ZHANG Yuanyuan, ZHAO Huanhuan, LI Guofeng, et al. Study on Bactericidal Effect and Lethal Dynamics of High Pulsed Electric Field on Pectobacterium carotovorum[J]. Science and Technology of Food Industry, 2023, 44(1): 162−171. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022020190.
Citation: ZHANG Yuanyuan, ZHAO Huanhuan, LI Guofeng, et al. Study on Bactericidal Effect and Lethal Dynamics of High Pulsed Electric Field on Pectobacterium carotovorum[J]. Science and Technology of Food Industry, 2023, 44(1): 162−171. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022020190.

Study on Bactericidal Effect and Lethal Dynamics of High Pulsed Electric Field on Pectobacterium carotovorum

More Information
  • Received Date: February 21, 2022
  • Available Online: November 03, 2022
  • In order to identify the optimal sterilization parameters for HPEF on Pectobacterium carotovorum (P. carotovorum), and preliminarily explore its potential mechanism, the main factors affecting the sterilization effect were identified by measuring the survival rate of P. carotovorum under different treatment conditions of HPEF. Then, the effects of different electric field strengths and pulse duty cycles on the growth curve, fatty acid content of cell membrane, cell membrane permeability, and nucleic acid and protein leakage of P. carotovorum were studied, as well as the differences in sensitivity of P. carotovorum to HPEF in different growth periods. Finally, the kinetic model between electric field strength, pulse duty cycle and the survival rate of P. carotovorum was established. The results showed that the electric field intensity and pulse duty cycle were the main factors affecting the killing of P. carotovorum by HPEF. When the electric field strength was 28 kV/cm and the pulse duty cycle was 36.5%, the antibacterial effect was the strongest, with a reduction of logarithmic value at 1.60. Under the action of HPEF, the delay period of P. carotovorum was prolonged and its growth was inhibited. At the same time, the structure of cell membrane was damaged, and the permeability was increased, leading to the serious leakage of intracellular nucleic acid and protein. In addition, P. carotovorum in different growth period had different sensitivities to HPEF, and logarithmic growth period was the most sensitive. Finally, the kinetic equation was established between the log reduction value of lnS and the electric field strength and pulse duty cycle (y=−0.1067x+0.1166 and y=−0.0895x+0.3249). The equation was in accordance with the first-order kinetic model and reflected the growth relationship of P. carotovorum after HPEF treatment well, which provided data support for the selection of appropriate treatment conditions. In this study, the optimal parameters of HPEF inhibiting P. carotovorum were determined, which provided theoretical data for further realization of HPEF sterilization in the industrial application of postharvest and fresh-cutting industries.
  • [1]
    刘育颖. 非热杀菌技术在鲜榨果汁加工中的应用研究[J]. 食品科技,2019,44(8):87−90. [LIU Y Y. Application of non-thermal sterilization technology in fresh juice processing[J]. Food Science and Technology,2019,44(8):87−90. doi: 10.13684/j.cnki.spkj.2019.08.017
    [2]
    UCHIDA S, HOUJO M, TOCHIKUBO F. Efficient sterilization of bacteria by pulse electric field in micro-gap[J]. Journal of Electrostatics,2008,66(7-8):427−431. doi: 10.1016/j.elstat.2008.04.003
    [3]
    LI X, FARID M. A review on recent development in non-conventional food sterilization technologies[J]. Journal of Food Engineering,2016,182:33−45. doi: 10.1016/j.jfoodeng.2016.02.026
    [4]
    冯学斌, 尹文庆, 王迎迎, 等. 脉冲电场对水稻纹枯菌的杀灭效果[J]. 浙江农业学报,2013,25(2):365−369. [FENG X B, YIN W Q, WANG Y Y, et al. Effect of pulsed electric field on Rhizoctorzia solani[J]. Acta Agriculturae Zhejiangensis,2013,25(2):365−369. doi: 10.3969/j.issn.1004-1524.2013.02.30
    [5]
    ARIZA-GRACIA M A, CABELLO M P, CEBRAIN G, et al. Experimental and computational analysis of microbial inactivation in a solid by ohmic heating using pulsed electric fields[J]. Innovative Food Science & Emerging Technologies,2020:65.
    [6]
    XIAO S, GUO S, NESIN V, et al. Subnanosecond electric pulses cause membrane permeabilization and cell death[J]. IEEE Transactions on Biomedical Engineering,2011,58(2):1239−1245.
    [7]
    孙苗苗. 魔芋软腐病病原鉴定及快速检测技术研究[D]. 武汉: 华中农业大学, 2019.

    SUN M M. Pathogen identification and rapid detection method development for soft rot of Amorphophallus konjac[D]. Wuhan: Huazhong Agricultural University, 2019.
    [8]
    李焕玲. 蔬菜四种细菌性新病害病原菌的鉴定研究[D]. 北京: 中国农业科学院, 2013.

    LI H L. Identification of four new pathogenic bacteria causing diseases of vegetables[D]. Beijing: Chinese Academy of Agricultural Sciences, 2013.
    [9]
    王婷玉. 高压脉冲电场技术对鲜切苹果中病原菌杀菌效果及品质影响研究[D]. 雅安: 四川农业大学, 2017.

    WANG T Y. Effect of pulsed electric field on pathogenic bacteria of sterilization and quality in fresh-cut apple[D]. Yaan: Sichuan Agricultural University, 2017.
    [10]
    马勇, 图雅, 陈秀莉, 等. 分光光度法测定高浓度培养液下的产油酵母菌生长曲线[J]. 北方园艺,2013(8):116−118. [MA Y, TU Y, CHEN X L, et al. Growth curves of oleaginous yeast in high density liquid medium determined by spectrophotometry[J]. Northern Horticulture,2013(8):116−118.
    [11]
    TOMLINS R I, WATKINS T R, GRAY R J H. Membrane lipid alterations and thermal stress in Salmonella typhimurium 7136[J]. Applied and Environmental Microbiology,1982,44(5):1110. doi: 10.1128/aem.44.5.1110-1117.1982
    [12]
    唐鑫. 产油真菌卷枝毛霉WJ11高产脂质的分子机制[D]. 无锡: 江南大学, 2016.

    TANG X. Molecular mechanism of high lipid-production in oleaginous fungus Mucor circinelloides WJ11[D]. Wuxi: Jiangnan University, 2016.
    [13]
    肖媛, 潘兆平, 尹春晓, 等. ε-聚赖氨酸对柑橘酸腐菌的抑菌活性及作用机制[J]. 食品科学,2020,41(19):221−229. [XIAO Y, PAN Z P, YIN C X, et al. Antimicrobial activity and mechanism of ε-polylysine against citrus acid rot fungi[J]. Food Science,2020,41(19):221−229. doi: 10.7506/spkx1002-6630-20190824-258
    [14]
    曾志红, 陈玲苗, 黄秋蓉. 丁香提取物对枝孢霉菌的抑菌效果及抑菌机理[J]. 森林与环境学报,2019,39(1):77−81. [ZENG Z H, CHEN L M, HUANG Q R. Study on the antibacterial effect of clove on Cladosporium and its mechanism[J]. Journal of Forest and Environment,2019,39(1):77−81.
    [15]
    HAMILTON W, SALE A. Effects of high electric fields on microorganisms: II. Mechanism of action of the lethal effect[J]. Biochim Biophys Acta,1967,148(3):789−800. doi: 10.1016/0304-4165(67)90053-0
    [16]
    金雪剑, 李洪涛, 邓维军, 等. 13 μs, 200 ns和2 ns脉冲电场对酵母菌杀灭效果分析[J]. 强激光与粒子束,2015,27(12):256−261. [JIN X J, LI H T, DENG W J, et al. Analysis of inactivation saccharomyces cerevisiae by 13 μs, 200 ns and 2 ns pulsed electric fields[J]. High Power Laser and Particle Beams,2015,27(12):256−261.
    [17]
    李楠楠. 高压脉冲电场技术对鲜榨椪柑汁的杀菌效果及品质影响的研究[D]. 重庆: 西南大学, 2018.

    LI N N. Study on effect of pulsed electric fields on sterilization and quality in ponkan juice[D]. Chongqing: Southwest University, 2018.
    [18]
    王婷玉, 陈永丽, 吴月, 等. 高压脉冲电场对鲜切苹果中大肠杆菌杀菌效果的影响[J]. 基因组学与应用生物学,2018,37(7):2928−2936. [WANG T Y, CHEN Y L, WU Y, et al. Effect of high intensity pulse electric field on the bactericidal effect of Escherichia coli in fresh-cut apple[J]. Genomics and Applied Biology,2018,37(7):2928−2936.
    [19]
    顾艳洁, 杨瑞金, 赵伟. 高压脉冲电场对酿酒酵母细胞膜流动性及脂肪酸组成的影响[EB/OL]. 北京: 中国科技在线, 2012.

    GU Y J, YANG R J, ZHAO W. Effect of pulsed electric fields on lipid composition and membrane fluidity of saccharomyces cerevisiae[EB/OL]. Beijing: China Sciencepaper Online, 2012.
    [20]
    资智洪, 曾新安, 杨连生. 强脉冲电场处理对脂质性质及组分的影响[J]. 食品科技,2009,34(1):126−130. [ZI Z H, ZENG X A, YANG L S. Effect of pulsed electric fields on composition and quality of lipid[J]. Food Science and Technology,2009,34(1):126−130.
    [21]
    TERESA G C, MARGALUZ A G, A ROBERT M F, et al. Effects of thermal and non-thermal processing treatments on fatty acid and free amino acids of grape juice[J]. Food Control,2007,18:473−479. doi: 10.1016/j.foodcont.2005.12.004
    [22]
    张莎. 高压脉冲电场在消毒奶加工中的应用及其对脂质的影响研究[D]. 无锡: 江南大学, 2010.

    ZHANG S. Application of pulsed electric fields on milk sterilization and its effect on milk fat[D]. Wuxi: Jiangnan University, 2010.
    [23]
    乔勇进, 冯双庆, 赵玉梅. 热处理对黄瓜贮藏冷害及生理生化的影响[J]. 中国农业大学学报,2003(1):71−74. [QIAO Y J, FENG S J, ZHAO Y M. Effect of heat treatment on chilling injury and physiological responses of cucumber during low temperature storage[J]. Journal of China Agricultural University,2003(1):71−74. doi: 10.3321/j.issn:1007-4333.2003.01.016
    [24]
    ARONSSON K, BORCH E, BO S, et al. Growth of pulsed electric field exposed Escherichia coli, in relation to inactivation and environmental factors[J]. International Journal of Food Microbiology,2004,93(1):1−10. doi: 10.1016/S0168-1605(03)00071-0
    [25]
    VEGA-MERCADO H, MARTIN-BELLOSO O, QIN B L, et al. Non-thermal food preservation: Pulsed electric fields[J]. Trends in Food Science & Technology,1997,8(5):151−157.
    [26]
    谢媚, 曹锦轩, 张玉林, 等. 高压脉冲电场杀菌技术在肉品加工中的应用进展[J]. 核农学报,2014,28(1):97−100. [XIE M, CAO J X, ZHANG Y L, et al. A review of high voltage pulsed electric fields applied for meat processing[J]. Journal of Nuclear Agricultural Sciences,2014,28(1):97−100. doi: 10.11869/j.issn.100-8551.2014.01.0097
    [27]
    CHEN C Z, COOPER S L. Interactions between dendrimer biocides and bacterial membranes[J]. Biomateria Membranes,2002,23(16):3359−3368.
    [28]
    ORTUNO C, MARTINEZ-PASTOR M T, MULET A, et al. Supercritical carbon dioxide inactivation of Escherichia coli and Saccharomyces cerevisiae in different growth stages[J]. The Journal of Supercritical Fluids,2012,63:8−15. doi: 10.1016/j.supflu.2011.12.022
    [29]
    洪晨. 脉冲强光对大肠杆菌的灭活作用及其机理研究[D]. 镇江: 江苏大学, 2018.

    HONG C. Research on inactivation effect of pulsed light on Escherichia coli and its mechanisms[D]. Zhenjiang: Jiangsu University, 2018.
    [30]
    钱静亚. 脉冲磁场对枯草芽孢杆菌的灭活作用及其机理研究[D]. 镇江: 江苏大学, 2013.

    QIAN J Y. Inactivation of Bacillus subtilis by pulsed magnetic field and its mechanisms[D]. Zhenjiang: Jiangsu University, 2013.
    [31]
    严志明, 方婷. 高压脉冲电场对微生物的致死动力学模型[J]. 安徽农学通报,2009,15(19):51−53. [YAN Z M, FANG T. Kinetic model for the inactivation of microbials by pulsed electric fields[J]. Anhui Agricultural Science Bulletin,2009,15(19):51−53. doi: 10.3969/j.issn.1007-7731.2009.19.025
    [32]
    方婷, 严志明, 王仁丽, 等. 高压脉冲电场处理时间对啤酒酵母、大肠杆菌和青霉的致死动力学研究[J]. 食品与机械,2007,23(4):11−14. [FANG T, YAN Z M, WANG R L, et al. Studies on lethal dynamics of S. accharamyces cerevisiae E. coil and penicillium by treatment time of pulse electric field[J]. Food and Machinery,2007,23(4):11−14. doi: 10.3969/j.issn.1003-5788.2007.04.003
    [33]
    陈悦, 崔政伟. 高浓度臭氧水对巨大芽孢杆菌的杀菌效果及动力学模型[J]. 包装与食品机械,2020,38(1):1−7. [CHEN Y, CUI Z W. Germicidal effect and kinetic model of high concentration ozone water on Bacillus megacephala[J]. Packaging and Food Machinery,2020,38(1):1−7. doi: 10.3969/j.issn.1005-1295.2020.01.001
    [34]
    HŰLSHEGER H, POTEL J, NIEMANN E G. Killing of bacteria with electric pulses of high field strength[J]. Radiation and Environmental Biophysics,1981,20(1):53−65. doi: 10.1007/BF01323926
    [35]
    PELEG M. A model of microbial survival after exposure to pulsed electric fields[J]. Journal of the Science of Food & Agriculture,1995,67(1):93−99.
    [36]
    LOPEZ-ALFARO I, GONZALEZ-ARENZANA L, LOPEZ N, et al. Pulsed electric field treatment enhanced stilbene content in Graciano, Tempranillo and Grenache grape varieties[J]. Food Chemistry,2013,141(4):3759−3765. doi: 10.1016/j.foodchem.2013.06.082
  • Cited by

    Periodical cited type(4)

    1. 柳富杰,黄释慧,潘莉莉. 纳米碳酸钙表面改性沸石对模拟蔗汁中酚酸的吸附性能. 食品与机械. 2024(01): 33-39 .
    2. 玉澜,时倩倩,文胜,陈燕萌,兰兴先,蒋才云. 白云石/三聚氰胺复合材料制备及吸附结晶紫性能研究. 化学研究与应用. 2024(08): 1718-1724 .
    3. 陈燕萌,陈广成,蒋才云. 沃柑皮基活性炭的制备及其对结晶紫的吸附研究. 化学研究与应用. 2023(06): 1387-1395 .
    4. 王未君,杨博,李文林,马旋,刘昌盛. 不同种类二氧化硅的表征及其在浓香菜籽油低温吸附精炼中的应用. 食品科学. 2023(16): 1-7 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (185) PDF downloads (17) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return