PANG Lidong, SONG Danliangmin, JIA Ai, et al. Evaluation of Environmental Resistance of Cronobacter spp. DOI: 10.13386/j.issn1002-0306.2022040050
Citation: PANG Lidong, SONG Danliangmin, JIA Ai, et al. Evaluation of Environmental Resistance of Cronobacter spp. DOI: 10.13386/j.issn1002-0306.2022040050

Evaluation of Environmental Resistance of Cronobacter spp.

More Information
  • Received Date: April 06, 2022
  • Available Online: October 05, 2022
  • Powdered infant formula (PIF) is the main source of Cronobacter spp. contamination, among which the addition of raw and auxiliary materials and the processing environment are the most important routes of transmission. In order to effectively prevent and control Cronobacter spp. to ensure the safety of dairy products, eight strains of Cronobacter spp. isolated from PIF and its processing environment were used as the research objects. Their heat resistance, acid and alkali resistance, dryness resistance and permeability resistance were studied, and the differences of environmental resistance of different strains were analyzed. The results showed that Cronobacter spp. had different heat resistance. The strains isolated from the end products had relatively stronger heat resistance. Cronobacter spp. generally had the characteristics of acid resistance but not alkali resistance. Under the acidic conditions at pH1.5, all strains could still survive being treated for 30 s. Cronobacter spp. had strong resistance to desiccation. The bacterial count of all strains decreased from an initial concentration of 108 CFU/mL to 105 CFU/mL over the course of the 7-month test at room temperature with a relative air humidity of 20.7%. The slow decreasing trend indicated that Cronobacter spp. had a strong ability to resist dry environment. Cronobacter spp. had a strong resistance to osmosis. We found that all strains grew slowly when the concentration of NaCl was over 8% and the tolerance of Cronobacter spp. to sorbitol was stronger than that to NaCl under isotonic conditions.
  • [1]
    JONES T F, YACKLEY J. Foodborne disease outbreaks in the United States: A historical overview[J]. Foodborne Pathogens and Disease,2018,15(1):11−15. doi: 10.1089/fpd.2017.2388
    [2]
    TODD E. Food-borne disease prevention and risk assessment[Z]. Multidisciplinary Digital Publishing Institute, 2020: 5129
    [3]
    MUN S G. The effects of ambient temperature changes on foodborne illness outbreaks associated with the restaurant industry[J]. International Journal of Hospitality Management,2020,85:102432. doi: 10.1016/j.ijhm.2019.102432
    [4]
    HAN X, LIU Y, YIN J, et al. Microfluidic devices for multiplexed detection of foodborne pathogens[J]. Food Research International,2021,143:110246. doi: 10.1016/j.foodres.2021.110246
    [5]
    MIRANDA N, BANERJEE P, SIMPSON S, et al. Molecular surveillance of Cronobacter spp. isolated from a wide variety of foods from 44 different countries by sequence typing of 16S rRNA, rpoB and O-antigen genes[J]. Foods,2017,6(5):36. doi: 10.3390/foods6050036
    [6]
    QIAN C, HUANG M, DU Y, et al. Chemotaxis and shorter O-Antigen chain length contribute to the strong desiccation tolerance of a food-isolated Cronobacter sakazakii strain[J]. Frontiers in Microbiology,2021:12.
    [7]
    PARRA-FLORES J, HOLÝ O, RIFFO F, et al. Profiling the virulence and antibiotic resistance genes of Cronobacter sakazakii strains isolated from powdered and dairy formulas by whole-genome sequencing[J]. Frontiers in Microbiology,2021:1730.
    [8]
    WANG L, ZHU W, LU G, et al. In silico species identification and serotyping for Cronobacter isolates by use of whole-genome sequencing data[J]. International Journal of Food Microbiology,2021,358:109405. doi: 10.1016/j.ijfoodmicro.2021.109405
    [9]
    YANG Y, MA S, GUO K, et al. Efficacy of 405-nm LED illumination and citral used alone and in combination for the inactivation of Cronobacter sakazakii in reconstituted powdered infant formula[J]. Food Research International,2022,154:111027. doi: 10.1016/j.foodres.2022.111027
    [10]
    CARVALHO G G, CALARGA A P, TEODORO J R, et al. Isolation, comparison of identification methods and antibiotic resistance of Cronobacter spp. in infant foods[J]. Food Research International,2020,137:109643. doi: 10.1016/j.foodres.2020.109643
    [11]
    POLAT YEMIŞ G, DELAQUIS P. Natural compounds with antibacterial activity against Cronobacter spp. in powdered infant formula: A review[J]. Frontiers in Nutrition,2020:232.
    [12]
    WANG L, FORSYTHE S J, YANG X, et al. Invited review: Stress resistance of Cronobacter spp. affecting control of its growth during food production[J]. Journal of Dairy Science,2021,104(11):11348−11367. doi: 10.3168/jds.2021-20591
    [13]
    LING N, JIANG X, FORSYTHE S, et al. Food safety risks and contributing factors of Cronobacter spp[J]. Engineering,2022,12:128−138. doi: 10.1016/j.eng.2021.03.021
    [14]
    HOQUE A, AHMED T, SHAHIDULLAH M, et al. Isolation and molecular identification of Cronobacter spp. from powdered infant formula (PIF) in Bangladesh[J]. International Journal of Food Microbiology,2010,142(3):375−378. doi: 10.1016/j.ijfoodmicro.2010.07.019
    [15]
    XU D, MING X, GAN M, et al. Rapid detection of Cronobacter spp. in powdered infant formula by thermophilic helicase-dependent isothermal amplification combined with silica-coated magnetic particles separation[J]. Journal of Immunological Methods,2018,462:54−58. doi: 10.1016/j.jim.2018.08.008
    [16]
    CHAUHAN R, SINGH N, PAL G K, et al. Trending biocontrol strategies against Cronobactersakazakii: A recent updated review[J]. Food Research International,2020,137:109385. doi: 10.1016/j.foodres.2020.109385
    [17]
    LANG E, SANT’ANA A S. Microbial contaminants in powdered infant formula: What is the impact of spray-drying on microbial inactivation?[J]. Current Opinion in Food Science,2021,42:195−202. doi: 10.1016/j.cofs.2021.06.007
    [18]
    ZHAN J, QIAO J, WANG X. Role of sigma factor RpoS in Cronobacter sakazakii environmental stress tolerance[J]. Bioengineered,2021,12(1):2791−2809. doi: 10.1080/21655979.2021.1938499
    [19]
    FORSYTHE S J. Updates on the Cronobacter genus[J]. Annual Review of Food Science and Technology,2018,9:23−44. doi: 10.1146/annurev-food-030117-012246
    [20]
    WU Y, XIONG Y, CHEN X, et al. Plasmonic ELISA based on DNA-directed gold nanoparticle growth for Cronobacter detection in powdered infant formula samples[J]. Journal of Dairy Science,2019,102(12):10877−10886. doi: 10.3168/jds.2019-17067
    [21]
    曹晨阳, 孟令缘, 王嘉炜, 等. 婴幼儿乳粉和米粉中阪崎克罗诺杆菌的耐受性研究[J]. 中国食品学报,2019,19(9):45−52. [CAO C Y, MENG L Y, WANG J W, et al. Tolerance study of Cronobacter sakazakii in nanoclusters of infant milk and rice powders[J]. Journal of Chinese Institute of Food Science and Technology,2019,19(9):45−52. doi: 10.16429/j.1009-7848.2019.09.005
    [22]
    BENNOUR HENNEKINNE R, GUILLIER L, FAZEUILH L, et al. Survival of Cronobacter in powdered infant formula and their variation in biofilm formation[J]. Letters in Applied Microbiology,2018,66(6):496−505. doi: 10.1111/lam.12879
    [23]
    YE Y, LING N, GAO J, et al. Roles of outer membrane protein W (OmpW) on survival, morphology, and biofilm formation under NaCl stresses in Cronobactersakazakii[J]. Journal of Dairy Science,2018,101(5):3844−3850. doi: 10.3168/jds.2017-13791
    [24]
    FEI P, JIANG Y, FENG J, et al. Antibiotic and desiccation resistance of Cronobacter sakazakii and C. malonaticus isolates from powdered infant formula and processing environments[J]. Frontiers in Microbiology,2017,8:316.
    [25]
    WANG X, DEVLIEGHERE F, GEERAERD A, et al. Thermal inactivation and sublethal injury kinetics of Salmonella enterica and Listeria monocytogenes in broth versus agar surface[J]. International Journal of Food Microbiology,2017,243:70−77. doi: 10.1016/j.ijfoodmicro.2016.12.008
    [26]
    翟立公, 李港回, 周紫洁, 等. 高渗适应德尔卑沙门氏菌对交叉环境胁迫抗性分析[J]. 食品与发酵工业,2022,48(15):69−77. [ZHAI L G, LI G H, ZHOU Z J, et al. Analysis of hypertonic adaptation of Salmonella delbe to cross environmental stress resistance[J]. Food and Fermentation Industries,2022,48(15):69−77.
    [27]
    VOGEL B F, HANSEN L T, MORDHORST H, et al. The survival of Listeria monocytogenes during long term desiccation is facilitated by sodium chloride and organic material[J]. International Journal of Food Microbiology,2010,140(2-3):192−200. doi: 10.1016/j.ijfoodmicro.2010.03.035
    [28]
    萨娜, 王熙, 赵鹏, 等. 产甘油重组大肠杆菌的构建及其耐高渗透压性能的测定[J]. 北京化工大学学报(自然科学版),2011,38(6):93−7. [SA N, WANG X, ZHAO P, et al. Construction of glycerol-producing recombinant Escherichia coli and determination of its resistance to high osmotic pressure[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition),2011,38(6):93−7. doi: 10.13543/j.cnki.bhxbzr.2011.06.022
    [29]
    SUN X, WANG C, WANG H, et al. Effects of processing on structure and thermal properties of powdered preterm infant formula[J]. Journal of Food Science,2018,83(6):1685−1694. doi: 10.1111/1750-3841.14162
    [30]
    ORIESKOVA M, KAJSIK M, SZEMES T, et al. Contribution of the thermotolerance genomic island to increased thermal tolerance in Cronobacter strains[J]. Antonie Van Leeuwenhoek,2016,109(3):405−414. doi: 10.1007/s10482-016-0645-1
    [31]
    孔阳芷, 王潇栋, 李想, 等. 乳品工业复合清洗剂发展现状[J]. 日用化学品科学,2021,44(10):13−18. [KONG Y Z, WANG X D, LI X, et al. Development status of compound cleaning agent for dairy industry[J]. Detergent & Cosmetics,2021,44(10):13−18. doi: 10.3969/j.issn.1006-7264.2021.10.002
    [32]
    BREEUWER P, LARDEAU A, PETERZ M, et al. Desiccation and heat tolerance of Enterobacter sakazakii[J]. Journal of Applied Microbiology,2003,95(5):967−973. doi: 10.1046/j.1365-2672.2003.02067.x
    [33]
    陈娟, 李颖, 朱永军, 等. 山梨醇的性质及其在食品中的应用研究进展[J]. 粮食与油脂,2018,31(8):7−9. [CHEN J, LI Y, ZHU Y J, et al. Research progress on the properties of sorbitol and its application in food[J]. Cereals & Oils,2018,31(8):7−9. doi: 10.3969/j.issn.1008-9578.2018.08.003
    [34]
    LI H, ZHAO Y, ZHANG J, et al. Silver nanoparticles reduce the tolerance of Cronobacter sakazakii to environmental stress by inhibiting expression of related genes[J]. Journal of Dairy Science,2022,105(8):6469−6482. doi: 10.3168/jds.2022-21833
    [35]
    PEI X, LI Y, ZHANG H, et al. Surveillance and characterisation of Cronobacter in powdered infant formula processing factories[J]. Food Control,2019,96:318−323. doi: 10.1016/j.foodcont.2018.09.009
    [36]
    ZHANG Y, XIE Y, TANG J, et al. Thermal inactivation of Cronobacter sakazakii ATCC 29544 in powdered infant formula milk using thermostatic radio frequency[J]. Food Control,2020,114:107270. doi: 10.1016/j.foodcont.2020.107270
    [37]
    陈翠玲, 钮冰, 杨捷琳, 等. 克罗诺杆菌在特殊环境中耐受性与耐药性的研究进展[J]. 食品工业科技,2020,41(5):328−331,339. [CHEN C L, NIU B, YANG J L, et al. Research progress on the tolerance and drug resistance of Cronobacter in special environments[J]. Science and Technology of Food Industry,2020,41(5):328−331,339. doi: 10.13386/j.issn1002-0306.2020.05.053
    [38]
    VELÁZQUEZ-ESTRADA R M, LÓPEZ-PEDEMONTE T J, HERNÁNDEZ-HERRERO M M, et al. Evaluation of Mycobacterium smegmatis as indicator of the efficacy of high hydrostatic pressure and ultra-high pressure homogenization treatments for pasteurization-like purposes in milk[J]. Journal of Dairy Research,2020,87(1):94−102. doi: 10.1017/S0022029919001043
    [39]
    SHARMA P, BREMER P, OEY I, et al. Bacterial inactivation in whole milk using pulsed electric field processing[J]. International Dairy Journal,2014,35(1):49−56. doi: 10.1016/j.idairyj.2013.10.005
    [40]
    WANG S, LIU Y, ZHANG Y, et al. Processing sheep milk by cold plasma technology: Impacts on the microbial inactivation, physicochemical characteristics, and protein structure[J]. LWT,2022,153:112573. doi: 10.1016/j.lwt.2021.112573
    [41]
    陈雪峰, 郭玉曦, 曾海燕, 等. 阪崎克罗诺杆菌物理和化学防控方法的研究进展[J]. 现代食品科技,2022,38(1):1−10,421. [CHEN X F, GUO Y X, ZENG H Y, et al. Research progress on physical and chemical control methods of Cronobacter sakazakii[J]. Modern Food Science and Technology,2022,38(1):1−10,421. doi: 10.13982/j.mfst.1673-9078.2022.1.0890
  • Related Articles

    [1]YIN Hongmei, CHEN Haoran, YIN Ziran, TANG Zhenyi, ZENG Jinxiu, SHI Xiaodan, ZHANG Lu, TU Zongcai. Comparison of Volatile Flavor Compounds and Qualities between Traditional Fermented and Inoculated Fermented of Mei yu[J]. Science and Technology of Food Industry, 2024, 45(15): 56-65. DOI: 10.13386/j.issn1002-0306.2023070267
    [2]ZHANG Shiyao, XIAO Yue, WANG Xinyu, CHU Chuanqi, WANG Tao, HU Xiaosong, YI Junjie. Quality Characteristics of Fermented Chili Peppers Using Different Inoculated and Natural Fermentation Approaches[J]. Science and Technology of Food Industry, 2024, 45(12): 129-139. DOI: 10.13386/j.issn1002-0306.2023070254
    [3]ZHU Jiamin, MO Ziyao, LI Mengtong, XIN Yueqi, ZHU Ying'ao, WANG Hui, CHEN Qian. Study on Different Inoculation Levels of Lactobacillus sakei on the Improvement of Quality Characteristics of Low-sodium Dry Sausages[J]. Science and Technology of Food Industry, 2023, 44(7): 133-142. DOI: 10.13386/j.issn1002-0306.2022060041
    [4]TANG Kaiwei, HUANG Xiaoying, YI Yuwen, ZHU Chenglin, DENG Jing, YE Haixiao, TANG Junni. Effect of Fermentation with Single and Co-culture of Lactobacillus bulgaricus and Streptococcus thermophilus on the Quality of Yogurt[J]. Science and Technology of Food Industry, 2022, 43(23): 127-132. DOI: 10.13386/j.issn1002-0306.2022020250
    [5]LIU Chang, ZUO Changzhou, PENG Jing, CHEN Jikun, TU Kang, PAN Leiqing. Response Surface Optimization of the Fermentation Process of Tomato Juice by Lactobacillus plantarum and Its Quality Evaluation[J]. Science and Technology of Food Industry, 2022, 43(10): 246-253. DOI: 10.13386/j.issn1002-0306.2021080285
    [6]ZHOU Yingjun, XIE Chunliang, CHEN Baizhong, GONG Wenbing, ZHU Zuohua, XU Chao, YANG Qi, PENG Yuande. Effect of Different Yeast and Lactobacillus plantarum Combined Fermentation on the Quality of Xinhui Citrus Ferment[J]. Science and Technology of Food Industry, 2022, 43(6): 118-125. DOI: 10.13386/j.issn1002-0306.2021060189
    [7]ZHANG Lihua, WANG Xia, ZHA Mengmeng, TANG Peixin, SHI Xun, ZONG Wei, ZHAO Guangyuan. Effects of Lactobacillus plantarum Microcapsules Fermentation on the Quality of Carrot Chips[J]. Science and Technology of Food Industry, 2022, 43(2): 135-141. DOI: 10.13386/j.issn1002-0306.2021040234
    [8]ZHANG Li-hua, WANG Xia, ZHAO Guang-yuan, ZONG Wei. Effects of Adding Jujube Juice on Quality of Carrot Fermented by Lactobacillus plantarum[J]. Science and Technology of Food Industry, 2020, 41(15): 99-105. DOI: 10.13386/j.issn1002-0306.2020.15.016
    [9]LIU Ying-ping, CUI Li, NIU Li-ying, LI Da-jing, LIU Chun-quan, XIAO Li-xia. Study on the microwave sterilization of Lactobacillus plantarum and application of microwave on pickled lettuce[J]. Science and Technology of Food Industry, 2016, (24): 245-248. DOI: 10.13386/j.issn1002-0306.2016.24.038
    [10]JIN Le-tian, WU Shi-rong, LIU Tong-jie, HE Guo-qing. Effect of Lactobacillus plantarum inoculated fermentation on the quality of kimchi[J]. Science and Technology of Food Industry, 2014, (23): 195-198. DOI: 10.13386/j.issn1002-0306.2014.23.032
  • Cited by

    Periodical cited type(11)

    1. 吕帅,刘红微,刘帅,董毓卿. 黄芪饮料的配方优化. 食品工业. 2025(03): 4-7 .
    2. 樊月月,罗浩,李富豪,徐梦珠,郝娟,谢心. 参芪补胰方通过调节TLR4/MyD88/NF-κB信号通路治疗2型糖尿病大鼠的作用机制. 中华中医药学刊. 2023(06): 237-242+279-281 .
    3. 张国栋,张兰. 从脾肾探讨糖尿病足的病机. 实用中医内科杂志. 2023(11): 32-34 .
    4. 周敏,吴黎,谭崇赋,徐旭英. 回阳生肌膏抗小鼠骨髓内皮祖细胞功能损伤的研究. 北京中医药大学学报. 2022(01): 41-52 .
    5. 冯一帆,吴励萍,张祎盈,钱大玮,段金廒,宋孝雄,吕高虹,朱悦,许惠琴. 杞丹方对糖尿病小鼠降血糖作用及机制研究. 南京中医药大学学报. 2022(06): 504-510 .
    6. 陈紫军,霍晓乾,任越,舒展,张燕玲. 复方杜仲健骨颗粒治疗骨关节炎的抗炎潜在药效物质及作用机制研究. 中国中药杂志. 2022(15): 4156-4163 .
    7. 姜莉,王成,邢颖,徐怀德. 不同提取方法对黄芪提取液活性成分及抗氧化性的影响. 食品研究与开发. 2022(16): 119-126 .
    8. 陈东方,高慧艳,王燕,徐冰,王海玉,张聪恪. 黄芪葛根胶囊降血糖作用的人体试食效果观察. 中国卫生检验杂志. 2022(20): 2442-2445 .
    9. 王圣翔,强煜云,布培培. 内毒素致病机理及防治研究进展. 畜牧产业. 2021(11): 73-75 .
    10. 孙亚娟. 止嗽散加减治疗慢性咳嗽的疗效及对血清指标的影响. 中国民间疗法. 2021(21): 61-63 .
    11. 冉建新,许蕊蕊,王晓杰. 基于小鼠模型筛选黄芪当归治疗2型糖尿病的最佳配比及最优半仿生提取工艺. 中国医药导刊. 2021(11): 828-834 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (188) PDF downloads (17) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return