Citation: | SUN Jing, YANG Tong, ZHANG Zhihao, et al. Physiological Response and Principal Component Analysis of Morchella sextelata Mycelia under NaCl Stress[J]. Science and Technology of Food Industry, 2022, 43(22): 155−164. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022010064. |
[1] |
CAI R H, DAI W, ZHANG C S, et al. The maize WRKY transcription factor ZmWRKY17 negatively regulates salt stress tolerance in transgenic Arabidopsis plants[J]. Planta,2017,246(6):1215−1231. doi: 10.1007/s00425-017-2766-9
|
[2] |
汪军成. 盐生草盐分区隔化耐盐机制研究[D]. 兰州: 甘肃农业大学, 2017
WANG J C. Study on the salt tolerance mechanisms of ion compartmentation in halophyte Halogeton glomeratus[D]. Lanzhou: Gansu Agricultural University, 2017.
|
[3] |
TILKAT E A, KAPLAN A, TILKAT E, et al. Effects of salt stress on morpho-physiological and biochemical characters of Lentisk (P. lentiscus L.)[J]. International Journal of Nature and Life Science,2019,3(1):20−31.
|
[4] |
徐成龙, 董奕岑, 卢家磊, 等. 我国滨海盐碱地土壤改良及资源化利用研究进展[J]. 世界林业研究,2020,33(6):68−73. [XU C L, DONG Y C, LU J L, et al. Research progress of soil improvement and soil resources utilization of coastal saline-alkaline land in China[J]. World Forestry Research,2020,33(6):68−73. doi: 10.13348/j.cnki.sjlyyj.2020.0056.y
|
[5] |
KIRK P M, CANNON P F, MINTER D W, et al. Dictionary of the fungi[M]. 10th Ed. Wallingford: CABI Europe-UK, 2008.
|
[6] |
DU X H, ZHAO Q, YANG Z L. A review on research advances, issues, and perspectives of morels[J]. Mycology,2015,6(2):78−85. doi: 10.1080/21501203.2015.1016561
|
[7] |
ROSSBACH M, KUMMERLE E, SCHMIDT S, et al. Elemental analysis of Morchella esculenta from Germany[J]. Journal of Radioanalytical and Nuclear Chemistry,2017,313(1):273−278. doi: 10.1007/s10967-017-5298-7
|
[8] |
LI Y, YUAN Y, LEI L, et al. Carboxymethylation of polysaccharide from Morchella angusticepes Peck enhances its cholesterol-lowering activity in rats[J]. Carbohydrate Polymers,2017,172:85−92. doi: 10.1016/j.carbpol.2017.05.033
|
[9] |
TASKIN H, SUFER Ö, ATTAR Ş H, et al. Total phenolics, antioxidant activities and fatty acid profiles of six Morchella species[J]. Journal of Food Science and Technology,2020,58(2):692−700.
|
[10] |
HAN M, WANG Q S, BAIYINTALA, et al. The whole-genome sequence analysis of Morchella sextelata[J]. Scientific Reports,2019,9(2):15376−15387.
|
[11] |
DU X H, ZHAO Q, O'DONNELL K, et al. Multigene molecular phylogenetics reveals true morels (Morchella) are especially species-rich in China[J]. Fungal Genetics and Biology,2012,49(6):455−469. doi: 10.1016/j.fgb.2012.03.006
|
[12] |
DU X H, ZHAO Q, XU J P. High inbreeding, limited recombination and divergent evolutionary patterns between two sympatric morel species in China[J]. Scientific Reports,2016,6(1):22434−22446. doi: 10.1038/srep22434
|
[13] |
KAUR H K, KARAN A, RAMESH G, et al. Molecular characterization of Morchella species from the Western Himalayan region of India[J]. Current Microbiology,2011,62(4):1245−1252. doi: 10.1007/s00284-010-9849-1
|
[14] |
杨彤, 孙静, 郝宸, 等. 盐胁迫下六妹羊肚菌菌丝体的理化性状[J]. 食品与发酵工业,2022,48(18):162−167. [YANG T, SUN J, HAO C, et al. Study on physicochemical properties of Morchella sextelata mycelium under salt stress[J]. Food and Fermentation Industries,2022,48(18):162−167. doi: 10.13995/j.cnki.11-1802/ts.030148
|
[15] |
李先婷, 曹靖, 魏晓娟, 等. NaCl渐进胁迫对啤酒大麦幼苗生长、离子分配和光合特性的影响[J]. 草业学报,2013,22(6):108−116. [LI X T, CAO J, WEI X J, et al. Effect of extended exposure to NaCl stress on the growth, ion distribution and photosynthetic characteristics of malting barley (Hordeum vulgare)[J]. Acta Prataculturae Sinica,2013,22(6):108−116. doi: 10.11686/cyxb20130614
|
[16] |
魏淑贞. 盐胁迫对甜菜品种筛选及幼苗生理生化性质的影响[D]. 呼和浩特: 内蒙古农业大学, 2017
WEI S Z. Effects of salt stress on sugarbeet varieties screening and physiological and biochemical properties of seedlings[D]. Hohhot: Inner Mongolia Agricultural University, 2017.
|
[17] |
WALTRAM R, LINGDI D, CASEY B T, et al. Evaluation of salt tolerance in cowpea at seedling stage[J]. Euphytica,2021,217(6):116−136. doi: 10.1007/s10681-021-02832-w
|
[18] |
朱义, 何池全, 杜玮, 等. 盐胁迫下外源钙对高羊茅种子萌发和幼苗离子分布的影响[J]. 农业工程学报,2007(11):133−137. [ZHU Y, HE CQ, DU W, et al. Effects of exogenous calcium on the seed germination and seedling ions distribution of Festuca arundinacea under salt-stress[J]. Transactions of the Chinese Society of Agricultural Engineering,2007(11):133−137. doi: 10.3321/j.issn:1002-6819.2007.11.023
|
[19] |
刘正祥, 张华新, 杨秀艳, 等. NaCl胁迫下沙枣幼苗生长和阳离子吸收、运输与分配特性[J]. 生态学报,2014,34(2):326−336. [LIU Z X, ZHANG X H, YANG X Y, et al. Growth, and cationic absorption, transportation and allocation of Elaeagnus angustifolia seedlings under NaCl stress[J]. Acta Ecologica Sinica,2014,34(2):326−336.
|
[20] |
刘爱荣, 张远兵, 方园园, 等. 盐胁迫对金盏菊生长、抗氧化能力和盐胁迫蛋白的影响[J]. 草业学报,2011,20(6):52−59. [LIU A R, ZHANG Y B, FANG Y Y, et al. Effects of salt stress on the growth, antioxidant ability and salt stress protein of Calendula officinalis[J]. Acta Prataculturae Sinica,2011,20(6):52−59. doi: 10.11686/cyxb20110607
|
[21] |
张洁婧, 王虹, 宋科稷, 等. 一株高效溶磷真菌耐盐能力及其对羊草生长的影响[J]. 吉林农业大学学报,2021,43(4):433−438. [ZHANG J J, WANG H, SONG K J, et al. Salt tolerance of an efficient phosphorus-soluble fungus and its effect on growth of Chinese wildrye[J]. Journal of Jilin Agricultural University,2021,43(4):433−438. doi: 10.13327/j.jjlau.2021.5492
|
[22] |
黄艺, 姜学艳, 梁振春, 等. 盐胁迫下外生菌根真菌对油松生长及生理的影响[J]. 农业环境科学学报,2006(6):1475−1480. [HUANG Y, JIANG X Y, LIANG Z C, et al. Effect of ectomycorrhizal fungi on growth and physiology of Pinus tabulaeformis seedlings under saline stress[J]. Journal of Agro-Environment Science,2006(6):1475−1480. doi: 10.3321/j.issn:1672-2043.2006.06.017
|
[23] |
张能, 赵苗, 谢敬宜, 等. 梯棱羊肚菌Morchella importuna对重金属离子的耐受性研究[J]. 菌物学报,2017,36(3):367−375. [ZHANG N, ZHAO M, XIE J Y, et al. Tolerance of Morchella importuna towards heavy metals[J]. Mycosystema,2017,36(3):367−375.
|
[24] |
訾惠君, 周永斌, 刘连强, 等. 盐碱胁迫对4个平菇菌丝生长的影响[J]. 天津农业科学,2011,17(6):15−17. [ZI H J, ZHOU Y B, LIU L Q, et al. Effect of saline alkali stress on the mycelia growth of four Pleurotus ostreatus strains[J]. Tianjin Agricultural Sciences,2011,17(6):15−17. doi: 10.3969/j.issn.1006-6500.2011.06.004
|
[25] |
米永伟, 王国祥, 龚成文, 等. 盐胁迫对菘蓝幼苗生长和抗性生理的影响[J]. 草业学报,2018,27(6):43−51. [MI Y W, WANG G X, GONG C W, et al. Effects of salt stress on growth and physiology of lsatis indigotica seedlings[J]. Acta Prataculturae Sinica,2018,27(6):43−51. doi: 10.11686/cyxb2017282
|
[26] |
王旭明, 赵夏夏, 周鸿凯, 等. NaCl胁迫对不同耐盐性水稻某些生理特性和光合特性的影响[J]. 热带作物学报,2019,40(5):882−890. [WANG X M, ZHAO X X, ZHOU H K, et al. Effects of NaCI stress on some physiological and biochemical indices and photosynthetic physiology characteristics of rice cultivars with different salt tolerance[J]. Chinese Journal of Tropical Crops,2019,40(5):882−890. doi: 10.3969/j.issn.1000-2561.2019.05.008
|
[27] |
黄玲玲. 羊肚菌多糖的提取及体外抗氧化活性的研究[D]. 大连: 大连工业大学, 2015
HUANG L L. Study on extraction of polysaccharides in Morchella esculenta and its antioxidant activities in vitro[D]. Dalian: Dalian Polytechnic University, 2015.
|
[28] |
宋倩云. 冬青对盐胁迫的生理响应及耐盐筛选[D]. 南京: 南京林业大学, 2020
SONG Q Y. Physiological response of hollies to salt stress and the selection of salt-tolerant species[D]. Nanjing: Nanjing Forestry University, 2020.
|
[29] |
DIAO Q, SONG Y, QI H. Exogenous spermidine enhances chilling tolerance of tomato (Solanum lycopersicum L.) seedlings via involvement in polyamines metabolism and physiological parameter levels[J]. Springer Berlin Heidelberg,2015,37(11):230−245.
|
[30] |
刘自刚, 王志江, 方圆, 等. NaCl胁迫对白菜型冬油菜种子萌发和幼苗生理的影响[J]. 中国油料作物学报,2017,39(3):351−359. [LIU Z G, WANG Z J, FANG Y, et al. Effect of salt stress on seed germination and seedling physiology of winter rapeseed (Brassica rapa L.)[J]. Chinese Journal of Oil Crop Sciences,2017,39(3):351−359. doi: 10.7505/j.issn.1007-9084.2017.03.009
|
[31] |
陈雅琦, 苏楷淇, 李春杰. 盐胁迫对2种冷季型草坪草幼苗生长和生理特性的影响[J]. 草原与草坪,2021,41(3):32−40. [CHEN Y Q, SU K Q, LI C J. Effects of NaCl stress on seedling growth and physiological responses of Achnatherum inebrians and Festuca arundinacea[J]. Grassland and Turf,2021,41(3):32−40. doi: 10.13817/j.cnki.cyycp.2021.03.005
|
[32] |
HNILICKOVA H, HNILICKA F, ORSAK M, et al. Effect of salt stress on growth, electrolyte leakage, Na+ and K+ content in selected plant species[J]. Plant, Soil and Environment,2019,65(2):90−96. doi: 10.17221/620/2018-PSE
|
[33] |
BIAN W J, BAO G Z, QIAN H M, et al. Physiological response characteristics in Medicago sativa under freeze-thaw and deicing salt stress[J]. Water, Air, & Soil Pollution,2018,229(6):1−8.
|
[34] |
PARIDA A K, DAS A B. Salt tolerance and salinity effects on plants: A review[J]. Ecotoxicology and Environmental Safety,2005,60(3):324−349. doi: 10.1016/j.ecoenv.2004.06.010
|
[35] |
QIN Y, DRUZHININA I S, PAN X Y, et al. Microbially mediated plant salt tolerance and microbiome-based solutions for saline agriculture[J]. Biotechnology Advances,2016,34(7):1245−1259. doi: 10.1016/j.biotechadv.2016.08.005
|
[36] |
REN C G, BAI Y J, KONG C C, et al. Synergistic interactions between salt-tolerant rhizobia and arbuscular mycorrhizal fungi on salinity tolerance of Sesbania cannabina plants[J]. Journal of Plant Growth Regulation,2016,35(4):1098−1107. doi: 10.1007/s00344-016-9607-0
|
[37] |
JAKUBOWSKI W, BILINSKI T, BARTOSZ G. Oxidative stress during aging of stationary cultures of the yeast Saccharomyces cerevisiae[J]. Free Radical Biology and Medicine,2000,28(5):659−664. doi: 10.1016/S0891-5849(99)00266-X
|
[38] |
何学利. 植物体内的保护酶系统[J]. 现代农业科技,2010(10):37−38. [HE X L. Protective enzyme system in plants[J]. Modern Agricultural Science and Technology,2010(10):37−38. doi: 10.3969/j.issn.1007-5739.2010.10.016
|
[39] |
卫红萍, 王静. 不同盐胁迫对牵牛花种子萌发及幼苗生理特征影响[J]. 山西师范大学学报 ( 自然科学版 ) ,2020,34(3):74−78. [WEI H P, WANG J. Effects of different salt stress on seed germination and seedling physiology in morning glory[J]. Journal of Shanxi Normal University (Natural Science Edition),2020,34(3):74−78. doi: 10.16207/j.cnki.1009-4490.2020.03.014
|
[1] | CHEN Yang, WANG Peng, PAN Kaijin, WANG Zhe, XU Jian, ZHOU Junqiang, LIAO Ziwei. Optimization of the Extraction Process of Highland Barley β-glucan by Three-phase Partitioning and Its Molecular Weight Distribution[J]. Science and Technology of Food Industry, 2023, 44(14): 220-228. DOI: 10.13386/j.issn1002-0306.2022100064 |
[2] | ZHANG Lixia, SUN Xiaojing, WEI Songli, JIN Lu, MA Lin, SUN Qiang, LU Xin, ZHAO Mouming. Optimization of Mixed Enzyme Ratio of Taste-based Materials Prepared by Enzymatic Hydrolysis of Peanut Meal by Mixture Design[J]. Science and Technology of Food Industry, 2021, 42(23): 184-191. DOI: 10.13386/j.issn1002-0306.2021030209 |
[3] | WANG Sheng-guang, YU Shuai, MENG Fan-gang, LI Bing-run, SONG Xiao-guang, LIU Guo-fei, WANG Guang-lu, DAI Long, GAO Peng. Study on relative molecular weight distribution and depressor effect of soybean peptide prepared by enzymatic method[J]. Science and Technology of Food Industry, 2018, 39(1): 46-51. DOI: 10.13386/j.issn1002-0306.2018.01.009 |
[4] | PENG Zhen-fen, WANG Wei, XIE Qian, YE Qing-hua, CHEN Qing-xi, XU Chang-tong. Optimization of testing method for free amino acid of Chinese olive[J]. Science and Technology of Food Industry, 2017, (22): 263-267. DOI: 10.13386/j.issn1002-0306.2017.22.051 |
[5] | ZHOU Feng-fang, CAI Bin-xin, WU Xin-rui, LUO Fen. Study on hydrolysis condition and molecular weight distribution of ACE inhibitory peptide derived from sea cucumber protein[J]. Science and Technology of Food Industry, 2017, (17): 163-167. DOI: 10.13386/j.issn1002-0306.2017.17.031 |
[6] | ZHANG Jie, DING Lin, BAI Ge, ZHENG De-juan, CAO Yan-ping. Effect of ultrasonic on molecular weight distribution of papain hydrolyzate[J]. Science and Technology of Food Industry, 2017, (14): 116-120. DOI: 10.13386/j.issn1002-0306.2017.14.023 |
[7] | YANG Qin, GUO Li-chang, CHEN Hai-qin, ZHANG Hao, CHEN Wei, CHEN Yong- quan. Analysis and characterization of the fatty acids and free amino acids from silkworm and tussah pupa[J]. Science and Technology of Food Industry, 2016, (23): 351-356. DOI: 10.13386/j.issn1002-0306.2016.23.058 |
[8] | TANG Xiao-yan, ZHENG Hui-na, ZHANG Chao-hua, HAO Ji-ming, ZHANG Jing. Protein composition analysis and molecular weight distribution of Meretrix lusoria[J]. Science and Technology of Food Industry, 2015, (22): 362-366. DOI: 10.13386/j.issn1002-0306.2015.22.066 |
[9] | LAI Ji- xiang, HE Cong-fen, FANG Yun, ZHAO Ya, WEI Shao-min. Study on molecular weight distribution and antioxidant activity of protein components in germinal black soybean[J]. Science and Technology of Food Industry, 2015, (01): 49-53. DOI: 10.13386/j.issn1002-0306.2015.01.001 |
[10] | CHANG Ya-nan, ZHAO Gai-ming, LIU Yan-xia, LI Miao-yun, HUANG Xian-qing, SUN Ling-xia. Changes of free amino acids in chicken and its broth during cooking[J]. Science and Technology of Food Industry, 2014, (09): 333-337. DOI: 10.13386/j.issn1002-0306.2014.09.064 |
1. |
郁冯艳,付佳伟,从光雷,刘春雪,夏双双,杜莉,李俊波. 发酵饲料在动物生产中应用的研究进展. 饲料研究. 2024(04): 154-157 .
![]() | |
2. |
付洋洋,刘禹熙,敖翔,古燕,周建川. 液体发酵饲料的品质管理及其在养猪生产中的应用. 中国畜牧杂志. 2024(08): 55-61 .
![]() | |
3. |
蔡英,文洋,张官巨,邵晨阳,桂义国,蓝洪,胡延春. 小分子胶束中药对青峪黑猪肉质的影响研究. 四川畜牧兽医. 2024(10): 28-32 .
![]() | |
4. |
申远航,李登云,陈华,姚学丹. 发酵饲料对猪肉品质影响的Meta分析. 动物营养学报. 2023(08): 5374-5383 .
![]() | |
5. |
李思懿,粘颖群,谭建庄,卞宝国,杜宏,任向蕾,李春保. 基于电子鼻快速检测生鲜猪肉的异味. 食品工业科技. 2023(20): 338-348 .
![]() | |
6. |
王娜. 1株益生乳酸菌的分离及其制备的发酵饲料对仔猪生长性能、血清抗氧化与免疫相关指标的影响. 黑龙江畜牧兽医. 2023(19): 93-99 .
![]() | |
7. |
牟超. 饲粮中添加白藜芦醇对生长育肥期猪肉品质的影响研究. 畜牧业环境. 2023(06): 5-8 .
![]() | |
8. |
李鹏,苏为为,王利平,肖研博,吕珂,王绍怡,岳锋,郭东光,刘兴友. 发酵饲料及其在生猪生产中的应用研究进展. 中国饲料. 2022(16): 119-122 .
![]() | |
9. |
宋雪莹. 发酵饲料及其在畜禽生产中应用的研究. 湖南饲料. 2022(06): 47-48 .
![]() | |
10. |
王成,靳明亮,单体中,汪以真. 发酵饲料对猪肉品质的影响及机制研究进展. 动物营养学报. 2022(10): 6185-6192 .
![]() |