CHEN Nan, GAO Haoxiang, HE Qiang, et al. A Review of the Molecular Interaction between Plant Polyphenols and Starch[J]. Science and Technology of Food Industry, 2023, 44(2): 497−505. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022040140.
Citation: CHEN Nan, GAO Haoxiang, HE Qiang, et al. A Review of the Molecular Interaction between Plant Polyphenols and Starch[J]. Science and Technology of Food Industry, 2023, 44(2): 497−505. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022040140.

A Review of the Molecular Interaction between Plant Polyphenols and Starch

More Information
  • Received Date: April 13, 2022
  • Available Online: November 08, 2022
  • Starch is the important raw material for food industry, and it is also the main bioenergy source for human body. Plant polyphenols are a kind of active substances that widely exist in plants, and they are beneficial to human health. And the molecular interaction between plant polyphenols and starch can affect the quality (such as texture, flavor, color and so on) and nutrition of starch food during processing and storage. On the basis of consulting a lot of literature and studies, this paper reviews the molecular interaction between plant polyphenols and starch and its influence on the related properties of starch and plant polyphenols, these include the formation of complexes between plant polyphenols and starch (including V-type inclusion facilitated by hydrophobic effect and complex most through hydrogen bonds), the change of their interaction on the physicochemical properties (such as pasting, retrogradation, rheological properties, etc.), microstructure and digestive properties of starch, as well as the effect of protection and slow release on plant polyphenols, which would provide useful guidance for the resource utilization of plant polyphenols in starch processing and storage and other related fields.
  • [1]
    杨景峰, 罗志刚, 罗发兴. 淀粉晶体结构研究进展[J]. 食品工业科技,2007,28(7):240−243. [YANG J F, LUO Z G, LUO F X. The review: starch crystal structure[J]. Science and Technology of Food Industry,2007,28(7):240−243.
    [2]
    TESTER R F, KARKALAS J, QI X. Starch composition, fine structure and architecture[J]. Journal of Cereal Science,2004,39(2):151−165. doi: 10.1016/j.jcs.2003.12.001
    [3]
    FU Z, CHEN J, LUO S J, et al. Effect of food additives on starch retrogradation: A review[J]. Starch-Starke,2015,67(1):69−78.
    [4]
    KHLESTKIN V K, PELTEK S E, KOLCHANOV N A. Review of direct chemical and biochemical transformations of starch[J]. Carbohydrate Polymers,2018,181(1):460−476.
    [5]
    ZHU F. Interactions between starch and phenolic compound[J]. Trends in Food Science and Technology,2015,43(2):129−143. doi: 10.1016/j.jpgs.2015.02.003
    [6]
    CROZIER A, JAGANATH I B, CLIFFORD M N. Dietary phenolics: chemistry, bioavailability and effects on health[J]. Natural Product Reports,2009,26(8):1001−1043. doi: 10.1039/b802662a
    [7]
    石碧, 曾维才, 狄莹. 植物单宁化学及应用[M]. 北京: 科学出版社, 2020

    SHI B, ZENG W C, DI Y. Plant tannin chemistry and applications[M]. Beijing: Science Press, 2020.
    [8]
    DEL R D, RODRIGUEZ M A, SPENCER J P E, et al. Dietary (poly) phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases[J]. Antioxidants and Redox Signaling,2013,18(14):1818−1892. doi: 10.1089/ars.2012.4581
    [9]
    DENG N, DENG Z, TANG C, et al. Formation, structure and properties of the starch-polyphenol inclusion complex: A review[J]. Trends in Food Science and Technology,2021,112:667−675. doi: 10.1016/j.jpgs.2021.04.032
    [10]
    ARAÚJO F F, FARIAS D P, NERI-NUMA I A, et al. Polyphenols and their applications: An approach in food chemistry and innovation potential[J]. Food Chemistry,2021,338(15):127535.
    [11]
    AMOAKO D B, AWIKA J M. Polyphenol interaction with food carbohydrates and consequences on availability of dietary glucose[J]. Current Opinion in Food Science,2016,8:14−18.
    [12]
    AMOAKO D B, AWIKA J M. Resistant starch formation through intrahelical V-complexes between polymeric proanthocyanidins and amylose[J]. Food Chemistry,2019,285:326−333. doi: 10.1016/j.foodchem.2019.01.173
    [13]
    WANG S, KONG L, ZHAO Y, et al. Lipophilization and molecular encapsulation of p-coumaric acid by amylose inclusion complex[J]. Food Hydrocolloids,2019,93:270−275. doi: 10.1016/j.foodhyd.2019.02.044
    [14]
    LORENTZ C, PENCREAC'H G, SOULTANI-VIGNERON S, et al. Coupling lipophilization and amylose complexation to encapsulate chlorogenic acid[J]. Carbohydrate Polymers,2012,90(1):152−158. doi: 10.1016/j.carbpol.2012.05.008
    [15]
    SUN B, TIAN Y, CHEN L, et al. Linear dextrin as curcumin delivery system: Effect of degree of polymerization on the functional stability of curcumin[J]. Food Hydrocolloids,2018,77:911−920. doi: 10.1016/j.foodhyd.2017.11.038
    [16]
    LIU Y, CHEN L, XU H, et al. Understanding the digestibility of rice starch-gallic acid complexes formed by high pressure homogenization[J]. International Journal of Biological Macromolecules,2019,134:856−863. doi: 10.1016/j.ijbiomac.2019.05.083
    [17]
    ZHAO B, SUN S, LIN H, et al. Physicochemical properties and digestion of the lotus seed starch-green tea polyphenol complex under ultrasound-microwave synergistic interaction[J]. Ultrasonics Sonochemistry,2019,52:50−61. doi: 10.1016/j.ultsonch.2018.11.001
    [18]
    WANG C, CHEN X, LIU S. Encapsulation of tangeretin into debranched-starch inclusion complexes: Structure, properties and stability[J]. Food Hydrocolloids,2020,100:105409. doi: 10.1016/j.foodhyd.2019.105409
    [19]
    DONMEZ D, PINHO L, PATEL B, et al. Characterization of starch-water interactions and their effects on two key functional properties: Starch gelatinization and retrogradation[J]. Current Opinion in Food Science,2021,39:103−109. doi: 10.1016/j.cofs.2020.12.018
    [20]
    LIU B, ZHONG F, YOKOYAMA W, et al. Interactions in starch co-gelatinized with phenolic compound systems: Effect of complexity of phenolic compounds and amylose content of starch[J]. Carbohydrate Polymers,2020,247:116667. doi: 10.1016/j.carbpol.2020.116667
    [21]
    ZHU F, CAI Y Z, SUN M, et al. Effect of phytochemical extracts on the pasting, thermal, and gelling properties of wheat starch[J]. Food Chemistry,2009,112(4):919−923. doi: 10.1016/j.foodchem.2008.06.079
    [22]
    GUZAR I, RAGAEE S, SEETHARAMAN K. Mechanism of hydrolysis of native and cooked starches from different botanical sources in the presence of tea extracts[J]. Journal of Food Science,2012,77(11):1192−1196. doi: 10.1111/j.1750-3841.2012.02929.x
    [23]
    ALEIXANDRE A, ROSELL C M, et al. Starch gels enriched with phenolics: Effects on paste properties, structure and digestibility[J]. LWT-Food Science and Technology,2022,161:113350. doi: 10.1016/j.lwt.2022.113350
    [24]
    WU Y, CHEN Z, LI X, et al. Effect of tea polyphenols on the retrogradation of rice starch[J]. Food Research International,2009,42(2):221−225. doi: 10.1016/j.foodres.2008.11.001
    [25]
    ZHU F, WANG Y J. Rheological and thermal properties of rice starch and rutin mixtures[J]. Food Research International,2012,49(2):757−762. doi: 10.1016/j.foodres.2012.09.031
    [26]
    KARUNARATNE R, ZHU F. Physicochemical interactions of maize starch with ferulic acid[J]. Food Chemistry,2016,199:372−379. doi: 10.1016/j.foodchem.2015.12.033
    [27]
    XIAO H X, LIN Q L, LIU G Q, et al. Evaluation of black tea polyphenol extract against the retrogradation of starches from various plant sources[J]. Molecules,2012,17(7):8147−8158. doi: 10.3390/molecules17078147
    [28]
    WU X J, FU G M, LI R Y, et al. Effect of thermal processing for rutin preservation on the properties of phenolics & starch in Tartary buckwheat achenes[J]. International Journal of Biological Macromolecules,2020,164:1275−1283. doi: 10.1016/j.ijbiomac.2020.07.135
    [29]
    XIAO H, LIN Q, LIU G, et al. Inhibitory effects of green tea polyphenols on the retrogradation of starches from different botanical sources[J]. Food and Bioprocess Technology,2013,6(8):2177−2181. doi: 10.1007/s11947-011-0739-8
    [30]
    WANG S, LI C, COPELAND L, et al. Starch retrogradation: A comprehensive review[J]. Comprehensive Reviews in Food Science and Food Safety,2015,14(5):568−585. doi: 10.1111/1541-4337.12143
    [31]
    CHEN N, CHEN L, GAO H X, et al. Mechanism of bridging and interfering effects of tea polyphenols on starch molecules[J]. Journal of Food Processing and Preservation,2020,44:e14576.
    [32]
    WANG L B, WANG L J, LI Z G, et al. Diverse effects of rutin and quercetin on the pasting, rheological and structural properties of tartary buckwheat starch[J]. Food Chemistry,2021,335:127556. doi: 10.1016/j.foodchem.2020.127556
    [33]
    LI H, ZHAI F Y, LI J F, et al. Physicochemical properties and structure of modified potato starch granules and their complex with tea polyphenols[J]. International Journal of Biological Macromolecules,2021,166:521−528. doi: 10.1016/j.ijbiomac.2020.10.209
    [34]
    HE W, WEI C X. Progress in C-type starches from different plant sources[J]. Food Hydrocolloids,2017,73:162−175. doi: 10.1016/j.foodhyd.2017.07.003
    [35]
    WU Y, LIN Q L, CHEN Z X, et al. The interaction between tea polyphenols and rice starch during gelatinization[J]. Food Science and Technology International,2011,17(6):569−577. doi: 10.1177/1082013211430294
    [36]
    CHAI Y W, WANG M Z, ZHANG G Y. Interaction between amylose and tea polyphenols modulates the postprandial glycemic response to high-amylose maize starch[J]. Journal of Agricultural and Food Chemistry,2013,61(36):8608−8615. doi: 10.1021/jf402821r
    [37]
    BARROS F, AWIKA J M, ROONEY L W. Interaction of tannins and other sorghum phenolic compounds with starch and effects on in vitro starch digestibility[J]. Journal of Agricultural and Food Chemistry,2012,60(46):11609−11617. doi: 10.1021/jf3034539
    [38]
    DU J J, YANG Z K, XU X N, et al. Effects of tea polyphenols on the structural and physicochemical properties of high-hydrostatic-pressure-gelatinized rice starch[J]. Food Hydrocolloids,2019,91:256−262. doi: 10.1016/j.foodhyd.2019.01.035
    [39]
    LV Y Z, ZHANG L M, LI M N, et al. Physicochemical properties and digestibility of potato starch treated by ball milling with tea polyphenols[J]. International Journal of Biological Macromolecules,2019,129:207−213. doi: 10.1016/j.ijbiomac.2019.02.028
    [40]
    HUANG J H, WANG Z, FAN L, et al. A review of wheat starch analyses: Methods, techniques, structure and function[J]. International Journal of Biological Macromolecules,2022,203:130−142. doi: 10.1016/j.ijbiomac.2022.01.149
    [41]
    MA Y S, ZHANG H, JIN Y M, et al. Impact of superheated steam on the moisture transfer, structural characteristics and rheological properties of wheat starch[J]. Food Hydrocolloids,2022,122:107089. doi: 10.1016/j.foodhyd.2021.107089
    [42]
    RONG L Y, SHEN M Y, WEN H L, et al. Effects of xanthan, guar and Mesona chinensis Benth gums on the pasting, rheological, texture properties and microstructure of pea starch gels[J]. Food Hydrocolloids,2022,125:107391. doi: 10.1016/j.foodhyd.2021.107391
    [43]
    CHI C D, LI X X, ZHANG Y P, et al. Modulating the in vitro digestibility and predicted glycemic index of rice starch gels by complexation with gallic acid[J]. Food Hydrocolloids,2019,89:821−828. doi: 10.1016/j.foodhyd.2018.11.016
    [44]
    HAN X, ZHANG M, ZHANG R, et al. Physicochemical interactions between rice starch and different polyphenols and structural characterization of their complexes[J]. LWT-Food Science and Technology,2020,125:109227. doi: 10.1016/j.lwt.2020.109227
    [45]
    CHEN N, GAO H X, HE Q, et al. Interaction and action mechanism of starch with different phenolic compounds[J]. International Journal of Food Sciences and Nutrition,2020,71(6):726−737. doi: 10.1080/09637486.2020.1722074
    [46]
    OBIRO W C, RAY S S, EMMAMBUX M N. V-amylose structural characteristics, methods of preparation, significance, and potential applications[J]. Food Reviews International,2012,28(4):412−438. doi: 10.1080/87559129.2012.660718
    [47]
    WEI X, LI J, LI B. Multiple steps and critical behaviors of the binding of tannic acid to wheat starch: Effect of the concentration of wheat starch and the mass ratio of tannic acid to wheat starch[J]. Food Hydrocolloids,2019,94:174−182. doi: 10.1016/j.foodhyd.2019.03.019
    [48]
    WU Y, NIU M, XU H L, et al. Pasting behaviors, gel rheological properties, and freeze-thaw stability of rice flour and starch modified by green tea polyphenols[J]. LWT-Food Science and Technology,2020,118:108796. doi: 10.1016/j.lwt.2019.108796
    [49]
    LV Y J, LI M, PAN J X, et al. Interactions between tea products and wheat starch during retrogradation[J]. Food Bioscience,2020,34:100523. doi: 10.1016/j.fbio.2019.100523
    [50]
    VELDERRAIN R G R, PALAFOX C H, WALL-MEDRANO A, et al. Phenolic compounds: Their journey after intake[J]. Food and Function,2013,5(2):189−197.
    [51]
    GUO Z B, ZHAO B B, CHEN J, et al. Insight into the characterization and digestion of lotus seed starch-tea polyphenol complexes prepared under high hydrostatic pressure[J]. Food Chemistry,2019,297:124992. doi: 10.1016/j.foodchem.2019.124992
    [52]
    COHEN R, SCHWARTZ B, PERI I, et al. Improving bioavailability and stability of genistein by complexation with high-amylose corn starch[J]. Journal of Agricultural and Food Chemistry,2011,59(14):7932−7938. doi: 10.1021/jf2013277
    [53]
    COHEN R, ORLOVA Y, KOVALEV M, et al. Structural and functional properties of amylose complexes with genistein[J]. Journal of Agricultural and Food Chemistry,2008,56(11):4212−4218. doi: 10.1021/jf800255c
    [54]
    WEI G, JIE Z A, PLA B, et al. Preparation and characterization of octenyl succinylated starch microgels via a water-in-oil (W/O) inverse microemulsion process for loading and releasing epigallocatechin gallate[J]. Food Chemistry,2021,355:129661. doi: 10.1016/j.foodchem.2021.129661
    [55]
    ACEVEDO-GUEVARA L, NIETO-SUAZA L, SANCHEZ L T, et al. Development of native and modified banana starch nanoparticles as vehicles for curcumin[J]. International Journal of Biological Macromolecules,2018,111:498−504. doi: 10.1016/j.ijbiomac.2018.01.063
    [56]
    KANG J, KIM Y H, CHOI S J, et al. Improving the stability and curcumin retention rate of curcumin-loaded filled hydrogel prepared using 4αGTase-treated rice starch[J]. Foods,2021,10(1):150. doi: 10.3390/foods10010150
    [57]
    CHI C, LI X, ZHANG Y, et al. Digestibility and supramolecular structural changes of maize starch by non-covalent interactions with gallic acid[J]. Food & Function,2017,8(2):720−730.
    [58]
    LI M, PERNELL C, FERRUZZI M G. Complexation with phenolic acids affect rheological properties and digestibility of potato starch and maize amylopectin[J]. Food Hydrocolloids,2018,77:843−852. doi: 10.1016/j.foodhyd.2017.11.028
    [59]
    LS A, YW A, MING M B. Inhibition of α-amylase by polyphenolic compounds: Substrate digestion, binding interactions and nutritional intervention[J]. Trends in Food Science & Technology,2020,104:190−207.
    [60]
    LIU J, WANG M, PENG S, et al. Effect of green tea catechins on the postprandial glycemic response to starches differing in amylose content[J]. Journal of Agricultural and Food Chemistry,2011,59:4582−4588. doi: 10.1021/jf200355q
  • Cited by

    Periodical cited type(18)

    1. 赖海彬,高静. 淀粉-大分子复合物的制备方法、相互作用和功能特性. 食品科学. 2025(06): 285-294 .
    2. 石长波,徐朔,凌衍东,杨江江,金美琳,赵钜阳. 基于小角X射线散射技术测定淀粉结构研究进展. 中国调味品. 2025(03): 223-226+240 .
    3. 朱泳光,孟陆丽,陈鹏,陈婕,陈通,程缘,程谦伟. 葛根粉对鲜湿米粉品质的影响. 食品工业科技. 2025(10): 102-111 . 本站查看
    4. 史苗苗,张振,董雪娜,刘子阳,闫溢哲. 挤压山药淀粉-没食子酸复合物制备条件优化及其添加量对蛋糕品质的影响. 食品工业科技. 2025(11): 205-212 . 本站查看
    5. 张璇,赵文,高哲,李美娇,吴梦颖,周茜. 果胶与多酚相互作用机制及其对食品加工特性影响的研究进展. 食品工业科技. 2024(01): 378-386 . 本站查看
    6. 朱秀灵,戴清源,郭玉宝,李玉锋,周仁杰,朱森,林安琪. 基于Web of Science数据库的淀粉多酚相互作用研究的可视化分析. 西华大学学报(自然科学版). 2024(04): 137-148 .
    7. 宋靖郑,韩四海,刘建学,李佩艳,岳崇慧,罗登林. 阿魏酸协同韧化处理对马铃薯淀粉的改性作用. 中国食品学报. 2024(09): 51-59 .
    8. 高琦,周蕊杰,彭雪,王宁,薛友林. 果胶对淀粉理化性质和消化性的影响及其在食品中的应用研究进展. 中国粮油学报. 2024(12): 227-234 .
    9. 靳凤芳,牛丽亚,曾子聪,涂瑾,余莉莉,肖建辉. 不同种类淀粉与黑米粉复配体系的理化性质和分子结构特性研究. 粮油食品科技. 2023(02): 106-115 .
    10. 张丽蓉,王文苹,杨月蕊,许家喜,彭苑哲,王皎,闫鸿丽. 葛根芩连汤制法对相态基本特征的影响研究. 时珍国医国药. 2023(05): 1117-1121 .
    11. 范利君,王志鹏,宋安康,赵宇,郑月,阿尔新古丽·活生,王伟. 赤霞珠葡萄籽多酚稳定性和体外生物活性研究. 食品工业科技. 2023(16): 107-115 . 本站查看
    12. 赵盈,於天,郑志刚,陈位三,弓思涵,宋天宝,李先宽,於洪建. 多酚在植物中的分布及其生物活性研究进展. 中草药. 2023(17): 5825-5832 .
    13. 潘俊娴,吕杨俊,蒋玉兰,叶丽伟,王霈菲,张士康,朱跃进. 龙游黄茶茶粉对大米淀粉理化特性的影响. 中国茶叶加工. 2023(03): 52-56 .
    14. 潘俊娴,吕杨俊,蒋玉兰,叶丽伟,王霈菲,朱跃进,张士康. 茶多酚对大米淀粉理化特性的影响. 中国茶叶加工. 2023(03): 45-51 .
    15. 杨春华,齐文,贺殷媛,张娜. 淀粉老化检测技术研究进展. 食品安全质量检测学报. 2023(19): 155-162 .
    16. 余科,孔令辉,张瑞,吴慕慈,胡依黎,何静仁. 不同分子量茶渣提取物对马铃薯淀粉糊化特性的影响. 食品工业科技. 2023(22): 76-83 . 本站查看
    17. 李舒玥,吴昊怡,易阳,孙莹,彭凯迪,江雪玉. 多酚强化莲藕营养粉的制备与食用品质. 武汉轻工大学学报. 2023(05): 1-10 .
    18. 陈丽芬,杨发福. 融合民间小吃的化学教学案例开发——以“探秘绿豆凉粉中的氢键”为例. 化学教与学. 2023(16): 38-42+66 .

    Other cited types(14)

Catalog

    Article Metrics

    Article views (365) PDF downloads (65) Cited by(32)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return