PENG Hui, JIANG Peng, LI Ren, et al. Optimization of Fermentation Condition on Furanone Production by Zygsoaccharomyces rouxii QOR6 and Its Metabolic Characteristics[J]. Science and Technology of Food Industry, 2023, 44(2): 178−184. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022040099.
Citation: PENG Hui, JIANG Peng, LI Ren, et al. Optimization of Fermentation Condition on Furanone Production by Zygsoaccharomyces rouxii QOR6 and Its Metabolic Characteristics[J]. Science and Technology of Food Industry, 2023, 44(2): 178−184. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022040099.

Optimization of Fermentation Condition on Furanone Production by Zygsoaccharomyces rouxii QOR6 and Its Metabolic Characteristics

More Information
  • Received Date: April 11, 2022
  • Available Online: November 17, 2022
  • To clarify the conditions and furanone production by Zygsoaccharomyces rouxii, the fermentation conditions by Z. rouxii QOR6 were optimized through single factor and orthogonal experiments. Then the types and relative contents of volatile aroma substances were determined by gas chromatography-mass spectrometry (GC-MS). The results showed that the fermentation temperature of 28 ℃, the initial pH of 4.2, the incubation speed of 180 r/min and the inoculation amount of 20×107 CFU/mL were the optimal conditions, in which the yield of HDMF reached 2.90 mg/L, 1.09 times higher than that of before optimization. There were 41 volatiles components in the fermentation broth, mainly including alcohols, aldehydes, esters, aromatics and hydrocarbons. Among them, alcohols indicated the highest content, accounting for 81.13% of the total volatiles. Other metabolites with higher relative contents were phenethylacetate (3.48%), formaldehyde (0.34%), 2,6-di-tert-butylphenol (8.77%), chloromethoxymethane (0.20%) and 3-ethyl-2,5-methylpyrazine (0.70%). This study might provide technical support for the application of the Z. rouxii in food.
  • [1]
    SINGRACGA P, NIAMSIRI N, VISESSANGUAN W, et al. Application of lactic acid bacteria and yeasts as starter cultures for reduced-salt soy sauce (moromi) fermentation[J]. LWT-Food Science and Technology,2016,78:181−188.
    [2]
    DAKAL T C, SOLIERI L, GIUDICI P. Adaptive response and tolerance to sugar and salt stress in the food yeast Zygosaccharomyces rouxii[J]. International Journal of Food Microbiology,2014,185:140−157. doi: 10.1016/j.ijfoodmicro.2014.05.015
    [3]
    潘百玲, 戴凌燕, 刘微, 等. 微生物代谢合成呋喃酮的培养条件和酶学调控研究进展[J]. 黑龙江八一农垦大学学报,2021,33(5):67−73. [PAN B L, DAI L Y, LIU W, et al. Research progress of culture condition and enzyme regulation about microbial metabolism and synthesis of furanone[J]. Journal of Heilongjiang Bayi Agricultural University,2021,33(5):67−73.
    [4]
    周亚男. 鲁氏酵母高密度培养制备及产呋喃酮条件优化研究[D]. 大庆: 黑龙江八一农垦大学, 2018

    ZHOU Y N. Optimization of high density culture and preparation of DMHF from Zygosaccharomyces rouxii[D]. Daqing: Heilongjiang Bayi Agricultural University, 2018.
    [5]
    王鹏霄, 宋焕禄, 陈存社. 微生物发酵法制备4-羟基-2, 5-二甲基-3[2H]-呋喃酮的研究进展[J]. 中国酿造,2009,10:4−6. [WANG X P, SONG H L, CHEN C S. Research progress of producing 4-hydroxy-2, 5-dimethyl-3(2H)-furanone by microbial fermentation[J]. China Brewing,2009,10:4−6.
    [6]
    廉瑞, 刘爽, 李敬尧, 等. 酱油中鲁氏接合酵母的安全性初步评价[J]. 中国酿造,2022,41(1):70−74. [LIAN R, LIU S, LI J R, et al. Preliminary safety evaluation of Zygosaccharomyces rouxii in soy sauce[J]. China Brewing,2022,41(1):70−74.
    [7]
    李梦琦, 赵一凡, 郑飞云, 等. 耐高糖产香酵母菌的分离鉴定及其应用[J]. 食品与发酵工业,2019,45(24):45−51. [LI M Q, ZHAO Y F, ZHENG F Y, et al. Isolation identification and application of sugar-tolerant and aroma-producing yeast[J]. Food and Fermentation Industries,2019,45(24):45−51.
    [8]
    王鹤霖, 范茁艺, 李昕, 等. 鲁氏酵母发酵香肠加工工艺的研究[J]. 肉类工业,2018(5):25−28. [WANG H L, FAN Z Y, LI X, et al. Study on the processing technology of the fermented sausage of Zygosaccharomyces rouxii[J]. Meat Industry,2018(5):25−28. doi: 10.3969/j.issn.1008-5467.2018.05.008
    [9]
    CHENG H, CHEN J, LI X, et al. Differentiation of the volatile profiles of Chinese bayberry cultivars during storage by HS-SPME–GC/MS combined with principal component analysis[J]. Postharvest Biology & Technology,2015,100:59−72.
    [10]
    战吉宬, 曹梦竹, 游义琳, 等. 非酿酒酵母在葡萄酒酿造中的应用[J]. 中国农业科学,2020,53(19):4057−4069. [ZHAN J S, CAO M Z, YOU Y L, et al. Research advance on the application of non-saccharomyces in winemaking[J]. Scientia Agricultura Sinica,2020,53(19):4057−4069.
    [11]
    HECQUETL, SACELME M, BOLTE J, et al. Biosynthesis of 4-Hydroxy-2,5-dimethyl-3(2H)-furanone by Zygosaccharomyces rouxii[J]. Journal of Agricultural Food Chemistry,1996,44:1357−1360. doi: 10.1021/jf950435j
    [12]
    LIU H, DAI L Y, WANG F Y, et al. A new understanding: Gene expression, cell characteristic and antioxidant enzymes of Zygosaccharomyces rouxii under the D-fructose regulation[J]. Enzyme and Microbial Technology,2020,132:109409. doi: 10.1016/j.enzmictec.2019.109409
    [13]
    LI X, DAI L Y, LIU H, et al. Molecular mechanisms of furanone production through the EMP and PP pathways in Zygosaccharomyces rouxii with D-fructose addition[J]. Food Research International,2020,133:109137. doi: 10.1016/j.foodres.2020.109137
    [14]
    康远军, 李欣, 陈雄, 等. 鲁氏酵母发酵培养基及发酵条件的优化[J]. 中国调味品,2015,40(7):61−65. [KANG Y J, LI X, CHEN X, et al. Optimization of medium components and fermentation conditions of Zygosaccharomyces rouxii[J]. China Condiment,2015,40(7):61−65. doi: 10.3969/j.issn.1000-9973.2015.07.012
    [15]
    FAN G S, LIU P X, CHANG X, et al. Isolation and identification of a high-yield ethyl caproate-producing yeast from daqu and optimization of its fermentation[J]. Frontiers in Microbiology,2021,12(5):663744.
    [16]
    HAUCK T, BRUHLMANN F, SCHWAB W. 4-hydroxy-2,5-dimethyl-3(2H)-furanone formation by Zygosaccharomyces rouxii: effect of the medium[J]. Journal of Agricultural & Food Chemistry,2003,51(16):4753.
    [17]
    刘朋肖, 常煦, 成柳洁, 等. 酿酒酵母Y3401产己酸乙酯发酵条件的优化[J]. 中国食品学报,2022,22(2):178−189. [LIU P X, CHANG X, CHENG L J, et al. Optimization of fermentation conditions for ethyl caproate production from Saccharomyces cerevisiae Y3401[J]. Journal of Chinese Institute of Food Science and Technology,2022,22(2):178−189. doi: 10.16429/j.1009-7848.2022.02.020
    [18]
    刘朋肖, 刘玉春, 李晨语, 等. 酿酒酵母Y3401产乙醇条件优化及其产香特性[J]. 中国食品学报,2021,21(4):168−178. [LIU P X, LIU Y C, LI C Y, et al. Optimization of cultural conditions for ethyl alcohol production by Saccharomyces cerevisiae Y3401 and its aroma-producing characteristics[J]. Journal of Chinese Institute of Food Science and Technology,2021,21(4):168−178.
    [19]
    LI W Z, SHI C, GUANG J, et al. Development of Chinese chestnut whiskey: Yeast strains isolation, fermentation system optimization, and scale-up fermentation[J]. AMB Express,2021,11:7. doi: 10.1186/s13568-020-01167-4
    [20]
    PUTU V, ROBERT L, HELEN O, et al. Effects of co-inoculation and sequential inoculation of Tetragenococcus halophilus and Zygosaccharomyces rouxii on soy sauce fermentation[J]. Food Chemistry,2018,240:1−8. doi: 10.1016/j.foodchem.2017.07.094
    [21]
    SOMKUWAR R G, SHARMA A K, KAMBALE N, et al. Volatome finger printing of red wines made from grapes grown under tropical conditions of India using thermal-desorption gas chromatography-mass spectrometry (TD-GC/MS)[J]. Journal of Food Science and Technology,2020,57(3):1119−1130. doi: 10.1007/s13197-019-04147-0
    [22]
    王梦琪, 朱荫, 张悦, 等. “清香”绿茶的挥发性成分及其关键香气成分分析[J]. 食品科学,2019,40(22):219−228. [WANG M Q, ZHU Y, ZHANG Y, et al. Analysis of volatile composition and key aroma compounds of green teas with fresh scent flavor[J]. Food Science,2019,40(22):219−228. doi: 10.7506/spkx1002-6630-20181229-349
    [23]
    李艳, 康俊杰, 成晓玲, 等. 3种酿酒酵母酿造赤霞珠干红葡萄酒的香气成分分析[J]. 食品科学,2010,31(22):378−382. [LI Y, KANG J J, CHENG X L, et al. Aroma components in cabernet sauvignon dry red wine fermented with three species of yeast strains[J]. Food Science,2010,31(22):378−382.
    [24]
    赵培城, 蔡际豪, 顾赛麒, 等. 不同酒龄传统绍兴黄酒的特征风味物质分析[J]. 食品科学,2020,41(22):231−237. [ZHAO P C, CAI J H, GU S Q, et al. Analysis of characteristic flavor substances of traditional Shaoxing rice wines of different ages[J]. Food Science,2020,41(22):231−237.
    [25]
    GAO X, FENG T, SHENG M, et al. Characterization of the aroma-active compounds in black soybean sauce, a distinctive soy sauce[J]. Food Chemistry,2021,298:130334.
    [26]
    BELLEGGIA L, FERROCINO I, REALE A, et al. Unfolding microbiota and volatile organic compounds of Portuguese Painho de Porco Preto fermented sausages[J]. Food Research International,2022,155(5):111063.
    [27]
    LI H, QIN D, WU Z, et al. Characterization of key aroma compounds in Chinese guojing sesame-flavor Baijiu by means of molecular sensory science[J]. Food Chemistry,2019,284(6):100−107.
    [28]
    李杨, 李明达, 刘军, 等. 酱油酿造过程中风味物质的形成与鉴定[J]. 食品工业科技,2019,40(4):251−256. [LI Y, LI M D, LIU J, et al. Formation and identification of flavor substances during soy sauce brewing[J]. Science and Technology of Food Industry,2019,40(4):251−256.
    [29]
    PANG X N, HAN B Z, HUANG X N, et al. Effect of the environment microbiota on the flavour of light-flavour Baijiu during spontaneous fermentation[J]. Scientific Reports,2018,8(1):3396. doi: 10.1038/s41598-018-21814-y
    [30]
    高熳熳, 张旭普, 白俊岩, 等. 不同发酵工艺糙米酵素中游离氨基酸、γ-氨基丁酸及挥发性香气成分分析[J]. 食品工业科技,2019,40(23):36−41. [GAO M M, ZHANG X P, BAI J Y, et al. Component analysis of free amino acids, GABA and volatile aroma in brown rice enzymes with different fermentation processes[J]. Science and Technology of Food Industry,2019,40(23):36−41.
    [31]
    李永杰, 唐月, 李慧瑶, 等. 基于智能感官和气相色谱-质谱联用技术研究食盐添加量对风干肠风味特征的影响[J]. 食品科学,2022,43(4):1−7. [LIU Y J, TANG Y, LI H Y, et al. Effect of salt content on the flavor profile of air-dried sausages as determined by instrumental sensory technologies and gas chromatography-mass spectrometry[J]. Food Science,2022,43(4):1−7.
    [32]
    刘丹丹, 赵培, 陈金玉, 等. 呼吸式滚揉腌制对中式酱牛肉挥发性物质的影响[J]. 食品与机械,2022,38(2):21−26. [LIU D D, ZHAO P, CHEN J Y, et al. Effects of breathing tumbling on volatile substances of Chinese soy-sauced beef[J]. Food & Machinery,2022,38(2):21−26.
    [33]
    WATANABE A, KAMADA G, IMANARI M, et al. Effect of aging on volatile compounds in cooked beef[J]. Meat Science,2015,107(9):12−19.
    [34]
    王勇勤, 郭新, 黄笠原, 等. 基于电子鼻和气相色谱-质谱联用技术分析不同贮藏时间羊肉火腿香气成分[J]. 食品科学,2019,40(2):215−221. [WANG Y Q, GUO X, HUANG L Y, et al. Analysis of volatile compounds of mutton ham with different storage times based on electronic nose and gas chromatography-mass spectrometry[J]. Food Science,2019,40(2):215−221.
    [35]
    田亚, 王晓宇, 杨欣, 等. 贵州米酸汤发酵过程中风味品质的研究[J]. 中国调味品,2020,45(5):94−99. [TIAN Y, WANG X Y, YANG X, et al. Research on flavor quality of Guizhou rice sour soup during fermentation[J]. China Condiment,2020,45(5):94−99.
    [36]
    闫晓雪, 伍时华, 吴军, 等. 糯米酒的液态发酵工艺优化[J]. 中国酿造,2022,41(3):168−173. [YAN X X, WU S H, WU J, et al. Optimization of liquid-state fermentation technology of glutinous rice wine[J]. China Brewing,2022,41(3):168−173.
    [37]
    张韵, 李蕙蕙, 王菁, 等. 不同烹制工艺对香菇挥发性成分和感官特性的影响[J]. 食品研究与开发,2022,43(6):75−84. [ZHANG Y, LI H H, WANG J, et al. Effects of cooking techniques on volatile components sensory characteristics of shiitake mushroom[J]. Food Research and Development,2022,43(6):75−84.
  • Cited by

    Periodical cited type(4)

    1. 柳富杰,黄释慧,潘莉莉. 纳米碳酸钙表面改性沸石对模拟蔗汁中酚酸的吸附性能. 食品与机械. 2024(01): 33-39 .
    2. 玉澜,时倩倩,文胜,陈燕萌,兰兴先,蒋才云. 白云石/三聚氰胺复合材料制备及吸附结晶紫性能研究. 化学研究与应用. 2024(08): 1718-1724 .
    3. 陈燕萌,陈广成,蒋才云. 沃柑皮基活性炭的制备及其对结晶紫的吸附研究. 化学研究与应用. 2023(06): 1387-1395 .
    4. 王未君,杨博,李文林,马旋,刘昌盛. 不同种类二氧化硅的表征及其在浓香菜籽油低温吸附精炼中的应用. 食品科学. 2023(16): 1-7 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (180) PDF downloads (12) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return