011,46(12):921−925.

Catalog

    Article Metrics

    Article views (179) PDF downloads (13) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return