WANG Yan, CHENG Meijia, XIE Jinhui, et al. Research Progress in Glucose Enzyme-free Rapid Detection Technology[J]. Science and Technology of Food Industry, 2022, 43(23): 467−476. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022020019.
Citation: WANG Yan, CHENG Meijia, XIE Jinhui, et al. Research Progress in Glucose Enzyme-free Rapid Detection Technology[J]. Science and Technology of Food Industry, 2022, 43(23): 467−476. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022020019.

Research Progress in Glucose Enzyme-free Rapid Detection Technology

More Information
  • Received Date: February 09, 2022
  • Available Online: October 07, 2022
  • Glucose detection is particularly important in the food and medical industry. Electrochemical enzyme-free detection and visual detection are widely used in the food industry, biological detection, medical and health and other fields because of its fast, convenient measurement and simple operation. And it has become a hot topic for researchers. This paper summarizes the technology of enzyme-free fast glucose detection at home and abroad. The research progress of enzyme-free glucose sensing technology is reviewed. And the application of these technology is discussed. Among them, the construction simulation enzyme technology in the electrochemical and visual detection are extensive research, discusses their application in clinical medicine and food analysis glucose detection, and the future of glucose enzyme-free detection technology research direction is prospected, for the subsequent development research and application in medical and agricultural industry provides a theoretical basis.
  • [1]
    SHOFARUL W, ACHILLEAS S. Enzyme-free detection of glucose with a hybrid conductive gel electrode[J]. Advanced Materials Interfaces,2019,1800928:1−10.
    [2]
    JOSEPH M P, CORNELIUS J F, ELIAS C C. Diabesity and antidiabetic drugs[J]. Molecular Aspects of Medicine,2019,66:3−12. doi: 10.1016/j.mam.2018.10.004
    [3]
    朱正卫, 王敬元. 金属化合物无酶葡萄糖传感器研究进展[J]. 广州化工,2021,49(20):11−12, 19. [ZHU Zhengwei, WANG Jingyuan. Progress in the enzyme-free glucose sensors of metal compounds[J]. Guangzhou Chemical Industry,2021,49(20):11−12, 19. doi: 10.3969/j.issn.1001-9677.2021.20.006
    [4]
    杨林鑫, 王研, 陈嘉茵, 等. 无酶葡萄糖电化学传感器的研究进展[J]. 东莞理工学院学报,2021,28(5):9. [YANG Linxin, WANG Yan, CHEN Jiayin, et al. Progress in the enzyme-less glucose electrochemical sensor[J]. Journal of Dongguan Institute of Technology,2021,28(5):9. doi: 10.16002/j.cnki.10090312.2021.05.012
    [5]
    肖沐航. 无酶葡萄糖传感器研究进展综述[J]. 萍乡学院学报,2015,32(6):55−58. [XIAO Muhang. Review of the research progress of enzyme-free glucose sensors[J]. Journal of Pingxiang College,2015,32(6):55−58. doi: 10.3969/j.issn.1007-9149.2015.06.014
    [6]
    CHEN J X, MA Q, LI M H, et al. Glucose-oxidase like catalytic mechanism of noble metal nanozymes[J]. Nature Communications,2021,12(1):1−9. doi: 10.1038/s41467-020-20314-w
    [7]
    LUO W, ZHU C, SU S, et al. Self-catalyzed, self-limiting growth of glucose oxidase-mimicking gold nanoparticles[J]. Acs Nano,2010,4(12):7451−7458. doi: 10.1021/nn102592h
    [8]
    ZHANG H, LIANG X, HAN L, et al. “Non-Naked” gold with glucose oxidase-like activity: A nanozyme for tandem catalysis[J]. Small,2018,14(44):183−256.
    [9]
    CAO L, WANG P, CHEN L, et al. A photoelectrochemical glucose sensor based on gold nanoparticles as a mimic enzyme of glucose oxidase[J]. RSC Advances,2019,9(27):15307−15313. doi: 10.1039/C9RA02088H
    [10]
    关桦楠, 龚德状, 宋岩, 等. 基于Fe3O4-PGA@Au构建无酶电化学生物传感器检测葡萄糖[J]. 食品科学,2020,41(12):267−272. [GUAN Huanan, GONG Dezhuang, SONG Yan, et al. Build an enzyme-free electrochemical biosensor based on Fe3O4-PGA@Au to detect glucose[J]. Food Science,2020,41(12):267−272. doi: 10.7506/spkx1002-6630-20190319-239
    [11]
    LI S Q, WANG L T, ZHANG X D, et al. A Co, N co-doped hierarchically porous carbon hybrid as a highly efficient oxidase mimetic for glutathione detection[J]. Sensors & Actuators B Chemical,2018,264:312−316.
    [12]
    CAO X, WANG N. A novel non-enzymatic glucose sensor modified with Fe2O3 nanowire arrays[J]. Analyst,2011,136(20):4241−4246. doi: 10.1039/c1an15367f
    [13]
    SHI W, ZHANG X, HE S, et al. CoFe2O4 magnetic nanoparticles as a peroxidase mimic me-diated chemiluminescence for hydrogen peroxide and glucose[J]. Chemical Communications,2011,47(38):10785−10787. doi: 10.1039/c1cc14300j
    [14]
    JV Y, LI B, et al. Positively-charged gold nanoparticles as peroxidiase mimic and their application in hydrogen peroxide and glucose detection[J]. Chemical Communications Royal Society of Chemistry,2010,46(42):8017−8019. doi: 10.1039/c0cc02698k
    [15]
    张雪红. 基于金纳米颗粒的可视化传感器的构建与应用[D]. 兰州: 西北师范大学, 2019.

    ZHANG Xuehong. Construction and application of visual sensors based on gold nanoparticles[D]. Lanzhou: Northwest Normal University, 2019.
    [16]
    WANG M, LIU F, CHEN D. An electrochemical enzyme-free glucose sensor based on bimetallic PtNi materials[J]. Journal of Materials Science: Materials in Electronics,2021,32(18):23445−23456. doi: 10.1007/s10854-021-06832-3
    [17]
    KHAIRULLINA E M, TUMLIN E M, TUMLIN I I, et al. Laser-assisted surface modification of Ni microstructures with Au and Pt toward cell biocompatibility and high enzyme-free glucose sensing[J]. ACS Omega,2021,6(28):18099−18109. doi: 10.1021/acsomega.1c01880
    [18]
    CHANDRASEKARAN N I, HARSHIMY M, THANGASAMY P, et al. A robust enzymeless glucose sensor based on tin nickel sulfide nanocomposite modified electrodes[J]. Applied Physics A,2021,127(1):1−9. doi: 10.1007/s00339-020-04132-x
    [19]
    DARABDHARA G, BORDOLOI J, MANNA P, et al. Biocompatible bimetallic Au-Ni doped graphitic carbon nitride sheets: A novel peroxidase-mimicking artificial enzyme for rapid and highly sensitive colorimetric detection of glucose[J]. Sensors and Actuators B: Chemical,2019,285:277−290. doi: 10.1016/j.snb.2019.01.048
    [20]
    BABULAL S M, CHEN S M, PALANI R, et al. Graphene oxide template based synthesis of NiCo2O4 nanosheets for high performance non-enzymatic glucose sensor[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2021,621:126600. doi: 10.1016/j.colsurfa.2021.126600
    [21]
    ZHAO J, ZHENG C, GAO J, et al. Co3O4 nanoparticles embedded in laser-induced graphene for a flexible and highly sensitive enzyme-free glucose biosensor[J]. Sensors and Actuators B: Chemical,2021,347:130653. doi: 10.1016/j.snb.2021.130653
    [22]
    PATIL A S, LOHAR G M, et al. Facile synthesis of CuO nanostructures for non-enzymatic glucose sensor by modified SILAR method[J]. Applied Physics A,2021,127(2):1−10.
    [23]
    刘东, 王周雷, 李帆, 等. CuOx@BPC 化学修饰电极的制备及其对葡萄糖检测研究[J]. 化学与生物工程,2021,38(4):59−64. [LIU Dong, WANG Zhoulei, LI Fan, et al. Preparation of chemically modified electrodes of CuOx@BPC and its study on glucose detection[J]. Chemistry and Bioengineering,2021,38(4):59−64. doi: 10.3969/j.issn.1672-5425.2021.04.011
    [24]
    JAQAGADEESAN M S, MOVLAEE K, KRISHNAKUMAR T, et al. One-step microwave-assisted synthesis and characteri-zation of novel CuO nanodisks for non-enzymatic glucose sensing[J]. Journal of Electroanalytical Chemistry,2019,835:161−168. doi: 10.1016/j.jelechem.2019.01.024
    [25]
    WANG X, GE C, CHEN K, et al. An ultrasensitive non-enzymatic glucose sensors based on controlled petal-like CuO nanostructure[J]. Electrochimica Acta,2018,259:225−232. doi: 10.1016/j.electacta.2017.10.182
    [26]
    LU N, SHAO C, LI X, et al. CuO/Cu2O nanofibers as electrode materials for non-enzymatic glucose sensors with improved sensitivity[J]. RSC Advances,2014,4(59):310561.
    [27]
    ZHAO Y, BO X, GUO L. Highly exposed copper oxide supported on three-dimensional porous reduced graphene oxide for non-enzymatic detection of glucose[J]. Electrochimica Acta,2015,176:1272−1279. doi: 10.1016/j.electacta.2015.07.143
    [28]
    WANG X, LIU E, ZHANG X. Non-enzymatic glucose biosensor based on copper oxide-reduced graphene oxide nanocomposites synthesized from water-isopropanol solution[J]. Electrochimica Acta,2014,130(4):253−260.
    [29]
    KIM K, LIM S, LEE H N, et al. Electrochemically derived CuO nanorod from copper-based metal-organic framework for non-enzymatic detection of glucose[J]. Applied Surface Science,2019,479.15):720−726.
    [30]
    ESMAEELI A, GHAFFARINEJIA A, ZAHEDI A, et al. Copper oxide-polyaniline nanofiber modified fluorine doped tin oxide (FTO) electrode as non-enzymatic glucose sensor[J]. Sensors and Actuators B: Chemical,2018,266:294−301. doi: 10.1016/j.snb.2018.03.132
    [31]
    VELMURUGAN M, KARIKALAN N, CHEN S M. Synthesis and characterizations of biscuit-like copper oxide for the non-enzymatic glucose sensor applications[J]. Journal of Colloid & Interface Science,2017,493:349−355.
    [32]
    QIAN C, HAN K, WENG W, et al. Electrochemical glucose sensor based on microporous Carbon/CuO@Carbon/AuNPs integrated electrode[J]. ChemistrySelect,2019,4(19):5633−5640. doi: 10.1002/slct.201900245
    [33]
    ARUNBALAJI S, VASUDEVAN R, ARIVANANDHAN M, et al. CuO/MoS2 nanocomposites for rapid and high sensitive non-enzymatic glucose sensors[J]. Ceramics International,2020,46(10):16879−16885. doi: 10.1016/j.ceramint.2020.03.265
    [34]
    周清清. 氧化铜/氧化亚铜的多级结构与组成调控及其在无酶葡萄糖传感器中的应用[D]. 苏州: 苏州大学, 2020.

    ZHOU Qingqing. Multistage structure and composition regulation of copper oxide/copper oxide and its application in enzyme-free glucose sensors[D]. Suzhou: Soochow University, 2020.
    [35]
    王永鹏, 徐子勃, 刘梦竹, 等. 多孔泡沫状CuO微纳米纤维的制备及用于无酶葡萄糖传感器[J]. 高等学校化学学报,2019,40(6):1310−1316. [WANG Yongpeng, XU Zibo, LIU Mengzhu, et al. Preparation of porous foam CuO micronanofibers and their use for an enzyme-free glucose sensor[J]. Journal of Higher Chemistry,2019,40(6):1310−1316. doi: 10.7503/cjcu20180854
    [36]
    PORE O C, FULARI A V, KAMBLE R K, et al. Hydrothermally synthesized Co3O4 microflakes for supercapacitor and non-enzymatic glucose sensor[J]. Journal of Materials Science: Materials in Electronics,2021,32(15):20742−20754. doi: 10.1007/s10854-021-06586-y
    [37]
    XU J, GAO Z, DOU X, et al. Needle-like Co3O4 nanoarrays as a dual-responsive amperometric sensor for enzyme-free detection of glucose and phosphate anion[J]. Journal of Electroanalytical Chemistry,2021,897:115605. doi: 10.1016/j.jelechem.2021.115605
    [38]
    KANG M, ZHOU H, ZHAO H, et al. Porous Co3O4 nanoplates as an efficient electromaterial for non-enzymatic glucose sensing[J]. Cryst Eng Comm,2020,22(1):35−43. doi: 10.1039/C9CE01396B
    [39]
    HAN J, MIAO L, SONG Y. Preparation of co-Co3O4/carbon nanotube/carbon foam for glucose sensor[J]. Journal of Molecu-lar Recognition,2020,33(3):112820.
    [40]
    PEI Y, HU M, TANG X, et al. Ultrafast one-pot anodic preparation of Co3O4/nanoporous gold composite electrode as an efficient nonenzymatic amperometric sensor for glucose and hydrogen peroxide[J]. Analytica Chimica Acta,2019,1059:49−58. doi: 10.1016/j.aca.2019.01.059
    [41]
    YANG Z, BAI X. Synthesis of Au core flower surrounding with sulphur-doped thin Co3O4 shell for enhanced nonenzymatic detection of glucose[J]. Microchemical Journal,2021,160:105601. doi: 10.1016/j.microc.2020.105601
    [42]
    HEYSER C, SCHREBLER R, GREZ P. New route for the synthesis of nickel (II) oxide nanostructures and its application as non-enzymatic glucose sensor[J]. Journal of Electroanalytical Chemistry,2019,832:189−195. doi: 10.1016/j.jelechem.2018.10.054
    [43]
    WANG Q, ZHENG S, LI T, et al. Ni/NiO multivalent system encapsulated in nitrogen-doped graphene realizing efficient activation for non-enzymatic glucose sensing[J]. Ceramics International,2021,47(16):22869−22880. doi: 10.1016/j.ceramint.2021.04.307
    [44]
    ZHOU J, YIN H, WANG L, et al. Electrodeposition of Au@NiO nanotube arrays for highly sensitive non-enzymatic glucose sensing[J]. Journal of Electronic Materials,2021,50(11):6392−6402. doi: 10.1007/s11664-021-09154-6
    [45]
    CHAKRABORTY P, DEKA N, PATRA D C, et al. Salivary glucose sensing using highly sensitive and selective non-enzymatic porous NiO nanostructured electrodes[J]. Surfaces and Interfaces,2021,26:101324. doi: 10.1016/j.surfin.2021.101324
    [46]
    ZHOU Y, FANG Y, RAMASAMY R P. Non-covalent fun-ctionalization of carbon nanotubes for electrochemical biosensor development[J]. Sensors,2019,19(2):392. doi: 10.3390/s19020392
    [47]
    PORE O C, FULARI A V, VEHAL N B, et al. Hydrothermally synthesized urchinlike NiO nanostructures for supercapacitor and nonenzymatic glucose biosensing application[J]. Materials Science in Semiconductor Processing,2021,134:105980. doi: 10.1016/j.mssp.2021.105980
    [48]
    ZHOU F, WANG Q, HUANG K, et al. Flame synthesis of NiO nanoparticles on carbon cloth: An efficient non-enzymatic sensor for glucose and formaldehyde[J]. Microchemical Journal,2020,159:105505. doi: 10.1016/j.microc.2020.105505
    [49]
    ZHANG Y, LIU Y Q, BAI Y, et al. Confinement preparation of hierarchical NiO-N-doped carbon@ reduced graphene oxide microspheres for high-performance non-enzymatic detection of glucose[J]. Sensors and Actuators B: Chemical,2020,309:127779. doi: 10.1016/j.snb.2020.127779
    [50]
    YIN H, ZHAN T, CHEN J, et al. Polyhedral NiO/C porous composites derived by controlled pyrolysis of Ni-MOF for highly efficient non-enzymatic glucose detection[J]. Journal of Materials Science: Materials in Electronics,2020,31(5):4323−4335. doi: 10.1007/s10854-020-02990-y
    [51]
    ZHU L, WEI Z, WANG J, et al. An electrochemical biosensor based on NiO nanoflowers/polymethylene blue composite for non-enzymatic glucose detection[J]. Journal of The Electrochemical Society,2020,167(14):146512. doi: 10.1149/1945-7111/abc5dc
    [52]
    SINGER N, PILLAI R G, JOHNSON A I D, et al. Nanostructured nickel oxide electrodes for non-enzymatic electrochemical glucose sensing[J]. Microchimica Acta,2020,187(4):1−10.
    [53]
    RAHMAN M M, HUSSIN M M, ASIRI A M. Glucose sensor based on ZnO· V2O5 NRs by an enzyme-free electrochemical approach[J]. RSC Advances,2019,9(54):31670−31682. doi: 10.1039/C9RA06491E
    [54]
    HUANG M, FENG S, YANG C, et al. Construction of an MnO2 nanosheet array 3D integrated electrode for sensitive enzyme-free glucose sensing[J]. Analytical Methods,2021,13(10):1247−1254. doi: 10.1039/D0AY02163F
    [55]
    JUANG F R, WANG T M. Surfactant-free synthesis of self-assembled CuO spheres composited with MnO2 nanorods for non-enzymatic glucose detection[J]. Physica E Low-dimensional Systems and Nanostructures,2021,134:114831. doi: 10.1016/j.physe.2021.114831
    [56]
    SINHA L, PAKHIRA S, BHJANE P, et al. Hybridization of Co3O4 and α-MnO2 nanostructures for high-performance nonenzymatic glucose sensing[J]. ACS Sustainable Chemistry & Engineering,2018,6(10):13248−13261.
    [57]
    MAO Q, JING W, GAO W, et al. High-sensitivity enzymatic glucose sensor based on ZnO urchin-like nanostructure modified with Fe3O4 magnetic particles[J]. Micromachines,2021,12(8):977. doi: 10.3390/mi12080977
    [58]
    HOVANCOVA J, SISOLAKOVA I, VANYSEK P, et al. Ligand-to-metal charge transfer (LMCT) complex: New approach to non-enzymatic glucose sensors based on TiO2[J]. Journal of Electroanalytical Chemistry,2020,878:114589. doi: 10.1016/j.jelechem.2020.114589
    [59]
    WANG S Z, ZHENG M, ZHANG X, et al. Flowerlike CuO/Au nanoparticle heterostructures for nonenzymatic glucose detection[J]. ACS Applied Nano Materials,2021,4(6):5808−5815. doi: 10.1021/acsanm.1c00607
    [60]
    HAO N, HUA R, CHEN S, et al. Multiple signal-amplification via Ag and TiO2, decorated 3D Ni-trogen doped graphene hydrogel for fabricating sensitive label-free photoelectrochemical thrombin aptasensor[J]. Biosensors and Bioelectronics,2018,101:14−20. doi: 10.1016/j.bios.2017.10.014
    [61]
    李甜, 吴心茹, 石京慧, 等. 基于纳米金银染放大的葡萄糖可视化检测[J/OL]. 分析试验室: 1−6 [2022-01-16]. http://kns.cnki.net/kcms/detail/11.2017.TF.20211220.1115.008.html.

    LI Tian, WU Xinru, SHI Jinghui, et al. Glucose visualization detection based on nanosilver dye magnification[J/OL]. Analysis Laboratory: 1−6 [2022-01-16]. http://kns.cnki.net/kcms/detail/11.2017.TF.20211220.1115.008.html.
    [62]
    高妍. 基于金/银纳米材料的无酶葡萄糖光化学传感研究[D]. 苏州: 苏州大学, 2016.

    GAO Yan. Enzyme-free glucose photochemical sensing studies based on gold/silver nanomaterials[D]. Suzhou: Soochow University, 2016.
    [63]
    杨培昕, 喻昌木, 杨敏, 等. 固载离子液体修饰Fe3O4纳米酶用于H2O2和葡萄糖的检测[J]. 食品科学,2021,42(20):252−259. [YANG Peixi, YU Changmu, YANG Min, et al. Solid-loading ionic liquid-modified Fe3O4 nanoenzymes were used for the detection of H2O2 and glucose[J]. Food Science,2021,42(20):252−259. doi: 10.7506/spkx1002-6630-20200924-296
    [64]
    HUANG Y, ZHAO M T, HAN S K, et al. Growth of Au nanoparticles on 2D metalloporphyrinic metal-organic framework nanosheets used as biomimetic catalysts for cascade reactions[J]. Adv Mater,2017,29(32):1700102−1700107. doi: 10.1002/adma.201700102
    [65]
    吴科研. 杂原子掺杂碳纳米材料过氧化物模拟酶的合成与应用研究[D]. 长春: 东北师范大学, 2021.

    WU Keyan. Synthesis and application of the doped carbon nanomaterials[D]. Changcun: Northeast Normal University, 2021.
    [66]
    GANGANBOINA A B, DONG R A. V2O5 nanosheets as nanozyme with peroxidase-like activity and their application for rapid and sensitive detection of glutathione[C]//256th ACS National Meeting, 2018.
    [67]
    SONG Y, QU K, ZHAO C, et al. Graphene oxide: Intrinsic peroxidase catalytic activity and its application to glucose detection[J]. Advanced Materials,2010,22:2206−2210. doi: 10.1002/adma.200903783
    [68]
    SHI W B, WANG Q L, LONG Y J, et al. Carbon nanodots as peroxide-se mimetics and their ap-plications to glucose detection[J]. Chem Commun,2011,47(23):6695−6697. doi: 10.1039/c1cc11943e
    [69]
    KUO P C, LIEN C W, MAO J Y, et al. Detection of urinary spermine by using silver-gold/silver chloride nanozymes[J]. Anal Chim Acta,2018,1009:89−97. doi: 10.1016/j.aca.2018.01.018
    [70]
    LIU W, DING F, WANG Y, et al. Fluorometric and colorimetric sensor array for discrimination of glucose using enzymatic-triggered dual-signal system consisting of Au@Ag nanoparticles and carbon nanodots[J]. Sensors and Actuators B: Chemical,2018,265:310−317. doi: 10.1016/j.snb.2018.03.060
    [71]
    CHEN L, DOTZERT M. Nanostructured biosensor using bioluminescence quenching technique for glucose detection[J]. Journal of Nanobiotechnology,2017,15(1):59. doi: 10.1186/s12951-017-0294-1
    [72]
    HH MAI, JANSSENS E. Au nanoparticle-decorated ZnO nanorods as fluorescent non-enzymatic glucose probe[J]. Microchimica Acta,2020,187(10):1−11.
    [73]
    RASHTBARI S, DEHGHAN G, AMINI M. An ultrasensitive label-free colorimetric biosensor for the detection of glucose based on glucose oxidase-like activity of nanolayered manganese-calcium oxide[J]. Analytica Chimica Acta,2020,1110:98−108. doi: 10.1016/j.aca.2020.03.021
    [74]
    朱巍然, 郝楠, 杨小弟, 等. 基于二氧化锰-氧掺杂氮化碳级联催化的无酶比色检测葡萄糖研究[J]. 分析化学,2020,48(6):727−732. [ZHU Weiran, HAO Nan, YANG Xiaodi, et al. Study on enzyme-free colorimetric glucose detection based on manganese dioxide-oxygen-doped carbon nitride cascade catalysis[J]. Analytical Chemistry,2020,48(6):727−732. doi: 10.19756/j.issn.0253-3820.201047
    [75]
    ZHANG J, DAI X, SONG Z L, et al. One-pot enzyme-and indicator-free colorimetric sensing of glucose based on MnO2 nano-oxidizer[J]. Sensors and Actuators B: Chemical,2020,304:127304. doi: 10.1016/j.snb.2019.127304
    [76]
    吴雪梅. 基于环肽模拟物的葡萄糖可视化比色检测技术[D]. 天津: 天津科技大学, 2020.

    WU Xumei. Glucose visualization and colorimetric detection techniques based on cyclic peptide mimics[D]. Tianjin: Tianjin University of Science and Technology, 2020.
  • Related Articles

    [1]cover[J]. Science and Technology of Food Industry, 2022, 43(24).
    [2]cover[J]. Science and Technology of Food Industry, 2022, 43(22).
    [3]cover[J]. Science and Technology of Food Industry, 2022, 43(19).
    [4]cover[J]. Science and Technology of Food Industry, 2022, 43(18).
    [5]cover[J]. Science and Technology of Food Industry, 2022, 43(17).
    [6]cover[J]. Science and Technology of Food Industry, 2022, 43(13).
    [7]cover[J]. Science and Technology of Food Industry, 2022, 43(11).
    [8]Cover[J]. Science and Technology of Food Industry, 2022, 43(9).
    [9]cover[J]. Science and Technology of Food Industry, 2022, 43(8).
    [10]cover[J]. Science and Technology of Food Industry, 2022, 43(7).

Catalog

    Article Metrics

    Article views (320) PDF downloads (56) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return