SU Lina, CHEN Lan, YUE Chengcheng, et al. Effects of Compound Ratio of Carnauba Wax and Monoglyceride on the Structure and Properties of High-oleic Sunflower Oil Oleogels[J]. Science and Technology of Food Industry, 2023, 44(1): 128−135. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022040131.
Citation: SU Lina, CHEN Lan, YUE Chengcheng, et al. Effects of Compound Ratio of Carnauba Wax and Monoglyceride on the Structure and Properties of High-oleic Sunflower Oil Oleogels[J]. Science and Technology of Food Industry, 2023, 44(1): 128−135. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022040131.

Effects of Compound Ratio of Carnauba Wax and Monoglyceride on the Structure and Properties of High-oleic Sunflower Oil Oleogels

More Information
  • Received Date: April 12, 2022
  • Available Online: November 05, 2022
  • Oleogels were prepared by adding different mass ratios of carnauba wax (CW) and monoglyceride (MG) to high-oleic sunflower oil as oil phase. The oleogelator concentration was fixed at 5%, and the effects of different CW and MG mass ratios on the microstructure, X-ray diffraction (XRD) pattern, thermodynamic properties, hardness, oil binding capacity and solid fat content (SFC) of high-oleic sunflower oil oleogels were investigated. The results showed that MG had no effect on the melting behavior of CW, they did not form co-crystallization and appear monotectic behavior. When the mass ratio was 9:1, the presence of MG crystal promoted the crystallization of CW, and the presence of CW inhibited the polycrystalline transition of MG crystal and improved the storage stability of the system. The hardness of CW oleogels was significantly decreased by the addition of a small amount of MG (P<0.05). When the mass ratio was 5:5, the hardness of the system increased significantly with the MG content increasing and the CW content decreasing (P<0.05), reaching the maximum hardness of 137.33 g at 1:9. The addition of MG could significantly improve the oil binding capacity of CW oleogels (P<0.05), and the oil binding capacity of the system reached 100% when the mass ratio of CW to MG was 5:5. When the ratio of CW to MG was 3:7, the SFC of oleogels at 30~37.5 ℃ was significantly lower than that of CW and MG oleogels. At this time, the addition of MG had a positive effect on the improvement of the system taste.
  • [1]
    PEHLIVANOGLU H, DEMIRCI M, TOKER O S, et al. Oleogels, a promising structured oil for decreasing saturated fatty acid concentrations: Production and food-based applications[J]. Critical Reviews in Food Science and Nutrition,2018,58(8):1330−1341. doi: 10.1080/10408398.2016.1256866
    [2]
    钟金锋, 覃小丽, 刘雄. 凝胶油及其在食品工业中的应用研究进展[J]. 食品科学,2015,36(3):272−279. [ZHONG J F, QIN X L, LIU X. Advances in oleogels and their applications in food industry[J]. Food Science,2015,36(3):272−279. doi: 10.7506/spkx1002-6630-201503051
    [3]
    OSUNA M B, ROMERO A M, AVALLONE C M, et al. Animal fat replacement by vegetable oils in formulations of breads with flour mixes[J]. Journal of Food Science and Technology,2018,55(3):858−867. doi: 10.1007/s13197-017-2888-x
    [4]
    CUI X T, SALEH A S M, YANG S, et al. Oleogels as animal fat and shortening replacers: Research advances and application challenges[J]. Food Reviews International,2022:1−22.
    [5]
    HUGHES N E, MARANGONI A G, WRIGHT A J, et al. Potential food applications of edible oil organogels[J]. Trends in Food Science & Technology,2009,20(10):470−480.
    [6]
    SHAKEEL A, FAROOQ U, GABRIELE D, et al. Bigels and multi-component organogels: An overview from rheological perspective[J]. Food Hydrocolloids,2021,111:106190. doi: 10.1016/j.foodhyd.2020.106190
    [7]
    YILMAZ E, USLU E K, TOKSOZ B. Structure, rheological and sensory properties of some animal wax based oleogels[J]. Journal of Oleo Science,2020,69(10):1317−1329. doi: 10.5650/jos.ess20081
    [8]
    LI J X, GUO R H, BI Y L, et al. Comprehensive evaluation of saturated monoglycerides for the forming of oleogels[J]. LWT,2021,151:112061. doi: 10.1016/j.lwt.2021.112061
    [9]
    SUN P, XIA B, NI Z J, et al. Characterization of functional chocolate formulated using oleogels derived from β-sitosterol with γ-oryzanol/lecithin/stearic acid[J]. Food Chemistry,2021,360:130017. doi: 10.1016/j.foodchem.2021.130017
    [10]
    SHENGLAN G, MINGYUE S, XIANGYANG G, et al. Assembly pattern of multicomponent supramolecular oleogel composed of ceramide and lecithin in sunflower oil: Self-assembly or self-sorting?[J]. Food & Function,2020,11(9):7651−7660.
    [11]
    ASHKAR A, LAUFER S, ROSEN-KLIGVASSER J, et al. Impact of different oil gelators and oleogelation mechanisms on digestive lipolysis of canola oil oleogels[J]. Food Hydrocolloids,2019,97:105218. doi: 10.1016/j.foodhyd.2019.105218
    [12]
    李英豪, 耿延训, 徐化能. 乙酰化纳米纤维素纤维的制备及其凝胶机制研究[J]. 高校化学工程学报,2018,32(1):208−214. [LI Y H, GENG Y X, XU H N. Preparation of acetylated cellulose nanofibrils and its gelation behavior[J]. Journal of Chemical Engineering of Chinese Universities,2018,32(1):208−214. doi: 10.3969/j.issn.1003-9015.2018.01.028
    [13]
    姜宗伯, 徐军, 石芬, 等. 羟丙基甲基纤维素和黄原胶浓度对初榨椰子油乳液及其模板油凝胶构建的影响[J]. 食品工业科技,2022,43(7):102−109. [JIANG Z B, XU J, SHI F, et al. Effect of different polysaccharide concentration on the construction of virgin coconut oilgel[J]. Science and Technology of Food Industry,2022,43(7):102−109.
    [14]
    SHI Y F, LIU C H, ZHENG Z J, et al. Gelation behavior and crystal network of natural waxes and corresponding binary blends in high-oleic sunflower oil[J]. Journal of Food Science,2021,86(9):3987−4000. doi: 10.1111/1750-3841.15840
    [15]
    司昀灵, 胡招龙, 邹立强, 等. 单甘酯与蜂蜡复配制备五步蛇蛇油基凝胶油的研究[J]. 中国油脂,2019,44(7):147−152. [SI Y L, HU Z L, ZOU L Q, et al. Preparation of snake (Deinagkistrodon acutus) oil organogel with beeswax and monoglyceride[J]. China Oils and Fats,2019,44(7):147−152.
    [16]
    GRAVELLE A J, BLACH C, WEISS J, et al. Structure and properties of an ethylcellulose and stearyl alcohol/stearic acid (EC/SO: SA) hybrid oleogelator system[J]. European Journal of Lipid Science and Technology,2017,119(11):1700069. doi: 10.1002/ejlt.201700069
    [17]
    DE FREITAS C A S, DE SOUSA P H M, SOARES D J, et al. Carnauba wax uses in food: A review[J]. Food Chemistry,2019,291:38−48. doi: 10.1016/j.foodchem.2019.03.133
    [18]
    DOAN C D, TO C M, DE VRIEZE M, et al. Chemical profiling of the major components in natural waxes to elucidate their role in liquid oil structuring[J]. Food Chemistry,2017,214:717−725. doi: 10.1016/j.foodchem.2016.07.123
    [19]
    DOAN C D, TAVERNIER I, OKURO P K, et al. Internal and external factors affecting the crystallization, gelation and applicability of wax-based oleogels in food industry[J]. Innovative Food Science & Emerging Technologies,2018,45:42−52.
    [20]
    刘国琴, 南阳, 刘新旗. 单甘酯添加量对油脂凝胶物理性质与晶体结构的影响[J]. 华南理工大学学报(自然科学版),2016,44(11):1−6. [LIU G Q, NAN Y, LIU X Q. Effects of monoglyceride addition on physical properties and crystal structure of oleogels[J]. Journal of South China University of Technology (Natural Science Edition),2016,44(11):1−6.
    [21]
    UTCU M, YLMAZ E. Oleogels of virgin olive oil with carnauba wax and monoglyceride as spreadable products[J]. Grasas y Aceites,2014,65(3):40. doi: 10.3989/gya.0349141
    [22]
    杨帅帅, 杨国龙, 刘伟, 等. 棕榈酸单甘酯-巴西棕榈蜡大豆油凝胶热性质及结晶动力学研究[J]. 河南工业大学学报(自然科学版),2020,41(5):9−15, 30. [YANG S S, YANG G L, LIU W, et al. Study on the thermal properties and crystallization behaviors of soybean oleogel formed with monopalmitate and carnauba wax[J]. Journal of Henan University of Technology (Natural Science Edition),2020,41(5):9−15, 30.
    [23]
    LI J, GUO R, WANG M, et al. Development and characterization of compound oleogels based on monoglycerides and edible waxes[J]. ACS Food Science & Technology,2022,2(2):302−314.
    [24]
    史逸飞, 刘春环, 郑召君, 等. 小烛树蜡和日本木蜡对高油酸葵花籽油凝胶油结晶行为的差异比较[J]. 中国油脂,2022,47(2):51−57. [SHI Y F, LIU C H, ZHENG Z J, et al. Comparison of candelilla wax and Japan lacquer wax on crystalline behavior of high-oleic sunflower seed oil oleogels[J]. China Oils and Fats,2022,47(2):51−57.
    [25]
    KANAGARATNAM S, ENAMUL HOQUE M, MAT SAHRI M, et al. Investigating the effect of deforming temperature on the oil-binding capacity of palm oil based shortening[J]. Journal of Food Engineering,2013,118(1):90−99. doi: 10.1016/j.jfoodeng.2013.03.021
    [26]
    DASSANAYAKE L S K, KODALI D R, UENO S, et al. 7-Physical properties of organogels made of rice bran wax and vegetable oils[M]//MARANGONI A G, GARTI N. Edible oleogels. AOCS Press. 2011: 149-172.
    [27]
    FAYAZ G, GOLI S A H, KADIVAR M, et al. Potential application of pomegranate seed oil oleogels based on monoglycerides, beeswax and propolis wax as partial substitutes of palm oil in functional chocolate spread[J]. LWT,2017,86:523−529. doi: 10.1016/j.lwt.2017.08.036
    [28]
    汪鸿, 孙立斌, 张亮, 等. 小烛树蜡油脂凝胶的性质及作用机理研究[J]. 中国粮油学报,2021,36(6):91−95. [WANG H, SUN L B, ZHANG L, et al. Study on the properties and mechanism of oil gel of candelaria wax[J]. Journal of the Chinese Cereals and Oils Association,2021,36(6):91−95. doi: 10.3969/j.issn.1003-0174.2021.06.015
    [29]
    朱小勇, 孟宗, 李进伟, 等. 凝胶剂种类对凝胶油物性及结晶形态的影响[J]. 中国粮油学报,2013,28(10):37−43. [ZHU X Y, MENG Z, LI J W, et al. Effect of different kinds of gelators on physical properties and crystal morphology of oleogels[J]. Joumal of the Chinese Cereals and Oils Association,2013,28(10):37−43.
    [30]
    CHOPIN-DOROTEO M, MORALES-RUEDA J A, DIBILDOX-ALVARADO E, et al. The effect of shearing in the thermo-mechanical properties of candelilla wax and candelilla wax-tripalmitin organogels[J]. Food Biophysics,2011,6(3):359−376. doi: 10.1007/s11483-011-9212-5
    [31]
    JANA S, MARTINI S. Phase behavior of binary blends of four different waxes[J]. Journal of the American Oil Chemists Society,2016,93(4):543−554. doi: 10.1007/s11746-016-2789-6
    [32]
    张华丹, 张玲云, 周静, 等. 基于三种植物蜡构建大黄鱼鱼油凝胶体系及其微观结构的研究[J]. 食品与发酵工业,2022,48(1):153−160. [ZHANG H D, ZHANG L Y, ZHOU J, et al. Study on the gel system and microstructure of large yellow croaker fish oil based on three kinds of plant wax[J]. Food and Fermentation Industries,2022,48(1):153−160.
    [33]
    LUTTON E S. The phases of saturated 1-monoglycerides C14-C22[J]. Journal of the American Oil Chemists' Society,1971,48(12):778−781. doi: 10.1007/BF02609279
    [34]
    CHEN C-H, TERENTJEV E M. Chapter 5-monoglycerides in oils[M]//MARANGONI A G, GARTI N. Edible oleogels (Second Edition). AOCS Press. 2018: 103-131.
    [35]
    BLAKE A I, TORO-VAZQUEZ J F, HWANG H-S. Chapter 6-wax oleogels[M]//MARANGONI A G, GARTI N. Edible oleogels (Second Edition). AOCS Press. 2018: 133-171.
    [36]
    BIN SINTANG M D, DANTHINE S, BROWN A, et al. Phytosterols-induced viscoelasticity of oleogels prepared by using monoglycerides[J]. Food Research International,2017,100:832−840. doi: 10.1016/j.foodres.2017.07.079
    [37]
    OGUTCU M, ARIFOGLU N, YILMAZ E. Storage stability of cod liver oil organogels formed with beeswax and carnauba wax[J]. International Journal of Food Science and Technology,2015,50(2):404−412. doi: 10.1111/ijfs.12612
    [38]
    YILMAZ E, ÖĞÜTCÜ M. Properties and stability of hazelnut oil organogels with beeswax and monoglyceride[J]. Journal of the American Oil Chemists' Society,2014,91(6):1007−1017. doi: 10.1007/s11746-014-2434-1
    [39]
    JANA S, MARTINI S. Physical characterization of crystalline networks formed by binary blends of waxes in soybean oil[J]. Food Research International,2016,89:245−253. doi: 10.1016/j.foodres.2016.08.003
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article Metrics

    Article views (225) PDF downloads (19) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return