HUANG Jinian, SUN Qiang, ZHANG Fuzhong, et al. Influence of Extrusion Texturization on the Physical and Chemical Properties and Structure of Sesame Protein[J]. Science and Technology of Food Industry, 2023, 44(2): 60−68. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022020142.
Citation: HUANG Jinian, SUN Qiang, ZHANG Fuzhong, et al. Influence of Extrusion Texturization on the Physical and Chemical Properties and Structure of Sesame Protein[J]. Science and Technology of Food Industry, 2023, 44(2): 60−68. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022020142.

Influence of Extrusion Texturization on the Physical and Chemical Properties and Structure of Sesame Protein

More Information
  • Received Date: February 17, 2022
  • Available Online: November 09, 2022
  • Using subcritical sesame protein powder as the main raw material, the twin-screw extrusion technology was used to study the effect of extrusion texturing on the physicochemical properties and structure of protein raw materials, and to explore the formation mechanism of texturized protein. After extrusion, the water retention of protein materials increased by 14.16%, oil absorption decreased by 14.52%, protein digestibility increased by 11.18%, free sulfhydryl content decreased by 11.55%, and amino acid components had a certain loss. No new peptide bonds were formed during the extrusion texturing process, but a large number of disulfide bonds were formed. The structure of the texturized protein obtained by extrusion was mainly maintained by the combined action of disulfide bonds and non-covalent bonds. And the extrusion organization was not completely destroyed. The secondary structure of protein included only partially unstable α-helices and irregular coils to relatively stable β-sheets and β-turns. It could be seen that the protein material changed from disorder to order after extrusion and organization. And produced a large number of fiber structures. It would provide a theoretical basis for further study on the formation mechanism of histochemical proteins and development of histochemical sesame protein products.
  • [1]
    薛晓程. 高水分植物蛋白组织化简介[J]. 现代食品,2017(1):58−60. [XUE X C. Introduction to high-moisture extrusion texturization of vegetable protein[J]. Modern Food,2017(1):58−60. doi: 10.16736/j.cnki.cn41-1434/ts.2017.01.020
    [2]
    KUMAR P, CHATLI M K, MEHTA N, et al. Meatanalogues: Health promising sustainable meat substitutes[J]. Critical Reviews in Food Science and Nutrition,2017,57(5):923−932. doi: 10.1080/10408398.2014.939739
    [3]
    陈贵堂, 赵霖. 植物蛋白的营养生理功能及开发利用[J]. 食品工业科技,2004(9):137−140. [CHEN G T, ZHAO L. Nutritional and physiological functions of plant protein and its development and utilization[J]. Science and Technology of Food Industry,2004(9):137−140. doi: 10.3969/j.issn.1002-0306.2004.09.051
    [4]
    张涛. 汉麻籽分离蛋白的制备工艺、功能性质及应用研究[D]. 无锡: 江南大学, 2008.

    ZHANG T. Preparation, functionality and application of hempseed protein isolate[D]. Wuxi: Jiangnan University, 2008.
    [5]
    MIRIAM E N, MICHAEL W H, FRANK B H, et al. Alignment of healthy dietary patterns and environmental sustainability: A systematic review[J]. Advances in Nutrition,2016,7(6):1005−1025. doi: 10.3945/an.116.012567
    [6]
    张富重, 张国治, 孙强, 等. 亚临界芝麻蛋白粉挤压组织化工艺研究[J]. 河南工业大学学报(自然科学版),2021,42(3):32−37. [ZHANG F Z, ZHANG G Z, SUN Q, et al. Study on extrusion and texturization technology of subcritical sesame protein powder[J]. Journal of Henan University of Technology (Natural Science Edition),2021,42(3):32−37. doi: 10.16433/j.1673-2383.2021.03.005
    [7]
    董萍, 冯叙桥, 冯帆, 等. 一种大豆组织蛋白产品的市场调查分析[J]. 中国粮油学报,2014,29(5):10−13. [DONG P, FENG X Q, FENG F, et al. Market analysis of a textured soy protein product[J]. Journal of the Chinese Cereals and Oils Association,2014,29(5):10−13.
    [8]
    王笛, 迟玉杰. 大豆组织蛋白丸子配方的优化研究[J]. 食品工业科技,2011,32(9):110−115. [WANG D, CHI Y J. Optimization of formula for the meatball with textured soy protein[J]. Science and Technology of Food Industry,2011,32(9):110−115. doi: 10.13386/j.issn1002-0306.2011.09.102
    [9]
    SAMARD S, RYU G H. A comparison of physicochemical characteristics, texture, and structure of meat analogue and meats[J]. Journal of the Science of Food and Agriculture,2019,99(6):2708−2715. doi: 10.1002/jsfa.9438
    [10]
    PIETSCHVL, KARBSTEINHP, EMINMA. Kinetics of wheat gluten polymerizationatextrusion-like conditions relevant for the production of meatanalog products[J]. Food Hydrocolloids,2018,85:102−109. doi: 10.1016/j.foodhyd.2018.07.008
    [11]
    王旭, 于寒松, 代伟长. 大豆蛋白挤压组织化的研究进展[J]. 粮食与油脂,2020,33(4):7−9. [WANG X, YU H S, DAI W C. Research progress on the extrusion texturizatio of soybean protein[J]. Cereals & Oils,2020,33(4):7−9. doi: 10.3969/j.issn.1008-9578.2020.04.003
    [12]
    LI C J, KOEALSKI R J, LI L, et al. Extrusion expansion characteristics of samples of select varieties of whole yellow and green dry pea flours[J]. Cereal Chemistry,2017,94(3):385−391. doi: 10.1094/CCHEM-04-16-0079-R
    [13]
    刘日斌. 低温萃取工艺对芝麻油及芝麻粕品质影响的研究[D]. 郑州: 河南工业大学, 2014.

    LIU R B. The studies on effects of low temperature extraction process on qualities of sesame oils and sesame meals[D]. Zhengzhou: Henan University of Technology, 2014.
    [14]
    薛晓程, 李兴魁, 安红周, 等. 谷朊粉原料特性与挤压组织化蛋白品质关系的研究[J]. 河南工业大学学报(自然科学版),2017,38(4):29−34. [XUE X C, LI X K, AN H Z, et al. Correlation between the characteristics of wheat gluten and the quality of extruded textured protein[J]. Journal of Henan University of Technology(Natural Science Edition),2017,38(4):29−34. doi: 10.16433/j.cnki.issn1673-2383.2017.04.006
    [15]
    LI M, LEE T C. Effect of cysteine on the functional properties and microstructures of wheat flour extrudates[J]. Journal of Agricultural & Food Chemistry,1996,44(7):1871−1880.
    [16]
    刘文华, 张晖, 钱海峰, 等. 挤压对果蔬谷物早餐组分的变化研究[J]. 食品工业科技,2014,35(1):66−69,73. [LIU W H, ZHANG H, QIAN H F, et al. Research of the extrusion on the component changes of the fruit and vegetable breakfast cereal[J]. Science and Technology of Food Industry,2014,35(1):66−69,73. doi: 10.13386/j.issn1002-0306.2014.01.055
    [17]
    FISCHERT. Effect of extrusion cooking on protein modification in wheat flour[J]. European Food Research & Technology,2004,218(2):128−132.
    [18]
    PRUDENCIO-FERREIRA S H, AREAS J G. Protein-protein interactions in the extrusion of soya at various temperatures and moisture contents[J]. Journal of Food Science,1993,58(2):378−381. doi: 10.1111/j.1365-2621.1993.tb04279.x
    [19]
    马宁, 朱科学, 郭晓娜, 等. 挤压组织化对小麦面筋蛋白结构影响的研究[J]. 中国粮油学报,2013,28(1):60−64. [MA N, ZHU K X, GUO X N, et al. Study on the influence of textured extrusion on the structure of wheat gluten protein[J]. Journal of the Chinese Cereals and Oils Association,2013,28(1):60−64. doi: 10.3969/j.issn.1003-0174.2013.01.012
    [20]
    KITABATAKE N, DOIE. Surface tension and foaming of protein solutions[J]. Journal of Food Science,1982,47(4):1218−1221. doi: 10.1111/j.1365-2621.1982.tb07651.x
    [21]
    DEKKERS B L, NIKIFORIDISCV, GOOT A J, et al. Shear-induced fibrous structure formation from a pectin/SPI blend[J]. Innovative Food Science and Emerging Technologies,2016,36:193−200. doi: 10.1016/j.ifset.2016.07.003
    [22]
    夏延斌. 食品风味化学[M]. 北京: 化学工业出版社, 2008: 97−102.

    XIA Y B. Food flavor chemistry[M]. Beijing: Chemical Industrial Press, 2008: 97−102.
    [23]
    阎欣, 郭兴凤. 挤压膨化处理对大豆蛋白功能特性影响[J]. 粮食加工,2017,42(6):33−37. [YAN X, GUO X F. Effect of extrusion processing on functional properties of soy protein[J]. Grain Processing,2017,42(6):33−37.
    [24]
    刘忠萍, 华聘聘, 华欲飞. 大豆蛋白的挤压组织化研究[J]. 中国油脂,2003,28(5):64−66. [LIU Z P, HUA P P, HUA Y F. Study on extruded texturization of soybean protein[J]. China Oils and Fats,2003,28(5):64−66. doi: 10.3321/j.issn:1003-7969.2003.05.023
    [25]
    KE S L, HSIEH F H. Protein–protein interactions in high moisture-extruded meat analogs and heatinduced soy protein gels[J]. Journal of the American Oil Chemists Society,2007,84(8):741−748. doi: 10.1007/s11746-007-1095-8
    [26]
    ZHANG J, YING D, WEI Y, et al. Thermal transition and decomposition properties of pH- and phosphate-induced defatted soybean meals[J]. Journal of Thermal Analysis and Calorimetry,2017,128(2):699−706. doi: 10.1007/s10973-016-5991-8
    [27]
    HE S D, SHI J, WALID E, et al. Reverse micellar extraction of lectin from black turtle bean (Phaseolus vulgaris): Optimisation of extraction conditions by response surface methodology[J]. Food Chemistry,2015,166(1):93−100.
    [28]
    KOCH L, EMIN M A, SCHUCHMANN H P. Influence of processing conditions on the formation of whey protein-citrus pectin conjugates in extrusion[J]. Journal of Food Engineering,2017,193:1−9. doi: 10.1016/j.jfoodeng.2016.08.012
    [29]
    WANG Y, CHENY H, ZHOU Y, et al. Effects of konjac glucomannan on heat-induced changes of wheat gluten structure[J]. Food Chemistry,2017,229:409. doi: 10.1016/j.foodchem.2017.02.056
    [30]
    QIN X S, LUO S Z, CAI J, et al. Transglutaminase-induced gelation properties of soy protein isolate and wheat gluten mixtures with high intensity ultrasonic pretreatment[J]. Ultrasonics Sonochemistry,2016,31:590−597. doi: 10.1016/j.ultsonch.2016.02.010
    [31]
    LAM H S, PROCTOR A, NYALALA J, et al. Fourier transform infrared spectroscopy evaluation of low density lipoprotein oxidation in the presence of quercetin, catechin, and alpha-tocopherol[J]. Lipids,2005,40(6):569−574. doi: 10.1007/s11745-005-1417-x
    [32]
    CORDEIRO Y, KRAINEVA J, SUAREZ M C, et al. Fourier transform infrared spectroscopy provides a fingerprint for the tetramer and for the aggregates of transthyretin[J]. Biophysical Journal,2006,91(3):957−967. doi: 10.1529/biophysj.106.085928
    [33]
    房岩强, 魏益民, 张波. 蛋白质结构在挤压过程中的变化[J]. 中国粮油学报,2013,28(5):100−104. [FANG Y Q, WEI Y M, ZHANG B. Transformations of protein structure in extrusion[J]. Journal of the Chinese Cereals and Oils Association,2013,28(5):100−104. doi: 10.3969/j.issn.1003-0174.2013.05.020
  • Cited by

    Periodical cited type(17)

    1. 张根,陈宝锐,潘璐璐,王慧,杨波,卜钦鹏. 农产品抗生素残留现状及快速检测方法研究进展. 应用生态学报. 2024(05): 1408-1418 .
    2. 张波,郭二菱,黄笑晨,郭爱静,王可. 豆粉中31种杀菌剂残留的UPLC-MS/MS测定法. 职业与健康. 2024(12): 1590-1595 .
    3. 舒达,江敏,吴昊,王凌宇,李昊霖. 改良QuEChERs法联合超高效液相色谱-质谱法测定水产养殖池塘底泥中8种抗生素残留. 分析试验室. 2024(08): 1139-1145 .
    4. 杨飘飘,张静雅,刘红,李丽霞. 高效液相色谱-串联质谱法测定化妆品中禁用磺胺和喹诺酮类化合物. 日用化学工业(中英文). 2024(08): 997-1007 .
    5. 王宁,粟有志,阿斯喀·夏热甫汉,雷红琴,李艳美,李芳,王兴磊. QuEChERS净化-高效液相色谱-串联质谱法同时测定动物尿液中16种磺胺类和6种大环内酯类抗生素的残留量. 理化检验-化学分册. 2024(08): 802-809 .
    6. 魏宁果,贾亦森,范芳芳,吴坤. 基于QuEChERS原则的样品处理技术在动物源性食品兽药残留分析中的应用. 化学分析计量. 2024(09): 124-132 .
    7. 张晓艺,郑三燕,张秀尧,李瑞芬,杨舒然. 超高效液相色谱-三重四级杆质谱联用-内标法对豆芽中抗生素的测定. 上海预防医学. 2024(11): 1100-1105 .
    8. 潘永波,万娜,王承业,邹冬梅. 快速滤过型净化结合液相色谱-质谱联用法测定海产品中19种磺胺类药物残留. 食品工业科技. 2023(07): 320-328 . 本站查看
    9. 孙德军. 畜产品中磺胺类药物残留危害及检测技术的研究进展. 饲料工业. 2023(09): 73-80 .
    10. 邱启全,李美玲,孙悦. 微流控芯片联用高效液相色谱-荧光检测器同时测定肉类食品中4种磺胺类药物残留. 食品安全质量检测学报. 2023(09): 202-211 .
    11. 谷悦,唐会鑫,李朔,马玲,王可,杨莉丽. QuEChERS-超高效液相色谱-三重四极杆串联质谱法测定水果制品和肉酱中10种四环素类抗生素. 食品工业科技. 2023(18): 313-320 . 本站查看
    12. 马思琪,张敏,张世卓,崔圣宇,邵杰,王洋,孙辑凯,张宏莲. 食用鱼中残留的2种磺胺类成分TLC-SERS检测方法的建立. 中国食品工业. 2023(19): 63-65 .
    13. 邵丽,王晓,张伟,徐淑飞. QuEChERS方法应用研究进展. 安徽农业科学. 2023(24): 9-18 .
    14. 苏敏,吴彦蕾,邓惠玲,董宪兵,陈欣,黄大亮,周纯洁. QuEChERS-LC-MS/MS法快速检测鱼肉中54种兽药残留. 食品与发酵科技. 2023(06): 135-141 .
    15. 张慧芳,孙文. 高效液相色谱-串联质谱法测定牛奶中9种磺胺类药物残留不确定度的评定. 食品安全导刊. 2022(26): 92-94 .
    16. 洪妍妍,陈海玲,王翠玲,余艳明,王敏杰,李宝珠,庄春红. 样品前处理QuEChERS法及新型吸附材料在水产品中抗生素残留分析中的应用进展. 食品安全质量检测学报. 2022(21): 6898-6906 .
    17. 高云慨,陈小妹,陈春泉,肖璇,郑金明,尹青春. HPLC-MS/MS法测定罗非鱼中4种四环素类抗生素残留量及不确定度评定. 食品安全导刊. 2022(32): 97-101+105 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (208) PDF downloads (20) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return