Citation: | HAN Kunchen, ZHU Wenjun, ZHAO Haiyan, et al. Exploring the Beneficial Effects of Guangxi Longevity Dietary Patterns on Human Body Based on Metabolomics[J]. Science and Technology of Food Industry, 2022, 43(15): 9−18. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022010237. |
[1] |
KE C, XU H, CHEN Q, et al. Serum metabolic signatures of high myopia among older Chinese adults[J]. Eye,2021,35(3):817−824. doi: 10.1038/s41433-020-0968-z
|
[2] |
FLOEGEL A, STEFAN N, YU Z, et al. Identification of serum metabolites associated with risk of Type 2 diabetes using a targeted metabolomic approach[J]. Diabetes,2013,62(2):639−648. doi: 10.2337/db12-0495
|
[3] |
ZHANG Y, ZHANG H, CHANG D, et al. Metabolomics approach by 1 H NMR spectroscopy of serum reveals progression axes for asymptomatic hyperuricemia and gout[J]. Arthritis Res Ther,2018,20(1):111. doi: 10.1186/s13075-018-1600-5
|
[4] |
RAWAT A, MISRA G, SAXENA M, et al. (1)H NMR based serum metabolic profiling reveals differentiating biomarkers in patients with diabetes and diabetes-related complication[J]. Diabetes Metab Syndr,2019,13(1):290−298. doi: 10.1016/j.dsx.2018.09.009
|
[5] |
朱莹莹, 李春保, 周光宏. 饮食、肠道微生物与健康的关系研究进展[J]. 食品科学,2015,36(15):234−239. [ZHU Y Y, LI C B, ZHOU G H. Advances in the associations of diet with gut microbiota and human health[J]. Food Science,2015,36(15):234−239. doi: 10.7506/spkx1002-6630-201515043
ZHU Y Y, LI C B, ZHOU G H. Advances in the associations of diet with gut microbiota and human health[J]. Food Science, 2015, 36(15): 234-239. doi: 10.7506/spkx1002-6630-201515043
|
[6] |
REEDY J, KREBS-SMITH S M, MILLER P E, et al. Higher diet quality is associated with decreased risk of all-cause, cardiovascular disease, and cancer mortality among older adults[J]. J Nutr,2014,144(6):881−889. doi: 10.3945/jn.113.189407
|
[7] |
ARCHUNDIA HERRERA M C, SUBHAN F B, CHAN C B. Dietary patterns and cardiovascular disease risk in people with Type 2 diabetes[J]. Current Obesity Reports,2017,6(4):405−413. doi: 10.1007/s13679-017-0284-5
|
[8] |
MATSUYAMA S, ZHANG S, TOMATA Y, et al. Association between improved adherence to the Japanese diet and incident functional disability in older people: The Ohsaki Cohort 2006 study[J]. Clinical Nutrition, 2019, 39(7).
|
[9] |
HU E A, CORESH J, ANDERSON C, et al. Adherence to healthy dietary patterns and risk of CKD progression and all-cause mortality: Findings from the CRIC (Chronic Renal Insufficiency Cohort) study[J]. American Journal of Kidney Diseases, 2020.
|
[10] |
MICHALCZYK M M, KLONEK G, MASZCZYK A, et al. The effects of a low calorie ketogenic diet on glycaemic control variables in hyperinsulinemic overweight/obese females[J]. Nutrients,2020,12(6):1854. doi: 10.3390/nu12061854
|
[11] |
PASANISI P, GARIBOLDI M, VERDERIO P, et al. A pilot low-inflammatory dietary intervention to reduce inflammation and improve quality of life in patients with familial adenomatous polyposis: Protocol description and preliminary results[J]. 2019, 18(11): 153473541984640.
|
[12] |
POLL B G, CHEEMA M U, PLUZNICK J L. Gut microbial metabolites and blood pressure regulation: Focus on SCFAs and TMAO[J]. Physiology (Bethesda),2020,35(4):275−284.
|
[13] |
蔡达. 广西长寿之乡老人饮食与代谢特征及其相关性研究[D]. 南宁: 广西大学, 2017.
CAI D. A correlation between diet and metabolic characteristics of healthy elderly people from longevous region in Guangxi province[D]. Nanning: Guangxi University, 2017.
|
[14] |
宋奇, 艾连中, 鲁红岩, 等. 巴马长寿饮食模式在衰老小鼠模型中的抗氧化应激效果[J]. 食品科学,2018,39(19):147−153. [SONG Q, AI L Z, LU H Y, et al. Effect of Bama longevity dietary patterns on antioxidant stress in a mouse model of aging[J]. Food Science,2018,39(19):147−153. doi: 10.7506/spkx1002-6630-201819023
SONG Q, AI L Z, LU H Y, et al. Effect of Bama longevity dietary patterns on antioxidant stress in a mouse model of aging[J]. Food Science, 2018, 39(19): 147-153. doi: 10.7506/spkx1002-6630-201819023
|
[15] |
黄燕婷, 梅丽华, 潘海博, 等. 巴马长寿特征饮食模式对自然衰老小鼠的抗衰老效果[J]. 食品科学,2021,42(5):137−144. [HUANG Y T, MEI L H, PAN H B, et al. Anti-aging effect of Bama longevity characteristic dietary patterns in naturally aging mice[J]. Food Science,2021,42(5):137−144. doi: 10.7506/spkx1002-6630-20200229-328
HUANG Y T, MEI L H, PAN H B, et al. Anti-aging effect of Bama longevity characteristic dietary patterns in naturally aging mice[J]. Food Science, 2021, 42(5): 137-144. doi: 10.7506/spkx1002-6630-20200229-328
|
[16] |
祁波, 谢辉辉, 李国芳, 等. 金欣口服液对呼吸道合胞病毒诱发支气管哮喘模型小鼠血浆短链脂肪酸的影响[J]. 中医儿科杂志,2021,17(4):11−17. [QI B, XIE H H, LI G F, et al. Effects of Jinxin Koufuye on plasma short-chain fatty acids in respiratory syncytial virus-induced bronchial asthma in model mice[J]. Journal of Pediatrics of Traditional Chinese Medicine,2021,17(4):11−17.
QI B, XIE H H, LI G F, et al. Effects of Jinxin Koufuye on plasma short-chain fatty acids in respiratory syncytial virus-induced bronchial asthma in model mice[J]. Journal of Pediatrics of Traditional Chinese Medicine, 2021, 17(4): 11-17.
|
[17] |
BRONS C, SPOHR C, STORGAARD H, et al. Effect of taurine treatment on insulin secretion and action, and on serum lipid levels in overweight men with a genetic predisposition for Type II diabetes mellitus[J]. Eur J Clin Nutr,2004,58(9):1239−1247. doi: 10.1038/sj.ejcn.1601955
|
[18] |
BROSKEY N T, ZOU K, DOHM G L, et al. Plasma lactate as a marker for metabolic health[J]. Exercise and Sport Sciences Reviews,2020,48(3):119−124.
|
[19] |
DU S, SUN S, LIU L, et al. Effects of histidine supplementation on global serum and urine (1)H NMR-based metabolomics and serum amino acid profiles in obese women from a randomized controlled study[J]. J Proteome Res,2017,16(6):2221−2230. doi: 10.1021/acs.jproteome.7b00030
|
[20] |
HTUN K T, PAN J, PASANTA D, et al. Identification of metabolic phenotypes in young adults with obesity by (1)H NMR metabolomics of blood serum[J]. Life (Basel), 2021, 11(6).
|
[21] |
CAMPOS-PEREZ W, MARTINEZ-LOPEZ E. Effects of short chain fatty acids on metabolic and inflammatory processes in human health[J]. Biochim Biophys Acta Mol Cell Biol Lipids,2021,1866(5):158900.
|
[22] |
DAVID L A, MAURICE C F, CARMODY R N, et al. Diet rapidly and reproducibly alters the human gut microbiome[J]. Nature,2014,505(7484):559−563. doi: 10.1038/nature12820
|
[23] |
BRÜSSOW H, PARKINSON S J. You are what you eat[J]. Nature Biotechnology,2014,32(3):243−245. doi: 10.1038/nbt.2845
|
[24] |
PALVIAINEN M, LAUKKANEN K, TAVUKCUOGLU Z, et al. Cancer alters the metabolic fingerprint of extracellular vesicles[J]. Cancers (Basel), 2020, 12(11).
|
[25] |
WARE L J, RENNIE K L, KRUGER H S, et al. Evaluation of waist-to-height ratio to predict 5 year cardiometabolic risk in sub-Saharan African adults[J]. Nutr Metab Cardiovasc Dis,2014,24(8):900−907. doi: 10.1016/j.numecd.2014.02.005
|
[26] |
WHITE E S, XIA M, MURRAY S, et al. Plasma surfactant protein-D, matrix metalloproteinase-7, and osteopontin index distinguishes idiopathic pulmonary fibrosis from other idiopathic interstitial pneumonias[J]. Am J Respir Crit Care Med,2016,194(10):1242−1251. doi: 10.1164/rccm.201505-0862OC
|
[27] |
KOUIDHI S, ZIDI O, ALHUJAILY M, et al. Fecal metabolomics reveals distinct profiles of kidney transplant recipients and healthy controls[J]. Diagnostics (Basel), 2021, 11(5).
|
[28] |
BRISSON D, VOHL M C, PIERRE S T J, et al. Glycerol: A neglected variable in metabolic processes?[J]. BioEssays,2001,23(6):534−452. doi: 10.1002/bies.1073
|
[29] |
周小理, 张欢, 周一鸣, 等. 基于代谢组学研究苦荞蛋白对高脂血症小鼠的干预作用[J]. 食品科学,2019,40(5):149−155. [ZHOU X L, ZHANG H, ZHOU Y M, et al. Metabonomic Study of the intervention effect of tartary buckwheat protein on hyperlipidemic mice[J]. Food Science,2019,40(5):149−155. doi: 10.7506/spkx1002-6630-20171030-354
ZHOU X L, ZHANG H, ZHOU Y M, et al. Metabonomic Study of the intervention effect of tartary buckwheat protein on hyperlipidemic mice[J]. Food Science, 2019, 40(5): 149-155. doi: 10.7506/spkx1002-6630-20171030-354
|
[30] |
KIM Y, KIM Y. L-histidine and L-carnosine exert anti-brain aging effects in D-galactose-induced aged neuronal cells[J]. Nutr Res Pract,2020,14(3):188−202. doi: 10.4162/nrp.2020.14.3.188
|
[31] |
FENG R N, NIU Y C, SUN X W, et al. Histidine supplementation improves insulin resistance through suppressed inflammation in obese women with the metabolic syndrome: A randomised controlled trial[J]. Diabetologia,2013,56(5):985−994. doi: 10.1007/s00125-013-2839-7
|
[32] |
COOPERMAN J M, LOPEZ R. The role of histidine in the anemia of folate deficiency[J]. Experimental biology and medicine (Maywood, N J),2002,227(11):998−1000. doi: 10.1177/153537020222701107
|
[33] |
HEFNI M E, WITTHÖFT C M, MOAZZAMI A A. Plasma metabolite profiles in healthy women differ after intervention with supplemental folic acid v. folate-rich foods[J]. Journal of Nutritional Science,2018,7:e32. doi: 10.1017/jns.2018.22
|
[34] |
NIU Y C, FENG R N, HOU Y, et al. Histidine and arginine are associated with inflammation and oxidative stress in obese women[J]. Br J Nutr,2012,108(1):57−61. doi: 10.1017/S0007114511005289
|
[35] |
ADEVA-ANDANY M, LÓPEZ-OJÉN M, FUNCASTA-CALDERÓN R, et al. Comprehensive review on lactate metabolism in human health[J]. Mitochondrion,2014,17:76−100. doi: 10.1016/j.mito.2014.05.007
|
[36] |
SCHMEDES M, BALDERAS C, AADLAND E K, et al. The effect of lean-seafood and non-seafood diets on fasting and postprandial serum metabolites and lipid species: Results from a randomized crossover intervention study in healthy adults[J]. Nutrients, 2018, 10(5): 598.
|
[37] |
XU J, LIU C, CAI S, et al. Metabolomic profilings of urine and serum from high fat-fed rats via 1h nmr spectroscopy and pattern recognition[J]. Applied Biochemistry and Biotechnology,2013,169(4):1250−1261. doi: 10.1007/s12010-012-0072-3
|
[38] |
CASTAGNARO S, PELLEGRINI C, PELLEGRINI M, et al. Autophagy activation in COL6 myopathic patients by a low-protein-diet pilot trial[J]. Autophagy,2016,12(12):2484−2495. doi: 10.1080/15548627.2016.1231279
|
[39] |
BOUZIER-SORE A K, VOISIN P, BOUCHAUD V, et al. Competition between glucose and lactate as oxidative energy substrates in both neurons and astrocytes: A comparative NMR study[J]. European Journal of Neuroscience,2006,24(6):1687−1694. doi: 10.1111/j.1460-9568.2006.05056.x
|
[40] |
GRAY L R, TOMPKINS S C, TAYLOR E B. Regulation of pyruvate metabolism and human disease[J]. Cellular and Molecular Life Sciences,2014,71(14):2577−2604. doi: 10.1007/s00018-013-1539-2
|
[41] |
KONSTANTINOVA S V, TELL G S, VOLLSET S E, et al. Divergent associations of plasma choline and betaine with components of metabolic syndrome in middle age and elderly men and women[J]. The Journal of Nutrition,2008,138(5):914−920. doi: 10.1093/jn/138.5.914
|
[42] |
GUERTIN K A, LI X S, GRAUBARD B I, et al. Serum trimethylamine N-oxide, carnitine, choline, and betaine in relation to colorectal cancer risk in the alpha tocopherol, beta carotene cancer prevention study[J]. Cancer Epidemiol Biomarkers Prev,2017,26(6):945−952. doi: 10.1158/1055-9965.EPI-16-0948
|
[43] |
HEIANZA Y, SUN D, SMITH S R, et al. Changes in gut microbiota–related metabolites and long-term successful weight loss in response to weight-loss diets: The pounds lost trial[J]. Diabetes Care,2018,41(3):413−419. doi: 10.2337/dc17-2108
|
[44] |
PENG J, XIAO X, HU M, et al. Interaction between gut microbiome and cardiovascular disease[J]. Life Sci,2018,214:153−157. doi: 10.1016/j.lfs.2018.10.063
|
[45] |
ABBASALIZAD FARHANGI M, VAJDI M. Gut microbiota-associated trimethylamine N-oxide and increased cardiometabolic risk in adults: A systematic review and dose-response meta-analysis[J]. Nutr Rev,2021,79(9):1022−1042. doi: 10.1093/nutrit/nuaa111
|
[46] |
高中山, 任明, 刘杏利, 等. 短链脂肪酸在冠心病防治中的研究进展[J]. 临床心血管病杂志,2021,37(11):1062−1066. [GAO Z S, REN M, LIU X L, et al. Research progress on short chain fatty acids in prevention and treatment of coronary heart disease[J]. Journal of Clinical Cardiology,2021,37(11):1062−1066.
GAO Z S, REN M, LIU X L, et al. Research progress on short chain fatty acids in prevention and treatment of coronary heart disease[J]. Journal of Clinical Cardiology, 2021, 37(11): 1062-1066.
|
[47] |
AGUILAR E C, LEONEL A J, TEIXEIRA L G, et al. Butyrate impairs atherogenesis by reducing plaque inflammation and vulnerability and decreasing NFκB activation[J]. Nutrition, Metabolism and Cardiovascular Diseases,2014,24(6):606−613. doi: 10.1016/j.numecd.2014.01.002
|
[48] |
ROSHANRAVAN N, MAHDAVI R, ALIZADEH E, et al. Effect of butyrate and inulin supplementation on glycemic status, lipid profile and glucagon-like peptide 1 level in patients with Type 2 diabetes: A randomized double-blind, placebo-controlled trial[J]. Horm Metab Res,2017,49(11):886−891. doi: 10.1055/s-0043-119089
|
[49] |
PAPARO L, CALIGNANO A, TOCCHETTI C G, et al. The influence of fiber on gut microbiota: Butyrate as molecular player involved in the beneficial interplay between dietary fiber and cardiovascular health[M]. Dietary Fiber for the Prevention of Cardiovascular Disease, 2017: 61−71.
|
[50] |
QUERCIA S, TURRONI S, FIORI J, et al. Gut microbiome response to short-term dietary interventions in reactive hypoglycemia subjects[J]. Diabetes/Metabolism Research and Reviews,2017,33(8):e2927.
|
[51] |
JEE S H, OHRR H, SULL J W, et al. Fasting serum glucose level and cancer risk in korean men and women[J]. JAMA,2005,293(2):194−202. doi: 10.1001/jama.293.2.194
|
[52] |
SOTO-HEREDERO G, GOMEZ DE LAS HERAS M M, GABANDE-RODRIGUEZ E, et al. Glycolysis-a key player in the inflammatory response[J]. Febs J,2020,287(16):3350−3369. doi: 10.1111/febs.15327
|
[53] |
FU Y, YIN R, LIU Z, et al. Hypoglycemic effect of prolamin from cooked foxtail millet (Setaria italic) on streptozotocin-induced diabetic mice[J]. Nutrients, 2020, 12(11): 3452.
|
1. |
江英杰,李明昊,罗开沛,杨露. 石斛多糖的药理作用及现代应用进展. 中药与临床. 2024(01): 97-102 .
![]() | |
2. |
李祥坤,曾亦菡. 响应面优化霍山石斛百香果复合饮料工艺及抗运动疲劳研究. 中国食品添加剂. 2023(01): 272-281 .
![]() | |
3. |
王再花,叶广英,曾灿彪,叶庆生,黄秀红. 铁皮石斛饮料杀菌工艺研制及品质分析. 中国农学通报. 2023(16): 124-130 .
![]() | |
4. |
赵健,周忠光,黄家鹏,林春盛,宫铭海,杨波. 药食同源中草药在防治认知功能障碍中的应用及作用机制研究进展. 医学综述. 2022(08): 1598-1605 .
![]() | |
5. |
赵云龙. 芜菁山楂复合饮料配方优化及其对运动耐力的影响. 食品工业科技. 2022(14): 401-408 .
![]() | |
6. |
赵静. 运动疲劳机制及食源性抗疲劳活性成分研究进展. 食品安全质量检测学报. 2021(09): 3565-3571 .
![]() |