Citation: | NIU Liyuan, ZHANG Yilin, LIU Jingfei, et al. Research Progress on the Application of High Pressure Carbon Dioxide in Meat Pasteurization and Preservation[J]. Science and Technology of Food Industry, 2022, 43(21): 471−479. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021120233. |
[1] |
ESHEL G, STAINIER P, SHEPON A, et al. Environmentally optimal, nutritionally sound, protein and energy conserving plant based alternatives to U. S. meat[J]. Scientific Reports,2019,9(1):10345. doi: 10.1038/s41598-019-46590-1
|
[2] |
张园园, 周聪, 郭依萍, 等. 肉及肉制品中单增李斯特菌交叉污染的研究进展[J]. 食品科学,2022,43(11):293−300. [ZHANG Y Y, ZHOU C, GUO Y P, et al. Research progress of Listeria monocytogenes cross-contamination in meat and meat products[J]. Food Science,2022,43(11):293−300. doi: 10.7506/spkx1002-6630-20210505-026
|
[3] |
LI W, PIRES S M, LIU Z, et al. Surveillance of foodborne disease outbreaks in China, 2003-2017[J]. Food Control,2020,118(10):107359.
|
[4] |
Centers for Disease Control and Prevention. Surveillance for foodborne disease outbreaks-United States, 2009-2015[R]. Morbidity and Mortality Weekly Report, 2018, 67(10): 1−11.
|
[5] |
European Food Safety Authority. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2017[R]. European Food Safety Authority Journal, 2017, 16(12): 5500.
|
[6] |
程述震, 王晓拓, 王志东. 冷鲜肉保鲜技术研究进展[J]. 食品研究与开发,2017,38(16):194−198. [CHENG S Z, WANG X T, WANG Z D. Research progress on preservation methods for chilled meat[J]. Food Research and Development,2017,38(16):194−198. doi: 10.3969/j.issn.1005-6521.2017.16.042
|
[7] |
YU T H, NIU L Y, IWAHASHI H. High-pressure carbon dioxide used for pasteurization in food industry[J]. Food Engineering Reviews,2020,12(3):364−380. doi: 10.1007/s12393-020-09240-1
|
[8] |
侯志强, 黄绪颖, 王永涛, 等. 高压二氧化碳处理对鲜切哈密瓜微生物与品质的影响[J]. 食品科学,2018,39(7):174−180. [HOU Z Q, HUANG X Y, WANG Y T, et al. Effect of high pressure carbon dioxide processing on microbial population and quality of fresh-cut Hami melon (Cucumis melo var. saccharinus)[J]. Food Science,2018,39(7):174−180. doi: 10.7506/spkx1002-6630-201807026
|
[9] |
VALLEY G, RETTGER L F. The influence of carbon dioxide on bacteria[J]. Journal of Bacteriology,1927,14(2):101−137.
|
[10] |
FRASER D. Bursting bacteria by release of gas pressure[J]. Nature,1951,167:33−34. doi: 10.1080/08957959.2016.1261404
|
[11] |
TANIGUCHI M, SUZUKI H, SATO M, et al. Sterilization of plasma powder by treatment with supercritical carbon dioxide[J]. Agricultural and Biological Chemistry,1987,51(12):3425−3426.
|
[12] |
SHENG L, ZU L, MA M. Study of high pressure carbon dioxide on the physicochemical, interfacial and rheological properties of liquid whole egg[J]. Food Chemistry,2021,337:127989. doi: 10.1016/j.foodchem.2020.127989
|
[13] |
NAKAMURA K, ENOMOTO A, FUKUSHIMA H, et al. Disruption of microbial cells by the flash discharge of high-pressure carbon dioxide[J]. Bioscience, Biotechnology, and Biochemistry,2014,58(7):1297−1301.
|
[14] |
ENOMOTO A, NAKAMURA K, NAGAI K, et al. Inactivation of food microorganisms by high-pressure carbon dioxide treatment with or without explosive decompression[J]. Bioscience Biotechnology & Biochemistry,1997,61(7):1133−1137.
|
[15] |
NIU L Y, NOMURA K, IWAHASHI H, et al. Petit-high pressure carbon dioxide stress increases synthesis of S-Adenosylmethionine and phosphatidylcholine in yeast Saccharomyces cerevisiae[J]. Biophysical Chemistry,2017,231:79−86. doi: 10.1016/j.bpc.2017.03.003
|
[16] |
SPILIMBERGO S. A study about the effect of dense CO2 on microorganisms[D]. Italy: University of Padova, 2002.
|
[17] |
TAMBURINI S, ANESI A, FERRENTINO G, et al. Supercritical CO2 induces marked changes in membrane phospholipids composition in Escherichia coli K12[J]. Journal of Membrane Biology,2014,247(6):469−477. doi: 10.1007/s00232-014-9653-0
|
[18] |
KOBAYASHI F, ODAKE S. Temperature-dependency on the inactivation of Saccharomyces pastorianus by low-pressure carbon dioxide microbubbles[J]. Journal of Food Science and Technology-Mysore,2020,57(2):588−594. doi: 10.1007/s13197-019-04090-0
|
[19] |
MONHEMI H, DOLATABADI S. Molecular dynamics simulation of high-pressure CO2 pasteurization reveals the interfacial denaturation of proteins at CO2/water interface[J]. Journal of CO2 Utilization,2020,35:256−264. doi: 10.1016/j.jcou.2019.10.004
|
[20] |
LIN H M, YANG Z Y, CHEN L F. Inactivation of Leuconostoc dextranicum with carbon dioxide under pressure[J]. Chemical Engineering Journal,1993,52(1):B29−B34. doi: 10.1016/0300-9467(93)80047-R
|
[21] |
WATANABE T, FURUKAWA S, TAI T. High pressure carbon dioxide decreases the heat tolerance of the bacterial spores[J]. Food Science and Technology Research,2003,9:342−344. doi: 10.3136/fstr.9.342
|
[22] |
RAO L, WANG Y, CHEN F, et al. High pressure CO2 reduces the wet heat resistance of Bacillus subtilis spores by perturbing the inner membrane[J]. Innovative Food Science and Emerging Technology,2020,60:102291. doi: 10.1016/j.ifset.2020.102291
|
[23] |
RAO L, ZHAO F, WANG Y T, et al. Investigating the inactivation mechanism of Bacillus subtilis spores by high pressure CO2[J]. Frontiers in Microbiology,2016,7:1−12.
|
[24] |
CAPPELLETTI M, FERRENTINO G, SPILIMBERGO S. High pressure carbon dioxide on pork raw meat: Inactivation of mesophilic bacteria and effects on colour properties[J]. Journal of Food Engineering,2015,156:55−58. doi: 10.1016/j.jfoodeng.2015.02.009
|
[25] |
刘芳坊, 苗敬, 刘毅, 等. 高密度CO2处理对冷却肉的杀菌效果及理化指标的影响[J]. 农产品加工(学刊),2011(7):15−18, 22. [LIU F F, MIAO J, LIU Y, et al. Effect of dense phase carbon dioxide on microorganisms and physical-chemical of chilled pork[J]. Academic Periodical of Farm Products Processing,2011(7):15−18, 22.
|
[26] |
ERKMEN O. Antimicrobial effects of pressurised carbon dioxide on Brochothrix thermosphacta in broth and foods[J]. Journal of the Science of Food & Agriculture,2000,80(9):1365−1370.
|
[27] |
JAUHAR S, ISMAIL-FITRY M R, CHONG G H, et al. Application of supercritical carbon dioxide (SC-CO2) on the microbial and physicochemical quality of fresh chicken meat stored at chilling temperature[J]. International Food Research Journal,2020,27(1):103−110.
|
[28] |
SZERMAN N, RAO W L, LI X, et al. Effects of the application of dense phase carbon dioxide treatments on technological parameters, physicochemical and textural properties and microbiological quality of lamb sausages[J]. Food Engineering Reviews,2015,7(2):241−249. doi: 10.1007/s12393-014-9092-9
|
[29] |
饶伟丽, 刘琳, 张德权, 等. 高密度CO2对生鲜调理鸡肉杀菌动力学模型构建[J]. 食品工业科技,2013,34(11):320−324, 329. [RAO W L, LIU L, ZHANG D Q, et al. Modeling the inactivation of dense phase CO2 on the pre-processed fresh chicken[J]. Science and Technology of Food Industry,2013,34(11):320−324, 329.
|
[30] |
GARCIA-GONZALEZ L, GEERAERD A H, SPILIMBERGO S, et al. High pressure carbon dioxide inactivation of microorganisms in foods: The past, the present and future[J]. International Journal of Food Microbiology,2007,117(1):1−28. doi: 10.1016/j.ijfoodmicro.2007.02.018
|
[31] |
CHOI Y M, KIM K H, KIM B C, et al. Effects of supercritical carbon dioxide treatment against generic Escherichia coli, Listeria monocytogenes, Salmonella typhimurium, and E. coli O157: H7 in marinades and marinated pork[J]. Meat Science,2009,82:419−424. doi: 10.1016/j.meatsci.2009.02.016
|
[32] |
SCHULTZE D M, COUTO R, TEMELLI F, et al. Lethality of high-pressure carbon dioxide on Shiga toxin-producing Escherichia coli, Salmonella and surrogate organisms on beef jerky[J]. International Journal of Food Microbiology,2020,321:108550. doi: 10.1016/j.ijfoodmicro.2020.108550
|
[33] |
KARAJANAGI S S, YOGANATHAN R, MAMMUCARI R, et al. Application of a dense gas technique for sterilizing soft biomaterials[J]. Biotechnology and Bioengineering,2011,108:1716−1725. doi: 10.1002/bit.23105
|
[34] |
GOMEZ-GOMEZ A, BRITO-DE LA FUENTE E, GALLEGOS C, et al. Combination of supercritical CO2 and high-power ultrasound for the inactivation of fungal and bacterial spores in lipid emulsions[J]. Ultrasonics Sonochemistry,2021,76:105636. doi: 10.1016/j.ultsonch.2021.105636
|
[35] |
李凤娟, 周先汉. 高压CO2杀菌技术对猪肉糜中枯草芽孢的作用[J]. 肉类研究,2012,26(10):1−4. [LI F J, ZHOU X H. Effect of high pressure carbon dioxide treatment on Bacillus subtilis in pork[J]. Meat Research,2012,26(10):1−4.
|
[36] |
SPILIMBERGO S, MARTINA C, GIOVANNA F. High pressure carbon dioxide combined with high power ultrasound processing of dry cured ham spiked with Listeria monocytogenes[J]. Food Research International,2014,66:264−273. doi: 10.1016/j.foodres.2014.09.024
|
[37] |
FERRENTINO G, SPILIMBERGO S. A combined high pressure carbon dioxide and high power ultrasound treatment for the microbial stabilization of cooked ham[J]. Journal of Food Engineering,2016,174:47−55. doi: 10.1016/j.jfoodeng.2015.11.013
|
[38] |
MORBIATO G, ZAMBON A, TOFFOLETTO M, et al. Supercritical carbon dioxide combined with high power ultrasound as innovate drying process for chicken breast[J]. Journal of Supercritical Fluids,2019,147:24−32. doi: 10.1016/j.supflu.2019.02.004
|
[39] |
GAO Y, NAGY B, LIU X, et al. Supercritical CO2 extraction of lutein esters from marigold (Tagetes erecta L.) enhanced by ultrasound[J]. Journal of Supercritical Fluids,2009,49(3):345−350. doi: 10.1016/j.supflu.2009.02.006
|
[40] |
CASTILLO-ZAMUDIO R I, PANIAGUA-MARTÍNEZ I, ORTUO-CASES C, et al. Use of high-power ultrasound combined with supercritical fluids for microbial inactivation in dry-cured ham[J]. Innovative Food Science & Emerging Technologies,2020,67(2):102557.
|
[41] |
CHOI Y M, KIM O Y, KIM K H, et al. Combined effect of organic acids and supercritical carbon dioxide treatments against nonpathogenic Escherichia coli, Listeria monocytogenes, Salmonella typhimurium and E. coli O157: H7 in fresh pork[J]. Letters in Applied Microbiology,2009,49(4):510−515. doi: 10.1111/j.1472-765X.2009.02702.x
|
[42] |
GONZÁLEZ-ALONSO V, CAPPELLETTI M, BERTOLINI F M, et al. Microbial inactivation of raw chicken meat by supercritical carbon dioxide treatment alone and in combination with fresh culinary herbs[J]. Poultry Science,2020,99(1):536−545. doi: 10.3382/ps/pez563
|
[43] |
闫文杰, 崔建云, 戴瑞彤, 等. 高密度二氧化碳处理对冷却猪肉品质及理化性质的影响[J]. 农业工程学报,2010,26(7):346−350. [YAN W J, CUI J Y, DAI R T, et al. Effects of dense phase carbon dioxide on quality and physical-chemical properties of chilled pork[J]. Transactions of the Chinese Society of Agricultural Engineering,2010,26(7):346−350. doi: 10.3969/j.issn.1002-6819.2010.07.061
|
[44] |
CHOI Y M, RYU Y C, LEE S H, et al. Effects of supercritical carbon dioxide treatment for sterilization purpose on meat quality of porcine longissimus dorsi muscle[J]. LWT-Food Science and Technology,2008,41(2):317−322. doi: 10.1016/j.lwt.2007.02.020
|
[45] |
CHAO R R, MULVANEY S J, BAILEY M E, et al. Supercritical CO2 conditions affecting extraction of lipid and cholesterol from ground beef[J]. Journal of Food Science,1991,56(1):183−187. doi: 10.1111/j.1365-2621.1991.tb08007.x
|
[46] |
HUANG S R, LIU B, GE D, et al. Effect of combined treatment with supercritical CO2 and rosemary on microbiological and physicochemical properties of ground pork stored at 4 °C[J]. Meat Science,2017,125:114−120. doi: 10.1016/j.meatsci.2016.11.022
|
[47] |
GATELLIER P, GOMEZ S, GIGAUD V, et al. Use of a fluorescence front face technique for measurement of lipid oxidation during refrigerated storage of chicken meat[J]. Meat Science,2007,76(3):543−547. doi: 10.1016/j.meatsci.2007.01.006
|
[48] |
BYUN J S, MIN J S, KIM I S, et al. Comparison of indicators of microbial quality of meat during aerobic cold storage[J]. Journal of Food Protection,2003,66(9):1733−1737. doi: 10.4315/0362-028X-66.9.1733
|
[49] |
杨立新, 赵亚许, 王建中. 高密度二氧化碳技术对预包装红烧肉菜肴储藏品质的影响[J]. 食品与机械,2015,31(5):174−176. [YANG L X, ZHAO Y X, WANG J Z. Effect of dense phase carbon dioxide on quality of pre-packaged braised pork dishes during storage[J]. Food & Machinery,2015,31(5):174−176. doi: 10.13652/j.issn.1003-5788.2015.05.045
|
[50] |
RAO W L, LI X, WANG Z Y, et al. Dense phase carbon dioxide combined with mild heating induced myosin denaturation, texture improvement and gel properties of sausage[J]. Journal of Food Process Engineering,2017,40(2):e12404. doi: 10.1111/jfpe.12404
|
[51] |
张秋会, 郝婉名, 李苗云, 等. 熏煮香肠保水性评价模型研究[J]. 食品工业科技,2021,42(1):35−41. [ZHANG Q H, HAO W M, LI M Y, et al. Prediction model to evaluate the water-holding capacity of the smoked and cooked sausages[J]. Science and Technology of Food Industry,2021,42(1):35−41. doi: 10.13386/j.issn1002-0306.2020030019
|
[52] |
甄宗圆, 李志杰, 梁迪, 等. 超高压技术在肉类杀菌及品质改善中的应用进展[J]. 现代食品科技,2021,37(8):350−356, 374. [ZHEN Z Y, LI Z J, LIANG D, et al. Recent application of ultrahigh pressure processing for meat sterilization and quality improvement[J]. Modern Food Science and Technology,2021,37(8):350−356, 374. doi: 10.13982/j.mfst.1673-9078.2021.8.1070
|
[53] |
周学府, 郑远荣, 刘振民, 等. 高密度二氧化碳对食品中蛋白质结构及其加工特性影响研究进展[J]. 乳业科学与技术,2020,43(1):39−44. [ZHOU X F, ZHENG Y R, LIU Z M, et al. A review of recent research on the effect of dense phase carbon dioxide on protein structure and processing characteristics in foods[J]. Journal of Dairy Science and Technology,2020,43(1):39−44. doi: 10.15922/j.cnki.jdst.2020.01.008
|
[54] |
张坤, 邹烨, 王道营, 等. 高强度超声处理对鹅胸肉肌动球蛋白特性的影响[J]. 食品科学,2018,39(21):59−65. [ZHANG K, ZOU Y, WANG D Y, et al. Effect of high-intensity ultrasound on the characteristics of goose breast muscle actomyosin[J]. Food Science,2018,39(21):59−65. doi: 10.7506/spkx1002-6630-201821009
|
[1] | CUI Yanru, PANG Rizhao, CEN Qiuyu, WEI Juanfang, ZHANG Anren. Research Progress on the Effect and Mechanism of Probiotics in Relieving Parkinson's Disease Related Symptoms[J]. Science and Technology of Food Industry, 2023, 44(9): 475-481. DOI: 10.13386/j.issn1002-0306.2022070268 |
[2] | HUANG Yanyan, LIANG Yantong, WU Jiamin, ZENG Xin'an, ZENG Qiaohui, CAO Shilin, LIAO Lan, WANG Langhong. A Review of the Mechanism of Probiotics Controlling Obesity through Intestinal Flora[J]. Science and Technology of Food Industry, 2023, 44(8): 1-8. DOI: 10.13386/j.issn1002-0306.2022080280 |
[3] | TANG Manyu, WANG Wanqing, QIANG Jingwen, HUA Wei, WU Shuang, LI Yali, ZHEN Xin, LI Chungeng, CHENG Yanling. Interaction and Mechanism of Probiotics with Gut Flora and Immune Regulation: A Review[J]. Science and Technology of Food Industry, 2022, 43(16): 486-493. DOI: 10.13386/j.issn1002-00306.2022030025 |
[4] | GUO Zichen, LIU Qian, WANG Yunting, WANG Han, ZHAO Jiangyan, ZHAO Yaxin, SUN Yaxuan, DAI Xueling. Effects of Probiotic Compound Preparations on Antioxidant Indexes, Cytokines and Intestinal Flora in Mice Treated with Ceftriaxone Sodium[J]. Science and Technology of Food Industry, 2022, 43(15): 383-391. DOI: 10.13386/j.issn1002-0306.2021110359 |
[5] | DUAN Hao, LV Yanni, YAN Wenjie. Application Progress of Probiotics in Functional Food in China[J]. Science and Technology of Food Industry, 2022, 43(3): 384-394. DOI: 10.13386/j.issn1002-0306.2020100077 |
[6] | XIAO Xue-jun, XINHUA·Na-bi. Research Progress on Immunomodulation and Antitumor Effect of Probiotics[J]. Science and Technology of Food Industry, 2020, 41(10): 321-326. DOI: 10.13386/j.issn1002-0306.2020.10.054 |
[7] | ZHONG Qian-gui, QIU Ming-meng, YANG Juan, YANG Li-zhi, GE Yong-kun, JIANG Yu-ji, CHEN Bing-zhi. Effects of Hericium erinaceus Polysaccharides on the Growth of Gastrointestinal Probiotics[J]. Science and Technology of Food Industry, 2019, 40(19): 301-304,309. DOI: 10.13386/j.issn1002-0306.2019.19.052 |
[8] | LU Jing-jing, WANG Na-na, JIAO Wen-shu, HUO Gui-cheng. The Mechanism and Research Progress of Probiotics in Relieving Obesity[J]. Science and Technology of Food Industry, 2019, 40(3): 296-299,306. DOI: 10.13386/j.issn1002-0306.2019.03.047 |
[9] | ZHU Zong-tao, HAN Bing, WAN Feng, MENG Xiang-chen. Research progress on the interventional effects of probiotics on diabetes[J]. Science and Technology of Food Industry, 2017, (22): 321-324. DOI: 10.13386/j.issn1002-0306.2017.22.062 |
[10] | XUE Chao-hui, ZHANG Lan-wei, WANG Shu-mei, LI Hong-bo. Research progress in probiotics for the prevention and treament of Clostridium difficile-associated diarrhoea[J]. Science and Technology of Food Industry, 2013, (22): 358-362. DOI: 10.13386/j.issn1002-0306.2013.22.090 |