GAI Sailun, CHEN Xiaojie, LING Tao, et al. Screening of Infant-derived Lactobacillus rhamnosus and Its Promotion of Intestinal Organoid Growth[J]. Science and Technology of Food Industry, 2022, 43(17): 167−175. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022010015.
Citation: GAI Sailun, CHEN Xiaojie, LING Tao, et al. Screening of Infant-derived Lactobacillus rhamnosus and Its Promotion of Intestinal Organoid Growth[J]. Science and Technology of Food Industry, 2022, 43(17): 167−175. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022010015.

Screening of Infant-derived Lactobacillus rhamnosus and Its Promotion of Intestinal Organoid Growth

More Information
  • Received Date: January 04, 2022
  • Available Online: June 28, 2022
  • In this study, five strains of Lactobacillus rhamnosus (L. rhamnosus) and two strains of Lactobacillus paracasei (L. paracasei) isolated from infants were used as experimental bacteria and Lactobacillus rhamnosus GG as control strain. The gastrointestinal tolerance of these strains were evaluated through acid resistance test, bile salt resistance test, hydrophobicity test, automatic aggregation ability test and cell adhesion test. L. rhamnosus SW-02, the best effective strain in tolerance evaluation, was co-cultured with intestinal organoids. The morphology and growth status of organoids were observed by inverted phase contrast microscope, and the budding rate was calculated. The proliferation status of organoids was evaluated by EdU staining. The mRNA levels of the proliferation marker Ki67, intestinal stem cell marker Lgr5 and tight junction protein Zo-1 were measured by real-time PCR. The level of MUC2 was detected by enzyme-linked immunosorbent assay. The results showed that compared with other strains, L. rhamnosus SW-02 had strong acid resistance. SW-02, SW-03 and SW-X had strong bile salt resistance. LGG, SW-01, SW-02, SW-04 and TX-02 had high hydrophobicity to xylene. For automatic aggregation capability, SW-01 was the strongest, followed by SW-02. The adhesion test of HT-29 cells showed that SW-01, SW-02 and SW-03 had high adhesion ability. When SW-02 was co-cultured with intestinal organoids, SW-02 significantly (P<0.05) increased the budding rate and number of organoids, and promoted the growth of organoids. Compared with the control group, the mRNA levels of Ki67, Lgr5 and Zo-1 in SW-02 group were significantly increased, and the secretion of MUC2 was significantly increased (P<0.05). In conclusion, L. rhamnosus SW-02 has good gastrointestinal tolerance and the ability to promote the growth of intestinal organs, and can be used as a potential strain for the development of probiotic products in the future.
  • [1]
    关嘉琦, 李柏良, 焦雯姝, 等. 益生菌对促进肠道发育作用的研究进展[J]. 食品科学,2020,41(21):278−285. [GUAN Jiaqi, LI Boliang, JIAO Wenshu, et al. Research progress of probiotics on promoting intestinal development[J]. Food Science,2020,41(21):278−285. doi: 10.7506/spkx1002-6630-20191015-132

    GUAN Jiaqi, LI Boliang, JIAO Wenshu, et al. Research progress of probiotics on promoting intestinal development[J]. Food Science, 2020, 41(21): 278−285. doi: 10.7506/spkx1002-6630-20191015-132
    [2]
    COLLADO M C, CERNADA M, BAÜERL C, et al. Microbial ecology and host-microbiota interactions during early life stages[J]. Gut Microbes,2012,3:352−365. doi: 10.4161/gmic.21215
    [3]
    HIEMSTRA I H, BOUMA G, GEERTS D, et al. Nod2 improves barrier function of intestinal epithelial cells via enhancement of TLR responses[J]. Molecular Immunology,2012,52(3-4):264−272. doi: 10.1016/j.molimm.2012.06.007
    [4]
    BANSAL T, ALANIZ R, JAYARAMAN A. Role for the bacterial signal indole in promoting epithelial cell barrier function[J]. Journal of Epithelial Biology and Pharmacology,2012,5(1):32−38. doi: 10.2174/1875044301205010032
    [5]
    YAN F, CAO H W, COVER T L, et al. Colon-specific delivery of a probiotic-derived soluble protein ameliorates intestinal inflammation in mice through an EGFR-dependent mechanism[J]. Journal of Clinical Investigation,2011,121(6):2242−2253. doi: 10.1172/JCI44031
    [6]
    YAN F, POLK D B. Probiotics and probiotic-derived functional factors-mechanistic insights into applications for intestinal homeostasis[J]. Frontiers in Immunology,2020,11:1428.
    [7]
    HAN X, LEE A, HUANG S, et al. Lactobacillus rhamnosus GG prevents epithelial barrier dysfunction induced by interferon-gamma and fecal supernatants from irritable bowel syndrome patients in human intestinal enteroids and colonoids[J]. Gut Microbes,2019,10(1):59−76. doi: 10.1080/19490976.2018.1479625
    [8]
    ALLAIRE J M, CROWLEY S M, LAW H T, et al. The intestinal epithelium: Central coordinator of mucosal immunity[J]. Trends in Immunology, 2018: S1471490618300681.
    [9]
    YAN F, LIU L, CAO H, et al. Neonatal colonization of mice with LGG promotes intestinal development and decreases susceptibility to colitis in adulthood[J]. Mucosal Immunology,2017,10(1):117−127. doi: 10.1038/mi.2016.43
    [10]
    LINDEMANS C A, CALAFIORE M, MERTELSMANN A M, et al. Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration[J]. Nature,2015,528(7583):560−564. doi: 10.1038/nature16460
    [11]
    WU H, XIE S, MIAO J, et al. Lactobacillus reuteri maintains intestinal epithelial regeneration and repairs damaged intestinal mucosa[J]. Gut Microbes,2020,11(4):997−1014. doi: 10.1080/19490976.2020.1734423
    [12]
    HOU Q, YE L, LIU H, et al. Lactobacillus accelerates ISCs regeneration to protect the integrity of intestinal mucosa through activation of STAT3 signaling pathway induced by LPLs secretion of IL-22[J]. Cell Death & Differentiation,2018,25(9):1657−1670.
    [13]
    SITTIPO P, PHAM H Q, PARK C E, et al. Irradiation-induced intestinal damage is recovered by the indigenous gut bacteria Lactobacillus acidophilus[J]. Frontiers in Cellular and Infection Microbiology,2020,10:415. doi: 10.3389/fcimb.2020.00415
    [14]
    郝冉, 罗学刚, 贾玮, 等. 六株乳杆菌胃肠道定植能力分析[J]. 中国生化药物杂志, 2012, 33(5): 555-558

    HAO Ran, LUO Xuegang, JIA Wei, et al. Analysis of the colonization ability of six strains of Lactobacillus in the gastrointestinal tract[J]. Chinese Journal of Biochemical Pharmaceutics, 2012, 33(5): 555−558.
    [15]
    LIU M, ZHANG X, HAO Y, et al. Protective effects of a novel probiotic strain, Lactococcus lactis ML2018, in colitis: In vivo and in vitro evidence[J]. Food & Function, 2019, 10: 1132−1145.
    [16]
    杜兰兰, 王洋, 刘蕾, 等. 类植物乳杆菌L-ZS9黏附特性研究及胃肠道环境对其黏附力的影响[J]. 食品科技,2015,40(12):2−6, 14. [DU Lanlan, WANG Yang, LIU Lei, et al. Study on the adhesion characteristics of Lactobacillus plantarum L-ZS9 and the influence of gastrointestinal environment on its adhesion[J]. Food Science and Technology,2015,40(12):2−6, 14.

    DU Lanlan, WANG Yang, LIU Lei, et al. Study on the adhesion characteristics of Lactobacillus plantarum L-ZS9 and the influence of gastrointestinal environment on its adhesion[J]. Food Science and Technology, 2015, 40(12): 2−6, 14.
    [17]
    LI Y, ZHANG T, GUO C, et al. Bacillus subtilis RZ001 improves intestinal integrity and alleviates colitis by inhibiting the Notch signalling pathway and activating ATOH-1[J]. Pathogens and Disease,2020,78(2):ftaa016. doi: 10.1093/femspd/ftaa016
    [18]
    SATO T, VRIES R G, SNIPPERT H J, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche[J]. Nature,2009,459(7244):262−265. doi: 10.1038/nature07935
    [19]
    郭羽, 王晓. 黄芪多糖对鼠李糖乳杆菌促生长作用初探[J]. 山西中医学院学报,2018,19(4):10−14. [GUO Yu, WANG Xiao. A preliminary study on the growth-promoting effect of astragalus polysaccharides on Lactobacillus rhamnosus[J]. Journal of Shanxi College of Traditional Chinese Medicine,2018,19(4):10−14.

    GUO Yu, WANG Xiao. A preliminary study on the growth-promoting effect of astragalus polysaccharides on Lactobacillus rhamnosus[J]. Journal of Shanxi College of Traditional Chinese Medicine, 2018, 19(4): 10−14.
    [20]
    贺珊珊, 鲍志宁, 林伟锋, 等. 降胆固醇和耐酸耐胆盐益生菌的筛选研究[J]. 现代食品科技,2019,35(8):198−206. [HE Shanshan, BAO Zhining, LIN Weifeng, et al. Study on the screening of cholesterol and acid-resistant salt probiotics[J]. Modern Food Science and Technology,2019,35(8):198−206. doi: 10.13982/j.mfst.1673-9078.2019.8.029

    HE Shanshan, BAO Zhining, LIN Weifeng, et al. Study on the screening of cholesterol and acid-resistant salt probiotics[J]. Modern Food Science and Technology, 2019, 35 (8): 198-206. doi: 10.13982/j.mfst.1673-9078.2019.8.029
    [21]
    吕嘉枥, 闫亚梅, 王霄鹏, 等. 10株益生菌益生特性的比较研究[J]. 陕西科技大学学报(自然科学版),2016,34(1):118−122, 127. [LYU Jiali, YAN Yamei, WANG Xiaopeng, et al. Comparative study on the probiotic characteristics of 10 probiotics[J]. Journal of Shaanxi University of Science and Technology (Natural Science Edition),2016,34(1):118−122, 127.

    LYU Jiali, YAN Yamei, WANG Xiaopeng, et al. Comparative study on the probiotic characteristics of 10 probiotics[J]. Journal of Shaanxi University of Science and Technology (Natural Science Edition), 2016, 34(1): 118−122, 127.
    [22]
    薛梅, 刘东方, 桑建, 等. 鼠李糖乳杆菌LV108传代的稳定性[J]. 中国乳品工业,2016,44(7):15−19. [XUE Mei, LIU Dongfang, SANG Jian, et al. Stability of rats Lactobacillus LV108[J]. China Dairy Industry,2016,44(7):15−19. doi: 10.3969/j.issn.1001-2230.2016.07.004

    XUE Mei, LIU Dongfang, SANG Jian, et al. Stability of Rats Lactobacillus LV108[J]. China Dairy Industry, 2016, 44 (7): 15-19. doi: 10.3969/j.issn.1001-2230.2016.07.004
    [23]
    龚虹, 王海霞, 马征途, 等. 乳酸菌粘附力与生物膜、疏水性和自凝集特性的研究[J]. 中国微生态学杂志,2016,28(9):1026−1028. [GONG Hong, WANG Haixia, MA Zhengtu, et al. Study on the adhesion and biofilm, hydrophobicity and self-aggregation characteristics of lactic acid bacteria[J]. Chinese Journal of Microecology,2016,28(9):1026−1028.

    GONG Hong, WANG Haixia, MA Zhengtu, et al. Study on the adhesion and biofilm, hydrophobicity and self-aggregation characteristics of lactic acid bacteria[J]. Chinese Journal of Microecology 2016, 28(9): 1026−1028.
    [24]
    李姗姗, 张俊娟, 杨雪娟, 等. 益生乳杆菌的筛选研究[J]. 中国乳品工业,2012,40(5):4−8. [LI Shanshan, ZHANG Junjuan, YANG Xuejuan, et al. Study on the screening of probiotics[J]. China Dairy Industry,2012,40(5):4−8. doi: 10.3969/j.issn.1001-2230.2012.05.001

    Li Shanshan, Zhang Junjuan, Yang Xuejuan, et al. Study on the screening of probiotics[J]. China Dairy Industry, 2012, 40 (5): 4-8. doi: 10.3969/j.issn.1001-2230.2012.05.001
    [25]
    唐雅茹, 于上富, 国立东, 等. 一株降胆固醇乳杆菌的筛选及其益生作用的研究[J]. 食品工业科技,2016,37(1):142−144. [TANG Yaru, YU Shangfu, GUO Lidong, et al. Screening of a cholesterol lowering Lactobacillus and its prebiotic effect[J]. Food Industry Science and Technology,2016,37(1):142−144.

    TANG Yaru, YU Shangfu, GUO Lidong, et al Screening of a cholesterol lowering Lactobacillus and its prebiotic effect[J]. Food Industry Science and Technology, 2016, 37 (1): 142-144.
    [26]
    杨桃, 孙宇, 陈佳佳, 等. 类器官的研究进展[J]. 中国细胞生物学学报,2019,41(3):494−500. [YANG Tao, SUN Yu, CHEN Jiajia, et al. Research progress in organoids[J]. Chinese Journal of Cell Biology,2019,41(3):494−500.

    YANG Tao, SUN Yu, CHEN Jiajia, et al. Research progress in organoids[J]. Chinese Journal of Cell Biology, 2019, 41(3): 494−500.
    [27]
    LUKOVAC S, BELZER C, PELLIS L, et al. Differential Modulation by Akkermansia muciniphila and Faecalibacterium prausnitzii of host peripheral lipid metabolism and histone acetylation in mouse gut organoids[J]. MBio,2014,5(4):e01438−14.
    [28]
    沈颖, 郭红梅, 金玉. 肠道干细胞G蛋白耦联受体5的作用机制与影响因素[J]. 医学研究生学报,2018,31(9):101−104. [SHEN Ying, GUO Hongmei, JIN Yu. Mechanism and influencing factors of G protein-coupled receptor 5 in intestinal stem cells[J]. Journal of Medical Postgraduates,2018,31(9):101−104. doi: 10.16571/j.cnki.1008-8199.2018.09.019

    SHEN Ying, GUO Hongmei, JIN Yu. Mechanism and influencing factors of G protein-coupled receptor 5 in intestinal stem cells[J]. Journal of Medical Postgraduates, 2018, 31(9): 101−104. doi: 10.16571/j.cnki.1008-8199.2018.09.019
    [29]
    刘伟, 余英豪, 欧阳学农, 等. P53和Ki67在胃癌中的表达及其临床意义[J]. 世界华人消化杂志,2011,19(4):367−373. [LIU Wei, YU Yinghao, OUYANG Xuenong, et al. Expression of P53 and Ki67 in gastric cancer and its clinical significance[J]. World Chinese Journal of Digestion,2011,19(4):367−373.

    LIU Wei, YU Yinghao, OUYANG Xuenong, et al. Expression of P53 and Ki67 in gastric cancer and its clinical significance[J]. World Chinese Journal of Digestion, 2011, 19(4): 367−373.
    [30]
    KUO W T, ZUO L, ODENWALD M A, et al. The tight junction protein ZO-1 is dispensable for barrier function but critical for effective mucosal repair[J]. Gastroenterology,2021,161(6):1924−1939. doi: 10.1053/j.gastro.2021.08.047
    [31]
    LEE Y S, KIM T Y, KIM Y, et al. Microbiota-derived lactate accelerates intestinal stem-cell-mediated epithelial development[J]. Cell Host & Microbe,2018,24(6):833−846.
    [32]
    SHEN X, LIU L, PEEK R M, et al. Supplementation of p40, a Lactobacillus rhamnosus GG-derived protein, in early life promotes epidermal growth factor receptor-dependent intestinal development and long-term health outcomes[J]. Mucosal Immunology,2018,11(5):1316−1328. doi: 10.1038/s41385-018-0034-3
  • Related Articles

    [1]YU Yanqi, YANG Mingyuan, LÜ Chunmao, BAI Shaoci, ZHANG Qunfang, ZOU Chenyang, JIANG Han. Comprehensive Evaluation of Chestnut Quality Based on Principal Component and Cluster Analysis[J]. Science and Technology of Food Industry, 2025, 46(2): 280-291. DOI: 10.13386/j.issn1002-0306.2024020255
    [2]LI Ke, LIN Zixi, LIU Jia, LIAO Maowen, YUAN Huaiyu, LIANG Yumei, PAN Cuiping, GUO Nanbin, ZHU Yongqing, ZHANG Guowei, LI Huajia. Comprehensive Evaluation of Plums Quality Based on Principal Component Analysis and Cluster Analysis[J]. Science and Technology of Food Industry, 2024, 45(8): 293-300. DOI: 10.13386/j.issn1002-0306.2023060002
    [3]XU Wenjing, CHEN Changlin, DENG Sha, LIU Yijun, LÜ Yuanping. Comprehensive Evaluation of Blueberry Quality Based on Principal Component Analysis and Cluster Analysis[J]. Science and Technology of Food Industry, 2022, 43(13): 311-319. DOI: 10.13386/j.issn1002-0306.2021110198
    [4]WANG Ronglin, XIE Linmei, LV Feng. Improving the Quality of Frozen Purple Sweet Potato Ball with Chinese Yam by Factor Analysis and Box-Behnken Response Surface[J]. Science and Technology of Food Industry, 2021, 42(2): 146-153,160. DOI: 10.13386/j.issn1002-0306.2020030258
    [5]ZHANG Tang-wei, HE Ji-feng, YU Yao-bin, CI Dun. Mutton quality and its factor analysis of Gangba sheep[J]. Science and Technology of Food Industry, 2018, 39(8): 279-284. DOI: 10.13386/j.issn1002-0306.2018.08.051
    [6]SUN Qi-ran, LIU Pei, LI Hui-wei, LIU Lin, NI Sai-jia, XUE Feng, SHANG Er-xin, DUAN Jin-ao. Analysis and evaluation of main nutritional ingredients in residual of lotus root from different areas[J]. Science and Technology of Food Industry, 2018, 39(6): 291-297. DOI: 10.13386/j.issn1002-0306.2018.06.054
    [7]DING Jie, ZHAO Xue-mei, ZHU Jin-yan, LIU Ji, LIAO Cheng-cheng, QIN Wen, HE Jiang-hong. Principal component,factor analysis and cluster analysis of the effect of freshwater fish species on the quick-frozen highland barley fish noodle quality[J]. Science and Technology of Food Industry, 2018, 39(1): 34-40,51. DOI: 10.13386/j.issn1002-0306.2018.01.007
    [8]ZOU Shu-ping, ZHAO Ting, TAI Xiao-liang, MENG Yi-na, MA Yan, XU Ming-qiang, ZHANG Qian. Quality and cluster analysis of potato varieties mainly grown in Xinjiang[J]. Science and Technology of Food Industry, 2017, (11): 295-298. DOI: 10.13386/j.issn1002-0306.2017.11.048
    [9]MA Yi- dan, LIU Hong, YAN Rui-xin, MA Si-cong, XUE Bing-xiang, WANG Qian. Analysis and evaluation of nutrient content of Synsepalum dulcificum seed[J]. Science and Technology of Food Industry, 2016, (13): 346-351. DOI: 10.13386/j.issn1002-0306.2016.13.063
    [10]JIANG Fang-yan, SONG Wen-ming, YANG Ning, HUANG Hai. Analysis and evaluation of nutrient content of Caulerpa lentillifera[J]. Science and Technology of Food Industry, 2014, (24): 356-359. DOI: 10.13386/j.issn1002-0306.2014.24.067
  • Cited by

    Periodical cited type(21)

    1. 杜涓,舒雄辉,张晨曦,侯温甫,艾有伟,王宏勋,韩娅红. 基于TG酶介导的莲藕风味鱼糕配方优化研究及其品质评价. 中国食品添加剂. 2024(02): 176-185 .
    2. 吴宇昊,戴芳,丛欣,祝振洲,李书艺,梅新,陈学玲. 不同采收期不同品种莲藕的营养品质变化规律及评价. 食品安全质量检测学报. 2024(03): 9-17 .
    3. 陈亚欣,曾荣,陈龙,唐楠锐,张妮,张国忠. 莲藕表皮力学特性试验研究. 甘肃农业大学学报. 2024(01): 304-312 .
    4. 贾凤娟,程慧,王延圣,弓志青,崔文甲,王文亮. 藕片热泵干燥工艺优化及全藕粉品质评价. 中国果菜. 2024(03): 56-63 .
    5. 吴宇昊,祝振洲,丛欣,李书艺,梅新,陈学玲. 不同莲藕品种的营养品质分析与评价. 中国瓜菜. 2024(04): 127-132 .
    6. 郭鲁平,黄璐,程茜,张晓燕,袁星星,陈新,薛晨晨. 江苏省春播鲜食大豆主栽品种营养和功能品质研究. 大豆科学. 2023(01): 91-98 .
    7. 马泮龙,李利明,倪龙凤,何勇. 莲藕品种比较试验. 浙江农业科学. 2023(03): 635-638 .
    8. 孙海娟,李洁,刘义满,汪李平,严守雷. 不同品种莲藕加工制汁适宜性评价. 食品科学技术学报. 2023(02): 164-174 .
    9. 张国忠,吕紫薇,刘浩蓬,刘婉茹,龙长江,黄成龙. 基于改进DenseNet和迁移学习的荷叶病虫害识别模型. 农业工程学报. 2023(08): 188-196 .
    10. 姜健,王晓玮,刘柏林,谢继安,韦莹,王秀莉,单晓梅. 安徽省四种市售水生蔬菜中铅、镉、总铬和总砷污染状况. 环境卫生学杂志. 2023(06): 469-473 .
    11. 赖政,盛颖,肖力婷,杨慧林,阳文静,简敏菲. 鄱阳湖越冬白鹤肠道微生物群落结构及功能预测分析. 微生物学报. 2023(11): 4302-4314 .
    12. 程传民,李云,叶岚,魏晓星,丁小乔,辛钊汋,邝婷婷,冯波,程大顺,高琴,张静,张林. 饲料中铅的检测原子吸收法关键控制要素. 饲料博览. 2023(06): 63-66 .
    13. 张鹏,颜碧,贾晓昱,李江阔. 鲜切莲藕防褐变剂配方优化及保鲜效果研究. 食品与发酵工业. 2022(01): 169-175 .
    14. 顾晓敏,童川,韩延超,陈杭君,郜海燕. 不同品种莲藕游离氨基酸多样性分析. 食品科学. 2022(04): 183-189 .
    15. 辜芸,周鸿,李娟. 江西省市售水生蔬菜中微量元素含量调查及健康风险评估. 江西科学. 2022(02): 264-267+286 .
    16. 陈敏氡,王彬,李永平,叶新如,林锦辉,曾美娟,刘建汀,朱海生,温庆放. 六个品种花椰菜花球的营养成分分析与评价. 热带亚热带植物学报. 2022(03): 349-356 .
    17. 王燕,付琪,李颖,罗芳,林振宇. 近红外光谱分析技术快速检测藕粉品质. 食品安全质量检测学报. 2022(15): 5026-5034 .
    18. 许粟,姚绍炉,刘宇泽,费强,马风伟,陈海江,李勇,许洁舲,肖娟,王欣颖,陈光静. 响应面优化淀粉型刺梨凝胶软糖配方工艺. 食品工业科技. 2022(17): 240-247 . 本站查看
    19. 张晨,史艳楠,杨宁宁,秦莉莉,唐佳伟,董臣. 不同口感鲜切莲藕褐变的生理生化及分子机制研究. 食品与发酵工业. 2022(22): 165-171 .
    20. 邵旭鹏,李寐华,沈琦,范盈盈,方晓彤,王成,刘峰娟. 新疆吐鲁番地区不同品种甜瓜营养成分分析及品质综合评价. 食品工业科技. 2021(13): 358-365 . 本站查看
    21. 顾涛,朱晓华,赵信文,江拓,邱啸飞,郑小战,帅琴. 广州新垦莲藕产区莲藕品质与地球化学条件的关系. 岩矿测试. 2021(06): 833-845 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (209) PDF downloads (16) Cited by(26)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return