SUN Jing, YANG Tong, ZHANG Zhihao, et al. Physiological Response and Principal Component Analysis of Morchella sextelata Mycelia under NaCl Stress[J]. Science and Technology of Food Industry, 2022, 43(22): 155−164. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022010064.
Citation: SUN Jing, YANG Tong, ZHANG Zhihao, et al. Physiological Response and Principal Component Analysis of Morchella sextelata Mycelia under NaCl Stress[J]. Science and Technology of Food Industry, 2022, 43(22): 155−164. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022010064.

Physiological Response and Principal Component Analysis of Morchella sextelata Mycelia under NaCl Stress

More Information
  • Received Date: January 09, 2022
  • Available Online: September 18, 2022
  • Morchella sextelata was used as experimental material to explore the effects of NaCl stress on mycelia growth and physiological indexes. The mycelial growth index, mycelial morphology, biomass, mycelial membrane permeability, osmotic regulatory substance content and antioxidant enzymes of M. sextelata were measured under different concentrations of NaCl (0, 100, 200, 300, 400 and 500 mmol/L). The effects of different levels of NaCl stress on mycelial growth and resistance physiology of M. sextelata were analyzed. Correlation analysis and principal component analysis were used to screen the key physiological indexes during the mycelial growth of M. sextelata under different NaCl concentrations. The results indicated that as the concentration of NaCl in the medium increased, the mycelial growth rate, mycelial biomass, mycelial diameter and intercellular polysaccharide (IPS) content of M. sextelata showed a downward trend, while the osmotic pressure (OP) and electrical conductivity (EC) showed an upward trend. The soluble protein content, malondialdehyde (MDA) content, proline (Pro) content, superoxide dismutase (SOD) activity, peroxidase (POD) activity and catalase (CAT) activity all increased first and then decreased with the increasing of NaCl concentration. At 200 mmol/L NaCl concentration, the malondialdehyde (MDA) content, peroxidase (POD) activity and catalase (CAT) activity peaked, proline content and SOD activity peaked at 300 mmol/L salt concentration, while soluble protein content peaked at 400 mmol/L NaCl concentration. Through principal component analysis, the accumulative contribution rate of the first three principal components was 96.611%. Among them, when NaCl concentration was 0~100 mmol/L, the indicative physiological indexes were growth rate, mycelial diameter, dry weight, fresh weight and IPS content. When NaCl concentration was 100~200 mmol/L, the indicative physiological indexes were MDA content, soluble protein content, SOD activity, POD activity and CAT activity. When NaCl concentration was 200~400 mmol/L, the indicative physiological indexes were Pro content, soluble protein content and SOD activity.
  • [1]
    CAI R H, DAI W, ZHANG C S, et al. The maize WRKY transcription factor ZmWRKY17 negatively regulates salt stress tolerance in transgenic Arabidopsis plants[J]. Planta,2017,246(6):1215−1231. doi: 10.1007/s00425-017-2766-9
    [2]
    汪军成. 盐生草盐分区隔化耐盐机制研究[D]. 兰州: 甘肃农业大学, 2017

    WANG J C. Study on the salt tolerance mechanisms of ion compartmentation in halophyte Halogeton glomeratus[D]. Lanzhou: Gansu Agricultural University, 2017.
    [3]
    TILKAT E A, KAPLAN A, TILKAT E, et al. Effects of salt stress on morpho-physiological and biochemical characters of Lentisk (P. lentiscus L.)[J]. International Journal of Nature and Life Science,2019,3(1):20−31.
    [4]
    徐成龙, 董奕岑, 卢家磊, 等. 我国滨海盐碱地土壤改良及资源化利用研究进展[J]. 世界林业研究,2020,33(6):68−73. [XU C L, DONG Y C, LU J L, et al. Research progress of soil improvement and soil resources utilization of coastal saline-alkaline land in China[J]. World Forestry Research,2020,33(6):68−73. doi: 10.13348/j.cnki.sjlyyj.2020.0056.y
    [5]
    KIRK P M, CANNON P F, MINTER D W, et al. Dictionary of the fungi[M]. 10th Ed. Wallingford: CABI Europe-UK, 2008.
    [6]
    DU X H, ZHAO Q, YANG Z L. A review on research advances, issues, and perspectives of morels[J]. Mycology,2015,6(2):78−85. doi: 10.1080/21501203.2015.1016561
    [7]
    ROSSBACH M, KUMMERLE E, SCHMIDT S, et al. Elemental analysis of Morchella esculenta from Germany[J]. Journal of Radioanalytical and Nuclear Chemistry,2017,313(1):273−278. doi: 10.1007/s10967-017-5298-7
    [8]
    LI Y, YUAN Y, LEI L, et al. Carboxymethylation of polysaccharide from Morchella angusticepes Peck enhances its cholesterol-lowering activity in rats[J]. Carbohydrate Polymers,2017,172:85−92. doi: 10.1016/j.carbpol.2017.05.033
    [9]
    TASKIN H, SUFER Ö, ATTAR Ş H, et al. Total phenolics, antioxidant activities and fatty acid profiles of six Morchella species[J]. Journal of Food Science and Technology,2020,58(2):692−700.
    [10]
    HAN M, WANG Q S, BAIYINTALA, et al. The whole-genome sequence analysis of Morchella sextelata[J]. Scientific Reports,2019,9(2):15376−15387.
    [11]
    DU X H, ZHAO Q, O'DONNELL K, et al. Multigene molecular phylogenetics reveals true morels (Morchella) are especially species-rich in China[J]. Fungal Genetics and Biology,2012,49(6):455−469. doi: 10.1016/j.fgb.2012.03.006
    [12]
    DU X H, ZHAO Q, XU J P. High inbreeding, limited recombination and divergent evolutionary patterns between two sympatric morel species in China[J]. Scientific Reports,2016,6(1):22434−22446. doi: 10.1038/srep22434
    [13]
    KAUR H K, KARAN A, RAMESH G, et al. Molecular characterization of Morchella species from the Western Himalayan region of India[J]. Current Microbiology,2011,62(4):1245−1252. doi: 10.1007/s00284-010-9849-1
    [14]
    杨彤, 孙静, 郝宸, 等. 盐胁迫下六妹羊肚菌菌丝体的理化性状[J]. 食品与发酵工业,2022,48(18):162−167. [YANG T, SUN J, HAO C, et al. Study on physicochemical properties of Morchella sextelata mycelium under salt stress[J]. Food and Fermentation Industries,2022,48(18):162−167. doi: 10.13995/j.cnki.11-1802/ts.030148
    [15]
    李先婷, 曹靖, 魏晓娟, 等. NaCl渐进胁迫对啤酒大麦幼苗生长、离子分配和光合特性的影响[J]. 草业学报,2013,22(6):108−116. [LI X T, CAO J, WEI X J, et al. Effect of extended exposure to NaCl stress on the growth, ion distribution and photosynthetic characteristics of malting barley (Hordeum vulgare)[J]. Acta Prataculturae Sinica,2013,22(6):108−116. doi: 10.11686/cyxb20130614
    [16]
    魏淑贞. 盐胁迫对甜菜品种筛选及幼苗生理生化性质的影响[D]. 呼和浩特: 内蒙古农业大学, 2017

    WEI S Z. Effects of salt stress on sugarbeet varieties screening and physiological and biochemical properties of seedlings[D]. Hohhot: Inner Mongolia Agricultural University, 2017.
    [17]
    WALTRAM R, LINGDI D, CASEY B T, et al. Evaluation of salt tolerance in cowpea at seedling stage[J]. Euphytica,2021,217(6):116−136. doi: 10.1007/s10681-021-02832-w
    [18]
    朱义, 何池全, 杜玮, 等. 盐胁迫下外源钙对高羊茅种子萌发和幼苗离子分布的影响[J]. 农业工程学报,2007(11):133−137. [ZHU Y, HE CQ, DU W, et al. Effects of exogenous calcium on the seed germination and seedling ions distribution of Festuca arundinacea under salt-stress[J]. Transactions of the Chinese Society of Agricultural Engineering,2007(11):133−137. doi: 10.3321/j.issn:1002-6819.2007.11.023
    [19]
    刘正祥, 张华新, 杨秀艳, 等. NaCl胁迫下沙枣幼苗生长和阳离子吸收、运输与分配特性[J]. 生态学报,2014,34(2):326−336. [LIU Z X, ZHANG X H, YANG X Y, et al. Growth, and cationic absorption, transportation and allocation of Elaeagnus angustifolia seedlings under NaCl stress[J]. Acta Ecologica Sinica,2014,34(2):326−336.
    [20]
    刘爱荣, 张远兵, 方园园, 等. 盐胁迫对金盏菊生长、抗氧化能力和盐胁迫蛋白的影响[J]. 草业学报,2011,20(6):52−59. [LIU A R, ZHANG Y B, FANG Y Y, et al. Effects of salt stress on the growth, antioxidant ability and salt stress protein of Calendula officinalis[J]. Acta Prataculturae Sinica,2011,20(6):52−59. doi: 10.11686/cyxb20110607
    [21]
    张洁婧, 王虹, 宋科稷, 等. 一株高效溶磷真菌耐盐能力及其对羊草生长的影响[J]. 吉林农业大学学报,2021,43(4):433−438. [ZHANG J J, WANG H, SONG K J, et al. Salt tolerance of an efficient phosphorus-soluble fungus and its effect on growth of Chinese wildrye[J]. Journal of Jilin Agricultural University,2021,43(4):433−438. doi: 10.13327/j.jjlau.2021.5492
    [22]
    黄艺, 姜学艳, 梁振春, 等. 盐胁迫下外生菌根真菌对油松生长及生理的影响[J]. 农业环境科学学报,2006(6):1475−1480. [HUANG Y, JIANG X Y, LIANG Z C, et al. Effect of ectomycorrhizal fungi on growth and physiology of Pinus tabulaeformis seedlings under saline stress[J]. Journal of Agro-Environment Science,2006(6):1475−1480. doi: 10.3321/j.issn:1672-2043.2006.06.017
    [23]
    张能, 赵苗, 谢敬宜, 等. 梯棱羊肚菌Morchella importuna对重金属离子的耐受性研究[J]. 菌物学报,2017,36(3):367−375. [ZHANG N, ZHAO M, XIE J Y, et al. Tolerance of Morchella importuna towards heavy metals[J]. Mycosystema,2017,36(3):367−375.
    [24]
    訾惠君, 周永斌, 刘连强, 等. 盐碱胁迫对4个平菇菌丝生长的影响[J]. 天津农业科学,2011,17(6):15−17. [ZI H J, ZHOU Y B, LIU L Q, et al. Effect of saline alkali stress on the mycelia growth of four Pleurotus ostreatus strains[J]. Tianjin Agricultural Sciences,2011,17(6):15−17. doi: 10.3969/j.issn.1006-6500.2011.06.004
    [25]
    米永伟, 王国祥, 龚成文, 等. 盐胁迫对菘蓝幼苗生长和抗性生理的影响[J]. 草业学报,2018,27(6):43−51. [MI Y W, WANG G X, GONG C W, et al. Effects of salt stress on growth and physiology of lsatis indigotica seedlings[J]. Acta Prataculturae Sinica,2018,27(6):43−51. doi: 10.11686/cyxb2017282
    [26]
    王旭明, 赵夏夏, 周鸿凯, 等. NaCl胁迫对不同耐盐性水稻某些生理特性和光合特性的影响[J]. 热带作物学报,2019,40(5):882−890. [WANG X M, ZHAO X X, ZHOU H K, et al. Effects of NaCI stress on some physiological and biochemical indices and photosynthetic physiology characteristics of rice cultivars with different salt tolerance[J]. Chinese Journal of Tropical Crops,2019,40(5):882−890. doi: 10.3969/j.issn.1000-2561.2019.05.008
    [27]
    黄玲玲. 羊肚菌多糖的提取及体外抗氧化活性的研究[D]. 大连: 大连工业大学, 2015

    HUANG L L. Study on extraction of polysaccharides in Morchella esculenta and its antioxidant activities in vitro[D]. Dalian: Dalian Polytechnic University, 2015.
    [28]
    宋倩云. 冬青对盐胁迫的生理响应及耐盐筛选[D]. 南京: 南京林业大学, 2020

    SONG Q Y. Physiological response of hollies to salt stress and the selection of salt-tolerant species[D]. Nanjing: Nanjing Forestry University, 2020.
    [29]
    DIAO Q, SONG Y, QI H. Exogenous spermidine enhances chilling tolerance of tomato (Solanum lycopersicum L.) seedlings via involvement in polyamines metabolism and physiological parameter levels[J]. Springer Berlin Heidelberg,2015,37(11):230−245.
    [30]
    刘自刚, 王志江, 方圆, 等. NaCl胁迫对白菜型冬油菜种子萌发和幼苗生理的影响[J]. 中国油料作物学报,2017,39(3):351−359. [LIU Z G, WANG Z J, FANG Y, et al. Effect of salt stress on seed germination and seedling physiology of winter rapeseed (Brassica rapa L.)[J]. Chinese Journal of Oil Crop Sciences,2017,39(3):351−359. doi: 10.7505/j.issn.1007-9084.2017.03.009
    [31]
    陈雅琦, 苏楷淇, 李春杰. 盐胁迫对2种冷季型草坪草幼苗生长和生理特性的影响[J]. 草原与草坪,2021,41(3):32−40. [CHEN Y Q, SU K Q, LI C J. Effects of NaCl stress on seedling growth and physiological responses of Achnatherum inebrians and Festuca arundinacea[J]. Grassland and Turf,2021,41(3):32−40. doi: 10.13817/j.cnki.cyycp.2021.03.005
    [32]
    HNILICKOVA H, HNILICKA F, ORSAK M, et al. Effect of salt stress on growth, electrolyte leakage, Na+ and K+ content in selected plant species[J]. Plant, Soil and Environment,2019,65(2):90−96. doi: 10.17221/620/2018-PSE
    [33]
    BIAN W J, BAO G Z, QIAN H M, et al. Physiological response characteristics in Medicago sativa under freeze-thaw and deicing salt stress[J]. Water, Air, & Soil Pollution,2018,229(6):1−8.
    [34]
    PARIDA A K, DAS A B. Salt tolerance and salinity effects on plants: A review[J]. Ecotoxicology and Environmental Safety,2005,60(3):324−349. doi: 10.1016/j.ecoenv.2004.06.010
    [35]
    QIN Y, DRUZHININA I S, PAN X Y, et al. Microbially mediated plant salt tolerance and microbiome-based solutions for saline agriculture[J]. Biotechnology Advances,2016,34(7):1245−1259. doi: 10.1016/j.biotechadv.2016.08.005
    [36]
    REN C G, BAI Y J, KONG C C, et al. Synergistic interactions between salt-tolerant rhizobia and arbuscular mycorrhizal fungi on salinity tolerance of Sesbania cannabina plants[J]. Journal of Plant Growth Regulation,2016,35(4):1098−1107. doi: 10.1007/s00344-016-9607-0
    [37]
    JAKUBOWSKI W, BILINSKI T, BARTOSZ G. Oxidative stress during aging of stationary cultures of the yeast Saccharomyces cerevisiae[J]. Free Radical Biology and Medicine,2000,28(5):659−664. doi: 10.1016/S0891-5849(99)00266-X
    [38]
    何学利. 植物体内的保护酶系统[J]. 现代农业科技,2010(10):37−38. [HE X L. Protective enzyme system in plants[J]. Modern Agricultural Science and Technology,2010(10):37−38. doi: 10.3969/j.issn.1007-5739.2010.10.016
    [39]
    卫红萍, 王静. 不同盐胁迫对牵牛花种子萌发及幼苗生理特征影响[J]. 山西师范大学学报 ( 自然科学版 ) ,2020,34(3):74−78. [WEI H P, WANG J. Effects of different salt stress on seed germination and seedling physiology in morning glory[J]. Journal of Shanxi Normal University (Natural Science Edition),2020,34(3):74−78. doi: 10.16207/j.cnki.1009-4490.2020.03.014
  • Cited by

    Periodical cited type(6)

    1. 李杰,李霜,张鹏霞,祝丽玲,周健,孙雪微,宋丽新. 发酵食品中具有潜在降尿酸功能乳酸菌的筛选及特性分析. 食品研究与开发. 2024(07): 174-180 .
    2. 于鑫迪,刘静雅,任秀梅,陈炼红. 功能性牦牛酸奶制备、贮藏期内品质及降嘌呤活性研究. 食品工业科技. 2024(21): 20-29 . 本站查看
    3. 莫星忧,欧仕益,毋福海,吴帅,吴慧,李倩. 膳食对高尿酸血症的影响及控制研究进展. 农产品加工. 2024(22): 100-104 .
    4. 陈天琦,屈墨涵,张春红,李丹,尹雪斌. 食药同源对防治慢性代谢性疾病的作用及功能农业解决方案. 肥料与健康. 2024(06): 86-90 .
    5. 付喜华,韩四海,刘建学,李佩艳,郭金英,罗登林,岳崇慧. 葡萄蒸馏酒对高尿酸血症模型小鼠肠道菌群的调节作用. 食品科学. 2023(07): 161-168 .
    6. 陈聪聪,周全. 基于网络药理学与分子对接探讨四妙丸“异病同治”强直性脊柱炎和高尿酸血症的作用机制. 河南中医. 2023(10): 1534-1542 .

    Other cited types(13)

Catalog

    Article Metrics

    Article views (214) PDF downloads (16) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return